
A Neuromorphic VLSI Model of Grid Cells in the 
Echolocating Bat 

 

Timothy K. Horiuchi 
Electrical and Computer Engineering Department 

Institute for Systems Research 
University of Maryland 

College Park, MD, 20742, USA 
timmer@umd.edu 

 
 
 

 
Tarek M. Massoud 

Electrical and Computer Engineering Department 
University of Maryland 

College Park, MD 20742, USA 
tmassoud@umd.edu 

 
 
 

Abstract— Neurophysiological experiments in the hippocampal 
formation of echolocating bats have found grid cells (thought to 
be used for odometry) as in other mammals, but without 
continuous theta frequency oscillations (~8 Hz) prominent in 
other mammals.  We describe a ‘theta-free’ model of grid cell 
property creation for echolocating bats that is amenable to VLSI 
implementation of hippocampal models of spatial navigation. 
We demonstrate a hybrid implementation of a 2-D model 
(microcontroller and neuromorphic VLSI) using recorded input 
from a sonar system. 

I. INTRODUCTION 

Since the discovery of ‘place’ cells in the rat [1], the 
spatial odometry system in mammals (especially in rats) has 
been heavily studied, resulting in additional discoveries of 
cells that code for head-direction in world coordinates [2] and 
‘grid’ cells that fire at the vertices of a triangular grid pattern 
overlaid on the environment [3].  A prominent feature of both 
grid and place cells in the rat is the local field potential 
oscillations in the theta frequency band (6-10 Hz) and that the 
spiking activity of these cells are also modulated at these 
frequencies. 

Many different models for the creation of grid cell 
properties have been proposed, with most falling into one of 
two major categories: oscillatory-interference models that use 
the relative phase of multiple theta frequency oscillators (e.g., 
[4]) and 2D attractor networks that create a triangular grid 
pattern of activity on a neural sheet using local synaptic 
projection fields (e.g., [5]).  In these attractor models, theta 
oscillation is not used to create the fields, however, theta 
modulation of firing can be injected into the activity and still 
explain much of the experimental data.  Although these two 
classes of models are dramatically different and naturally 
explain different aspects of the biological data, 
neurophysiological evidence has yet to rule out either class 
(for review, see [6]).   

In the oscillatory-interference models, translational 
motions of the animal result in persistent phase changes of 
oscillators (i.e., memory of position), resulting in position-
dependent phase-synchronization at downstream grid cells.  
Notably, with this model, it is possible to build a single 
isolated grid cell at a given frequency using minimal synaptic 
connectivity.  A requirement for good performance, however, 
is that the oscillators have very good phase stability.   

In the attractor network models, translational motions of 
the animal result in an asymmetrical pattern of recurrent 
activity, resulting in a global shift in the phase of the grid 
activity pattern on the sheet (i.e., memory of position). In this 
model, it is not possible to create a single grid cell at a given 
frequency because the grid pattern emerges from the network.  
Due to the high neuron count, extensive synaptic inter-
connectivity, and complex pattern-movement wiring, this 
model is challenging for neuromorphic VLSI implementation 
unless some simplifications are made [7]. Fabrication 
mismatch readily creates drift and trapping in local minima. 

The sonar development (ONR(705018)) and grid cell model 
(N000141210339) were funded separately by two different grants from the 
Office of Naval Research. 

‐‐

+

0

240120 Grid Cell

0 120 240

 
Fig. 1.  Left: A two-dimensional movement vector (thick red arrow) is 
projected onto each of the three ring integrator orientations.  The resulting 
vectors are then translated into a ring activity-bump rotational phase rate.  
Projection vectors with ‘+‘ signs produce positive phase rotations and vectors 
with ‘-‘ signs produce negative phase rotations.  Note that these vectors are 
defined in the world frame of reference (allocentric).  While not simulated 
here, this could be accomplished using a speed-modulated, head-direction 
(HD) cell [2] that has trigonometrically-appropriate, synaptic projection 
strengths onto cells that control each ring-integrator’s rotation rate. Right: 
Neurons from each integrator representing a particular phase, project activity 
to a single grid cell configured to detect a three-way coincidence using 
saturating synapses. 



Recent neurophysiological experiments have discovered  
place cells in the big brown bat [8] and both place cells and 
grid cells in the Egyptian fruit bat [9].  While these place and 
grid fields are similar to those in the rat, continuous theta 
oscillations are not present, suggesting that theta oscillations 
are not fundamental to the creation of grid cell or place cell 
formation in bats.  In contrast, transient theta oscillations 
occur in 1-2 sec bouts mostly during short periods during 
active echolocation behavior [8]. 

Our model for the bat grid cells is based on a model 
proposed by [10] where non-oscillatory ‘stripe cells’ replace 
paired, interfering oscillators.  In our model, the stripe cells 
are implemented as a ring-integrator network that moves a 
self-sustaining “bump” of neural activity cyclically in 
response to translational movements of the animal.  This 
proposed ring-integrator is identical to network models of the 
head-direction cell system except that it is driven by 
translational movement inputs scaled by the animal’s speed 
and heading (i.e., speed-modulated head-direction cells). 

Travel in two-dimensions is represented by three ring-
integrator networks that represent the projection of the 
animal’s allocentric (i.e., world referenced) velocity vector 
onto reference vectors pointing in the 0, 120, and 240 degree 
orientations (Fig. 1, left).  As the animal moves in different 
directions, the activity bumps on the three rings rotate at 
different speeds and in different directions.   

A grid cell receives its inputs from one location (i.e., 
phase) on each ring (Fig 1, right), creating a maximum at 
spatial locations that occur on a triangular grid.   To create 
grid cells of different spatial frequencies, we create new 
triplets of ring-integrators that have a different scaling 
between animal speed and bump rotation rate. 

This model network has a number of desirable properties 
in the context of the current scientific literature and from a 
neuromorphic VLSI perspective.  First, the model does not use 
theta oscillations to create the grid pattern, consistent with the 
bat hippocampal data. Second, unlike the 2D attractor network 
models for grid cells, a large, specifically-wired 2D network to 

create and move the triangular grid of activity is not needed.  
Third, the model uses the same ring-integrator network as is 
postulated for the head-direction cell system. 

In the attractor-network model of grid cells, the 
memory of the animal’s position is stored in the combination 
of phases of the activity patterns found on the grid cells of 
different spatial frequencies.  In our model, like the phase 
interference model, the memory of the animal’s position is 
stored in the combination of phases of the different ring O/I 
networks of different spatial frequencies (upstream of the grid 
cells), which likely represents a much smaller number of 
neurons than would be necessary for the attractor network 
model.  Like the phase interference model, the grid cells only 
need to be driven by the inputs of the ring-integrator 
networks, allowing the properties of a given grid cell to be 
independent of neighboring grid cells. This arrangement 
avoids boundary condition effects that arise in the attractor 
networks.   

II. SOFTWARE MODELING 

A.  Ring Integrators 

The ring-integrator networks were simulated in 
MATLAB® to be 36 non-spiking neurons per ring with 
analog activation values.  The activity bump was Gaussian 
with a sigma of 1.9 radians. A specific movement neural 
network was not implemented; the phase (i.e., position of the 
Gaussian) was simply advanced with time according to the 
direction and speed of travel. Using a simulated bat following 
a specified trajectory, the velocity vector was projected onto 

each of the three ring-integrator orientation vectors (see Fig 
1.) and the magnitude of the projections were scaled into the 
rotation rate for each ring-integrator network.  An example of 
the evolution of ring activity is shown in Fig. 2 where a 
simulated bat flies in a circle.  Note that the starting and 
ending phase for all three integrators is the same.  Changing 
the scaling factor produces different spatial frequency grid 
fields. 
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Fig. 3. Two examples of spatial grid fields produced by a single grid cell of a 
simulated bat moved across the environment. Different spatial scales are 
produced by scaling the translation from movement speed to ring integrator 
phase rate. 

B. Simulated Grid Cells 

Although earlier models from Burgess and colleagues used 
a summation of the three orientation inputs to drive the grid 
cell, multiplication of the three inputs that target different 
dendritic branches [4] appears to fit the data better [11].  In 
fact, logarithmic compression (i.e., saturation of the dendritic 
contributions) of the individual inputs prior to summation at 
the soma can produce this multiplicative effect and is very 

 
Fig. 2. Evolution of three ring integrator networks (tuned to 0, 120, and 240 
degrees from top to bottom) as a simulated bat travels in a complete circle.  
The scaling parameter from translational speed to rotation rate are those used 
for generating Fig. 2 (left).  White denotes the strongest activity and black 
denotes no activity. 
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close to a logical AND of the inputs.  Fig. 3 shows two 
examples of spatial grid patterns resulting from two ring 
integrator speed scaling factors.   

III. A NEUROMORPHIC VLSI GRID CELL 

A. A Hybrid Implementation Using VLSI Hardware 

In the previous section, the model was simulated in 
MATLAB® to provide the cleanest definition of the 
model. In this section, we demonstrate the 
implementation of the grid cell calculation on a 
neuromorphic VLSI circuit using saturating synapses in 
a single compartment neuron model to mimic the 
multiplicative model (using the concept of dendritic 
branch saturation).  The ring integrator portion of the 
model was implemented on an 18F series PIC® 
microcontroller with motion signals coming from a 

computer.  The microcontroller provided neuron outputs for 
the three ring-integrator networks (corresponding to one 
spatial frequency) as spike trains that were transmitted to a 
neuromorphic VLSI neuron chip.  The neuromorphic VLSI 
chip was fabricated in a commercially-available 0.5 m 
CMOS process for general purpose neuromorphic education 
and research. 

As the simulated bat moves around in the environment, a 
triple coincidence between the three ring phases occurs 
periodically in space.  To detect the coincidence, we used a 
“pulse-extension” synapse circuit [12] (Fig. 4.) that extends 
the short duration spike (~1 microsecond) used in our inter-
chip communication system into a longer, square-wave 
current pulse. This current is translated into a conductance at 
the neuron circuit. Additional spikes arriving before the end 
of the pulse will reset the timing of the pulse and extend the 
duration without increasing the current level.  The currents 
from the three synapse circuits are summed, resulting in a 
combined conductance that simulates parallel conductances. 

B. Neuron Circuit 

The neuron circuit (Fig. 5) is a subthreshold-regime, 
current-mode, conductance-based neuron design (similar to 
[12]).  In this design, the membrane potential is represented 

as a current (Imem_ss, drain current of M10) with a current 
threshold for firing a spike (drain current of M11).  The 
excitatory input current acts as a conductance, pulling the 
membrane “potential” up above the threshold level. The 

inhibitory current also acts as a conductance, pulling the 
membrane below the firing potential. This competition 
determines the steady-state value of the membrane 
“potential” and thus determines if the neuron will fire a spike 
or not.   The current representing the membrane “potential” 
reaches a steady-state value given by: 
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Where I0 represents the subthreshold scaling current and  
represents the gate capacitive coupling factor. Because the 

three synapses saturate, we can select a threshold current 
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Fig. 4. A simple digital pulse-extension synapse that produces a long duration 
current pulse of “constant” current. The output current level (IsynPE) is 
controlled by vsynPE and the duration is controlled by vtauPE. Input spikes 
that arrive before the end of the previous current pulse “reset” the pulse timing 
to extend the duration of the pulse.    This saturating behavior enables the 
logical AND function desired in the grid cell computation.  The transistor 
sizes were identical and were fabricated at 2.5m/2.5m. 
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Fig. 5.  The neuron circuit used to convert excitatory and inhibitory input 
currents into conductance.   Transistor sizes were all 2.5m/2.5m except for 
M6 which was 3.2m/2.0m.  C1=500fF. C2 and C3=30fF.  Iinh raises Vm and 
Iexc lowers Vm. Vexc controls the excitatory reversal potential and Vreset 
controls the post-firing reset level. 

 

 
Fig. 6.  Spatial grid patterns generated by a neuromorphic VLSI neuron driven 
by three saturating synapses (VLSI) to detect a three-way coincidence of 
particular phases from three ring-integrator networks (microcontroller).  Three 
spatial frequencies are demonstrated by changing the scaling factor between 
movement speed (e.g., m/sec) and the phase rate (e.g., rad/sec) 
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(controlled by Vthreshold) and inhibitory current to only 
produce a spike if all three inputs are active.  In this circuit, 
the capacitor C1 only acts as a lowpass filter. 

C. Grid Cells 

In our implementation of the model, using a single 
compartment VLSI neuron, saturating synapses are used to 
mimic the effect of separate dendritic compartments.  The 
result is close to a logical AND (to approximate the 
multiplicative solution). To demonstrate the use of this 
neuromorphic VLSI implementation and to visualize the 
firing field of the grid cell, we moved the position of 
simulated bat to all locations in a square grid to produce the 
grid field pattern seen in rat experiments (Fig. 6). 

 

D. Sonar-Driven Grid Cells 

To demonstrate the system with a natural spatial 
movement signal closer to our intended application, we used 
a single sonar transducer observing a moving pole to simulate 
an aerial vehicle (e.g., a robot bat) using a fixed pole as a 
position reference.  The sonar samples were at 10 Hz and the 
range rate was fed into the ring integrator network assuming a 
fixed angle (zero radians). 
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Fig. 7.  Sonar-driven grid cell activity.  Left: A sonar transducer measures the 
distance to a moving pole (black dots). The range rate drives the ring O/I 
simulation that drives the VLSI grid cell.  Red circles indicate where the grid 
cell fired. As the simulated hovering bat moves back and forth, it crosses five 
different vertices of its grid field.  Right: Histogram of grid cell responses 
shows the periodic structure of the grid field. 

 
The initial integrator phases were selected such that the line 
of travel aligned with the nodes of the grid field. 
 

IV. DISCUSSION 

The use of the ring-integrator networks to replace pairs of 
interfering theta oscillators provides a much simpler model for 
the bat grid cell system, retaining many of the desirable 
properties of the original phase-interference model, without 
resorting to a full 2-D attractor circuit as in [7].  Two-
dimensional movements of the animal are implemented as 
one-dimensional movements on multiple rings, arguably 
simplifying the required network.  While this paper only 
explored the grid cell portion of the model in silicon, 
implementing a spiking neuron-based ring-integrator network 

with good rotational control has already been demonstrated for 
a neuromorphic VSI head-direction cell system [14].  

Recent work [15] has shown that large numbers of grid 
cells at each frequency are not necessary to generate compact 
place fields.  This model allows for targeted construction of 
grid field properties for efficient neuromorphic VLSI-based 
implementations of place cells in the hippocampus that may 
require a diversity of grid cell inputs.  Perhaps most interesting 
for both VLSI and biological implementation, expansion of 
the model to 3-D only requires one additional ring-integrator. 
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