
 

  
Abstract—Recent successes in micro-aerial vehicles (< 15cm 

length, wingspan, height), have highlighted the lack of real-time 
sensors for flight control. In this paper we describe a low-power, 
real-time visual horizon sensor for use in stabilizing miniature 
aircraft with respect to pitch and roll in moderate-to-high altitude 
flight.  This prototype sensor incorporates a 12x12 photoreceptor 
array and finds a best-fit horizon line based on image intensity.  
The sensor includes a “confidence-level” output for a flight 
control system to detect poor sensing conditions.  The chip was 
fabricated in a commercially-available 0.5µm CMOS process and 
operates on less than 2.5 milliwatts with a 5V power supply. 
 

Index Terms—analog VLSI, smart sensor, autonomous flight 
control, micro-aerial vehicles. 

I. INTRODUCTION 
nmanned micro-aerial vehicles are rapidly being 
developed for use as a low-cost, portable, aerial 

surveillance platform for semi-autonomous operation.   While 
they are successfully achieving flight, the sensors needed for 
autonomous flight (in contrast to long-range navigation) are 
lacking.  Obstacle avoidance and flight stability remain a 
problem for such small vehicles with tiny weight and power 
budgets.  Their small size makes them susceptible to tiny wind 
gusts, making the speed of processing critical for stability. 

While many visual motion approaches to stabilizing aerial 
vehicles with low-power chips are being pursued (e.g. [1, 2]), 
detection of the horizon is also desirable for high-altitude pitch 
and roll stabilization.  Several low sensor-count horizon 
sensing systems have been developed for assisting aircraft 
pilots that utilize contrast in the infrared spectrum [3] or 
visible light [4].  In recent years, a team from the University of 
Florida (UF) has demonstrated an automatic visual-horizon 
finding algorithm operating on a high-speed computer on the 
ground that receives a transmitted color video-feed from the 
airplane [5].  We have devised a similar algorithm that uses an 
optimization approach embedded in an analog VLSI vision 
chip to find the best visual horizon and provide a measure of 
confidence.  The VLSI implementation has the potential for 
real-time, low-power performance and operation over a wider 
dynamic range of image intensities. 
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II. HORIZON DETECTION ALGORITHM 

A. The Horizon Vector, h 
Consider an image where each pixel is assigned a horizontal 

and vertical coordinate (x, y) with the origin in the center of 
the image (Figure 1, left).  We can think of this coordinate as 
the pixel vector, pµ , where µ is the index.  We introduce the 
horizon vector, h, and define the horizon as the boundary 
separating the two polarities (or “classes”) resulting from the 
dot product between pixel vectors and the horizon vector (plus 
a bias parameter, b, and fixed threshold, θ ).  
 ( , ) sign(( ) )class p h p h bµ µ θ= ⋅ + −  

The two classes represent ‘sky’ and ‘ground’.  In the 
horizon detection algorithm to follow, exactly which class 
represents sky or ground will not be specified, but can be 
determined after the horizon is found by measuring the 
average intensity of the sky and ground classes.  The horizon 
line is thus perpendicular to the horizon vector and is offset 
from the origin by a distance defined by the ‘bias’ parameter, 
b.  The horizon vector is available at each pixel location and 
the class assignment is computed in parallel at each pixel. 

  
The goal of finding a visual horizon requires a working 

definition of the differences between ‘sky’ and ‘ground’.  We 
use an approach similar to the UF team [5],  noting that a 
histogram of pixel intensities (in their case, the RGB vector) 
will show a bimodal distribution with the sky pixels bright and 
the ground pixels dark.  This is obviously not always true, but 
describes most situations adequately.  The goal is to find the 
line that best separates the two intensity distributions. 
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Fig. 1.  Left: The sign of the dot-product of a horizon vector (h) and the 
pixel vector (p) plus a bias determines the horizon line.  The dotted line 
represents the horizon line with a positive bias.  Right: Block diagram of 
processing in a single pixel.  vx, vy, and vb represent the horizon vector 
and each pixel’s coordinate (x, y) is determined by ix and iy. 



 

We begin by computing the average intensity of each class 
for the current state of the horizon line.  At each pixel, the 
absolute differences between the pixel’s intensity and the class 
averages are computed.  We decide that a pixel is 
‘misclassified’ if the pixel intensity is closer in value to the 
opposite class average.   The goal of the horizon detection 
algorithm is to find the horizon vector that minimizes the total 
number of misclassified pixels.  For any realistic image, the 
horizon will not be perfectly straight due to trees, buildings, 
canyons, mountains, or lens distortions; by monitoring the 
total number of misclassified pixels, however, we will have an 
ongoing estimate of the success or failure to fit a straight line. 

The horizon line calculation operates as a linear discriminant 
function over a two-dimensional input space.  By utilizing 
neural network learning algorithms, we can achieve adaptation 
of the horizon vector to minimize the total number of 
misclassified pixels.   

B. Finding the Best Horizon Vector 
In neural network training, example inputs (pixel vectors) 

are presented one-by-one and the resulting output is compared 
against a desired output (class match or mismatch).  The linear 
discriminant (horizon) is then moved to minimize a quadratic 
cost function.  In the horizon detection problem, the image 
represents the distribution to learn and all of the input 
examples are presented simultaneously.  As our image moves 
and changes, the horizon vector must quickly adapt to 
continuously minimize the cost function. 

If, instead of sign( ), we use some sigmoidal activation 
function g(x)  (whose range is 0 to 1 with g’( ) > 0) each pixel 
output class can described by, 

( ) i i
i

O g h p g h pb bµ µ µθ θ⋅= ⋅ =  + − + − 
 
∑ . 

If µζ represents the desired class output (0 or 1) for a given 
pixel, we can define a cost function: 

( )21
( )

2
E h Oµ µ

µ

ζ= −∑ and solve for an update rule for each 

component of the horizon vector: 
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∑ and η is the learning 

rate.  Since g’( ) will always be positive and 
( )Oµ µζ − represents the sign and degree of the mismatch, we 

approximate this by setting µδ equal to ( )Oµ µζ − , keeping 

our effective step size, η , small to avoid overestimating E
hi

∂
∂ . 

 When a pixel determines itself to be misclassified as a 
ground (or sky) pixel, it adds (or subtracts) its own coordinate 
vector to (or from) the horizon vector, thus rotating the vector 
slightly.  In this way, both the direction and the amplitude of 
the vector are changed.   Because all pixels perform this 
operation simultaneously, the change in the horizon vector will 
be a large vector sum of adaptation vectors.   Notice that pixels 
near the center with tiny vector amplitudes do not have the 
same weighting as those pixels in the periphery. 

The bias variable modification rule operates independently 
from the rotation and simply increases or decreases the bias 
parameter (i.e., translates the horizon) to balance the number 
of misclassified pixels on either side of the horizon line.  Thus, 

b µ

µ

λ δ∆ = ∑ , where λ is the bias learning rate.  Notice that 

with a non-zero threshold, θ , increasing the horizon vector 
length has the same effect as increasing the bias. 

C. Analog VLSI Considerations 
The primary motivation for analog VLSI implementation is 

to achieve real-time performance using very low-power.  
Although analog VLSI implementations typically suffer from 
transistor mismatch, much of this algorithm works through 
averaging, minimizing the impact of individual pixel 
mismatch.  Real outdoor scenes contain intensities spanning 
many orders of magnitude which can commonly overload 
standard  cameras.  On this chip, image intensity is represented 
in the current domain, allowing for many orders of magnitude 
of image intensity.  

Various practical reasons make it desirable to prevent 
unbounded growth or shrinkage of the horizon vector 
amplitude.  Large vectors can exceed the dynamic range of a 
given circuit and very small vectors can produce outputs close 
to the computational noise level (i.e., discretization noise, 
electronic noise, and transistor mismatch).  The bias term, b, 
works to prevent large horizon vector amplitudes. 

III. CIRCUITS 
The horizon detection algorithm was implemented in analog 

CMOS circuitry operating in the subthreshold region of 
operation.  The measured horizon vector (with bias) is 
represented by three voltages and the “total mismatch” 
confidence level measure is reported as a current. 

A. System Block Diagram 
The horizon detection chip consists of a 12x12 array of 

pixels each with a photodiode and horizon detection circuitry 
(see Figure 1, right).  The photodiode current and the class 
assignment for each pixel can be scanned out to produce 
images.  The array is organized into four quadrants with 
different cell layouts to allow the use of simpler two-quadrant 
computational circuits.  In the sections to follow, only 
quadrant-one (i.e.  x>0, y>0) circuits will be shown.  Along 



 

the margins of the array, current sources of magnitude x  and 

y  are mirrored into each pixel via the voltages ix and iy 
respectively.  The parameter ib is a global constant. 

 
B. Class Detector 
The circuit schematic for the quadrant-one class detector is 

shown in Figure 2.  Each of the three voltages, vx, vy, and vb is 
referenced to the voltage vref allowing negative values.  The 
differential pair currents are summed and compared to a 
current threshold defined by the voltage parameter thresh.  The 
resulting digital signal is buffered and a complementary signal 
is generated.  For other quadrants, negative coordinates are 
implemented by swapping the output connections of the 
differential pairs.  All pixel class outputs will thus be classified 
logically as either class = 1 or class = 0. 

 
C. Mismatch Detector 
The two subcircuits of the mismatch detector are shown in 

Figure 3.  Once a class has been assigned to each pixel in the 
image, it is possible to compute the average image intensity of 
each class (see Figure 3).  Each pixel makes a copy of the local 
photocurrent and mirrors this current (M1 and M2) back into 
the pixel for comparison against the local photocurrent.  By 
coupling together the M1 transistors of all pixels of a given 

class, the mirrored current becomes the class average.   
 The difference current between the local intensity and the 
class average is output on the line labeled, i_sameclass.  The 
difference current between the local intensity and the other 
class average is output on the line labeled, i_otherclass.  The 
difference currents are then compared to each other (see 
Figure 3, right) to determine if the pixel was misclassified. 

D. Horizon Vector Learning 
The circuit schematic for the quadrant-one adaptation circuit 

is shown in Figure 4.  If Vmismatch is high, indicating a class 
mismatch, a current proportional to the pixel coordinate is 
either added (subtracted) directly onto (from) the vx and vy 
lines.  For adapting the bias value, a fixed current, defined by 
biasbias, is added (subtracted) directly onto (from) the vb line, 
moving the horizon line to change the pixel class.  For other 
quadrants, negative coordinates are represented by swapping 
the class and Vref connections in the differential pair. 

 
E. Confidence Measures and Chip Outputs 
The main outputs of the chip are the voltages vx, vy, vb, and 

the total mismatch current drawn from the vref line (see Figure 
4) indicating confidence level.  An x-y scanner allows access 
to the photocurrent and selected class at each pixel.  In 
addition, there are two current outputs that mirror the average 
photocurrent measured in the ‘sky’ and ‘ground’ classes.  
These two currents are important for distinguishing if the sky 
class contains the brighter pixels compared to the ground class. 

IV. TESTING RESULTS 
The chip was fabricated in a commercially-available 0.5 µm, 

2-poly, 3-metal CMOS process using the top metal layer as a 
light shield with holes over the photodiodes.  Horizon-like 
images were projected onto the chip through a lens mounted 
on the chip package.  The photocurrent and selected class for 
each pixel were scanned off using a current-sense amplifier.  
An example is shown in the top two panels of Figure 5.  
Transistor mismatch and light-leakage currents in the class 
determination circuit produce a ragged horizon boundary. 
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Fig. 3.  Left: The average class intensities are computed and the 
difference between the local pixel intensity and the two average class 
intensities are represented as the currents i_otherclass and i_sameclass.  
(W/L values are given in microns: M1, M2, M4, M5, M9, M11 =  
1.8/1.8; M3, M6-M8, M10, M12 = 1.8/2.1) Right: The absolute-value 
difference currents are compared to determine if a pixel has been 
misclassified.  (W/L values are given in microns: M5, M6, M1, M2 = 
1.8/2.1; M3, M4 = 1.8/1.5) 
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Fig. 2.  The quadrant-one class detector circuit.  Pixel coordinates are 
given by ix and iy while the horizon vector is given by vx, vy, and vb.  
(W/L values are given in microns: M1-M16 = 1.8/1.8; M17 and M18 = 
1.8/2.4) 
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Fig. 4.  The quadrant-one horizon vector adaptation circuit.  (All 
transistors have a W/L = 1.8/1.8, given in microns) 



 

 
To observe the adaptation process, the vx, vy, and vb 

voltages were held externally by computer-controlled digital-
to-analog converters (DAC) while the total vector adaptation 
currents on these lines were measured.  After reading the 
photodiode image and class image, the horizon vector voltages 
were iteratively changed in proportion to the measured 
adaptation current, simulating the time evolution of the vx, vy, 
and vb voltages if they had been left floating.  

 
Figure 5 shows an example image where the horizon vector 

was initially pointing towards the bottom-left corner, 
producing an incorrect horizon line (Fig. 5, bottom-left panel).  
Initial iterations show a rapid rotation of the horizon vector 
followed by a slow lengthening.  The total mismatch current 
(Fig. 5, bottom-right panel) which reflects the number of 
mismatched pixels rapidly decreases resulting in a stable 
solution.  This final mismatch current is typical for good 
horizon solutions with the particular parameter settings used. 

We then allowed the horizon vector and bias value to freely 
adapt to produce rapid horizon solutions.  Three example 
images with the resulting class separations are shown in Figure 

6.   External 0.022 µF capacitors are attached to the vx, vy, and 
vb lines for stability, creating a time constant of about 20 ms. 

Roll angle estimation accuracy is shown in Figure 7 where 
horizon images were presented to the chip and the resulting 
horizon vector was transformed into an angle using: 

( )( )arctan /( )vy vref vx vrefθ = − − . 

 While the power consumption varies dynamically with the 
image, long-term observations show the power supply current 
to be less than 500µA (or 2.5mW with a 5V power supply). 

 

V. DISCUSSION 
While this chip satisfies the basic goals of the project, there 

are many places for improvement.  In particular, the sensitivity 
of the sensor can be improved by using phototransistors and 
transistor mismatch can be reduced by using larger transistors.  
The contrast between ultraviolet (UV) and green light [6] is 
known to be a more reliable measure and could be used here 
by adding optical filters and UV-sensitive photosensors. 
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Fig. 6.  Three example snapshots of internal state following horizon 
detection.  Top Row: Photodiode image.  Bottom Row: sky/ground class 
image following settling.   
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Fig. 5.  Time-evolution of the horizon estimate.  Top-Left: Static image, 
Top-right: Final sky/ground class image, Bottom-Left: Horizon vector 
end-points during iteration (line-circle is the final iteration), Bottom-
Right: Total mismatch current during the evolution of the horizon 
estimate.    

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

Real Horizon Angle (radians)

M
ea

su
re

d 
H

or
iz

on
 A

ng
le

 (r
ad

ia
ns

)

 
Fig. 7.  Measured horizon line roll angle vs. actual horizon roll angle.  
Error bars represent one standard deviation from 25 measurements.


