

Abstract—Recent successes in micro-aerial vehicles (< 15cm

length, wingspan, height), have highlighted the lack of real-time
sensors for flight control. In this paper we describe a low-power,
real-time visual horizon sensor for use in stabilizing miniature
aircraft with respect to pitch and roll in moderate-to-high altitude
flight. This prototype sensor incorporates a 12x12 photoreceptor
array and finds a best-fit horizon line based on image intensity.
The sensor includes a “confidence-level” output for a flight
control system to detect poor sensing conditions. The chip was
fabricated in a commercially-available 0.5µm CMOS process and
operates on less than 2.5 milliwatts with a 5V power supply.

Index Terms—analog VLSI, smart sensor, autonomous flight
control, micro-aerial vehicles.

I. INTRODUCTION
nmanned micro-aerial vehicles are rapidly being
developed for use as a low-cost, portable, aerial

surveillance platform for semi-autonomous operation. While
they are successfully achieving flight, the sensors needed for
autonomous flight (in contrast to long-range navigation) are
lacking. Obstacle avoidance and flight stability remain a
problem for such small vehicles with tiny weight and power
budgets. Their small size makes them susceptible to tiny wind
gusts, making the speed of processing critical for stability.

While many visual motion approaches to stabilizing aerial
vehicles with low-power chips are being pursued (e.g. [1, 2]),
detection of the horizon is also desirable for high-altitude pitch
and roll stabilization. Several low sensor-count horizon
sensing systems have been developed for assisting aircraft
pilots that utilize contrast in the infrared spectrum [3] or
visible light [4]. In recent years, a team from the University of
Florida (UF) has demonstrated an automatic visual-horizon
finding algorithm operating on a high-speed computer on the
ground that receives a transmitted color video-feed from the
airplane [5]. We have devised a similar algorithm that uses an
optimization approach embedded in an analog VLSI vision
chip to find the best visual horizon and provide a measure of
confidence. The VLSI implementation has the potential for
real-time, low-power performance and operation over a wider
dynamic range of image intensities.

This work was supported in part by the Air Force Office of Scientific

Research (FA95500410130) and in part by the National Science Foundation
under (CCF0347573)

II. HORIZON DETECTION ALGORITHM

A. The Horizon Vector, h
Consider an image where each pixel is assigned a horizontal

and vertical coordinate (x, y) with the origin in the center of
the image (Figure 1, left). We can think of this coordinate as
the pixel vector, pµ , where µ is the index. We introduce the
horizon vector, h, and define the horizon as the boundary
separating the two polarities (or “classes”) resulting from the
dot product between pixel vectors and the horizon vector (plus
a bias parameter, b, and fixed threshold, θ).
 (,) sign(())class p h p h bµ µ θ= ⋅ + −

The two classes represent ‘sky’ and ‘ground’. In the
horizon detection algorithm to follow, exactly which class
represents sky or ground will not be specified, but can be
determined after the horizon is found by measuring the
average intensity of the sky and ground classes. The horizon
line is thus perpendicular to the horizon vector and is offset
from the origin by a distance defined by the ‘bias’ parameter,
b. The horizon vector is available at each pixel location and
the class assignment is computed in parallel at each pixel.

The goal of finding a visual horizon requires a working

definition of the differences between ‘sky’ and ‘ground’. We
use an approach similar to the UF team [5], noting that a
histogram of pixel intensities (in their case, the RGB vector)
will show a bimodal distribution with the sky pixels bright and
the ground pixels dark. This is obviously not always true, but
describes most situations adequately. The goal is to find the
line that best separates the two intensity distributions.

A Low-Power Visual Horizon Estimation Chip

Timothy K. Horiuchi,
Electrical and Computer Engineering Department,

Institute for Systems Research & the Neuroscience and Cognitive Science Program
University of Maryland, College Park, MD 20742, timmer@isr.umd.edu

U

h p

P

mismatch

class

adapt

Vx Vy Vbi x

i y

Vsky
Vgnd

Fig. 1. Left: The sign of the dot-product of a horizon vector (h) and the
pixel vector (p) plus a bias determines the horizon line. The dotted line
represents the horizon line with a positive bias. Right: Block diagram of
processing in a single pixel. vx, vy, and vb represent the horizon vector
and each pixel’s coordinate (x, y) is determined by ix and iy.

We begin by computing the average intensity of each class
for the current state of the horizon line. At each pixel, the
absolute differences between the pixel’s intensity and the class
averages are computed. We decide that a pixel is
‘misclassified’ if the pixel intensity is closer in value to the
opposite class average. The goal of the horizon detection
algorithm is to find the horizon vector that minimizes the total
number of misclassified pixels. For any realistic image, the
horizon will not be perfectly straight due to trees, buildings,
canyons, mountains, or lens distortions; by monitoring the
total number of misclassified pixels, however, we will have an
ongoing estimate of the success or failure to fit a straight line.

The horizon line calculation operates as a linear discriminant
function over a two-dimensional input space. By utilizing
neural network learning algorithms, we can achieve adaptation
of the horizon vector to minimize the total number of
misclassified pixels.

B. Finding the Best Horizon Vector
In neural network training, example inputs (pixel vectors)

are presented one-by-one and the resulting output is compared
against a desired output (class match or mismatch). The linear
discriminant (horizon) is then moved to minimize a quadratic
cost function. In the horizon detection problem, the image
represents the distribution to learn and all of the input
examples are presented simultaneously. As our image moves
and changes, the horizon vector must quickly adapt to
continuously minimize the cost function.

If, instead of sign(), we use some sigmoidal activation
function g(x) (whose range is 0 to 1 with g’() > 0) each pixel
output class can described by,

() i i
i

O g h p g h pb bµ µ µθ θ⋅= ⋅ =  + − + − 
 
∑ .

If µζ represents the desired class output (0 or 1) for a given
pixel, we can define a cost function:

()21
()

2
E h Oµ µ

µ

ζ= −∑ and solve for an update rule for each

component of the horizon vector:

() 'i i i i
i i

E
h O g h p p

h
bµ µ µ µ

µ
η η ζ θ⋅

∂
∆ = − = − − −

∂

  + −  
  

∑ ∑

i ih pµ µ

µ
η δ∆ = ∑ , where

() ' i i
i

O g h p bµ µ µ µδ ζ θ⋅= −  + − 
 
∑ and η is the learning

rate. Since g’() will always be positive and
()Oµ µζ − represents the sign and degree of the mismatch, we

approximate this by setting µδ equal to ()Oµ µζ − , keeping

our effective step size, η , small to avoid overestimating E
hi

∂
∂ .

 When a pixel determines itself to be misclassified as a
ground (or sky) pixel, it adds (or subtracts) its own coordinate
vector to (or from) the horizon vector, thus rotating the vector
slightly. In this way, both the direction and the amplitude of
the vector are changed. Because all pixels perform this
operation simultaneously, the change in the horizon vector will
be a large vector sum of adaptation vectors. Notice that pixels
near the center with tiny vector amplitudes do not have the
same weighting as those pixels in the periphery.

The bias variable modification rule operates independently
from the rotation and simply increases or decreases the bias
parameter (i.e., translates the horizon) to balance the number
of misclassified pixels on either side of the horizon line. Thus,

b µ

µ

λ δ∆ = ∑ , where λ is the bias learning rate. Notice that

with a non-zero threshold, θ , increasing the horizon vector
length has the same effect as increasing the bias.

C. Analog VLSI Considerations
The primary motivation for analog VLSI implementation is

to achieve real-time performance using very low-power.
Although analog VLSI implementations typically suffer from
transistor mismatch, much of this algorithm works through
averaging, minimizing the impact of individual pixel
mismatch. Real outdoor scenes contain intensities spanning
many orders of magnitude which can commonly overload
standard cameras. On this chip, image intensity is represented
in the current domain, allowing for many orders of magnitude
of image intensity.

Various practical reasons make it desirable to prevent
unbounded growth or shrinkage of the horizon vector
amplitude. Large vectors can exceed the dynamic range of a
given circuit and very small vectors can produce outputs close
to the computational noise level (i.e., discretization noise,
electronic noise, and transistor mismatch). The bias term, b,
works to prevent large horizon vector amplitudes.

III. CIRCUITS
The horizon detection algorithm was implemented in analog

CMOS circuitry operating in the subthreshold region of
operation. The measured horizon vector (with bias) is
represented by three voltages and the “total mismatch”
confidence level measure is reported as a current.

A. System Block Diagram
The horizon detection chip consists of a 12x12 array of

pixels each with a photodiode and horizon detection circuitry
(see Figure 1, right). The photodiode current and the class
assignment for each pixel can be scanned out to produce
images. The array is organized into four quadrants with
different cell layouts to allow the use of simpler two-quadrant
computational circuits. In the sections to follow, only
quadrant-one (i.e. x>0, y>0) circuits will be shown. Along

the margins of the array, current sources of magnitude x and

y are mirrored into each pixel via the voltages ix and iy
respectively. The parameter ib is a global constant.

B. Class Detector
The circuit schematic for the quadrant-one class detector is

shown in Figure 2. Each of the three voltages, vx, vy, and vb is
referenced to the voltage vref allowing negative values. The
differential pair currents are summed and compared to a
current threshold defined by the voltage parameter thresh. The
resulting digital signal is buffered and a complementary signal
is generated. For other quadrants, negative coordinates are
implemented by swapping the output connections of the
differential pairs. All pixel class outputs will thus be classified
logically as either class = 1 or class = 0.

C. Mismatch Detector
The two subcircuits of the mismatch detector are shown in

Figure 3. Once a class has been assigned to each pixel in the
image, it is possible to compute the average image intensity of
each class (see Figure 3). Each pixel makes a copy of the local
photocurrent and mirrors this current (M1 and M2) back into
the pixel for comparison against the local photocurrent. By
coupling together the M1 transistors of all pixels of a given

class, the mirrored current becomes the class average.
 The difference current between the local intensity and the
class average is output on the line labeled, i_sameclass. The
difference current between the local intensity and the other
class average is output on the line labeled, i_otherclass. The
difference currents are then compared to each other (see
Figure 3, right) to determine if the pixel was misclassified.

D. Horizon Vector Learning
The circuit schematic for the quadrant-one adaptation circuit

is shown in Figure 4. If Vmismatch is high, indicating a class
mismatch, a current proportional to the pixel coordinate is
either added (subtracted) directly onto (from) the vx and vy
lines. For adapting the bias value, a fixed current, defined by
biasbias, is added (subtracted) directly onto (from) the vb line,
moving the horizon line to change the pixel class. For other
quadrants, negative coordinates are represented by swapping
the class and Vref connections in the differential pair.

E. Confidence Measures and Chip Outputs
The main outputs of the chip are the voltages vx, vy, vb, and

the total mismatch current drawn from the vref line (see Figure
4) indicating confidence level. An x-y scanner allows access
to the photocurrent and selected class at each pixel. In
addition, there are two current outputs that mirror the average
photocurrent measured in the ‘sky’ and ‘ground’ classes.
These two currents are important for distinguishing if the sky
class contains the brighter pixels compared to the ground class.

IV. TESTING RESULTS
The chip was fabricated in a commercially-available 0.5 µm,

2-poly, 3-metal CMOS process using the top metal layer as a
light shield with holes over the photodiodes. Horizon-like
images were projected onto the chip through a lens mounted
on the chip package. The photocurrent and selected class for
each pixel were scanned off using a current-sense amplifier.
An example is shown in the top two panels of Figure 5.
Transistor mismatch and light-leakage currents in the class
determination circuit produce a ragged horizon boundary.

i_otherclass

0
0

Vdd

M4

0

Vmismatch
nbias

i_photo

Vsky

I_sameclass
VgroundM5

M10

Vdd

M11

M8

Vdd

M9

i_sameclass

M1

pbias

M7

class

M4

M6

M12

class/

M2

M3

M1

M5

0

M3

M6

Vdd

M2

Vdd

0

I_otherclass

Fig. 3. Left: The average class intensities are computed and the
difference between the local pixel intensity and the two average class
intensities are represented as the currents i_otherclass and i_sameclass.
(W/L values are given in microns: M1, M2, M4, M5, M9, M11 =
1.8/1.8; M3, M6-M8, M10, M12 = 1.8/2.1) Right: The absolute-value
difference currents are compared to determine if a pixel has been
misclassified. (W/L values are given in microns: M5, M6, M1, M2 =
1.8/2.1; M3, M4 = 1.8/1.5)

thresh

M13

0
0

M2

Vdd

0

M4

M18

iy

M5
0

M9

M10

ib

Vdd

0

0

M15
class

M1
class/

M7M6

M12

vy

ix

VddVdd

M16

vb

M11
M14

vx

M8

M3

vref

Vdd

M17

Fig. 2. The quadrant-one class detector circuit. Pixel coordinates are
given by ix and iy while the horizon vector is given by vx, vy, and vb.
(W/L values are given in microns: M1-M16 = 1.8/1.8; M17 and M18 =
1.8/2.4)

M15

vx
class

biasbias

M7

M4

M5

M6

M3

0

vref

vref

vref

vb

M9

M11

M12

ix iy

M14

0

vref

Vdd

M19class

vy

M17

0

M2

Vdd

M16

Vmismatch
M18

M8

Vdd

M10

M20

class

M13M1

Fig. 4. The quadrant-one horizon vector adaptation circuit. (All
transistors have a W/L = 1.8/1.8, given in microns)

To observe the adaptation process, the vx, vy, and vb

voltages were held externally by computer-controlled digital-
to-analog converters (DAC) while the total vector adaptation
currents on these lines were measured. After reading the
photodiode image and class image, the horizon vector voltages
were iteratively changed in proportion to the measured
adaptation current, simulating the time evolution of the vx, vy,
and vb voltages if they had been left floating.

Figure 5 shows an example image where the horizon vector

was initially pointing towards the bottom-left corner,
producing an incorrect horizon line (Fig. 5, bottom-left panel).
Initial iterations show a rapid rotation of the horizon vector
followed by a slow lengthening. The total mismatch current
(Fig. 5, bottom-right panel) which reflects the number of
mismatched pixels rapidly decreases resulting in a stable
solution. This final mismatch current is typical for good
horizon solutions with the particular parameter settings used.

We then allowed the horizon vector and bias value to freely
adapt to produce rapid horizon solutions. Three example
images with the resulting class separations are shown in Figure

6. External 0.022 µF capacitors are attached to the vx, vy, and
vb lines for stability, creating a time constant of about 20 ms.

Roll angle estimation accuracy is shown in Figure 7 where
horizon images were presented to the chip and the resulting
horizon vector was transformed into an angle using:

()()arctan /()vy vref vx vrefθ = − − .

 While the power consumption varies dynamically with the
image, long-term observations show the power supply current
to be less than 500µA (or 2.5mW with a 5V power supply).

V. DISCUSSION
While this chip satisfies the basic goals of the project, there

are many places for improvement. In particular, the sensitivity
of the sensor can be improved by using phototransistors and
transistor mismatch can be reduced by using larger transistors.
The contrast between ultraviolet (UV) and green light [6] is
known to be a more reliable measure and could be used here
by adding optical filters and UV-sensitive photosensors.

ACKNOWLEDGMENT
The author thanks P. S. Krishnaprasad for his

encouragement and advice throughout this project.

REFERENCES
[1] T. Netter and N. Franceschini, "Towards UAV Nap-of-the-Earth flight

using optical flow," Advances in Artificial Life, Proceedings, vol. 1674,
pp. 334-338, 1999.

[2] W. E. Green, P. Y. Oh, K. Sevcik, and G. L. Barrows, "Autonomous
Landing for Indoor Flying Robots Using Optic Flow," presented at
ASME Intl Mech. Engr. Congress, Washington D.C., 2003.

[3] B. Taylor, C. Bil, and S. Watkins, "Horizon Sensing Attitude
Stabilization: A VMC Autopilot," presented at 18th Intl. UAV Systems
Conference, Bristol, UK, 2003.

[4] Futaba, "Futaba(R) PA-2: Pilot Assist Link Auto Pilot System,"
(http://www.futaba-rc.com/radioaccys/futm0999.html), 2004.

[5] S. M. Ettinger, M. C. Nechyba, P. G. Ifju, and M. Waszak, "Vision-
guided flight stability and control for micro air vehicles," Advanced
Robotics, vol. 17, pp. 617-640, 2003.

[6] R. Möller, "Insects could exploit UV-green contrast for Landmark
navigation," J Theor Biol, vol. 214, pp. 619-31, 2002.

2 4 6 8 10 12

2

4

6

8

10

12

Y
2 4 6 8 10 12

2

4

6

8

10

12

X

2 4 6 8 10 12

2

4

6

8

10

12

X

Y
2 4 6 8 10 12

2

4

6

8

10

12

2 4 6 8 10 12

2

4

6

8

10

12

Y
2 4 6 8 10 12

2

4

6

8

10

12

Fig. 6. Three example snapshots of internal state following horizon
detection. Top Row: Photodiode image. Bottom Row: sky/ground class
image following settling.

Photodiode Image

2 4 6 8 10 12

2

4

6

8

10

12

Class Image

2 4 6 8 10 12

2

4

6

8

10

12

2.4 2.45 2.5 2.55 2.6
2.4

2.45

2.5

2.55

y (volts)

x
(v

ol
ts

)

Horizon Vector

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

Total Mismatch Current (uA)

Iteration #

Fig. 5. Time-evolution of the horizon estimate. Top-Left: Static image,
Top-right: Final sky/ground class image, Bottom-Left: Horizon vector
end-points during iteration (line-circle is the final iteration), Bottom-
Right: Total mismatch current during the evolution of the horizon
estimate.

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

Real Horizon Angle (radians)

M
ea

su
re

d
H

or
iz

on
 A

ng
le

 (r
ad

ia
ns

)

Fig. 7. Measured horizon line roll angle vs. actual horizon roll angle.
Error bars represent one standard deviation from 25 measurements.

