
 

  
Abstract — The rapid control of sonar-guided vehicles through 

obstacle fields has been a goal of robotics for decades.  How 
sensory data is represented strongly affects how obstacles and 
goal information can be combined to select a direction of travel.  
While typical approaches combine attractive and repulsive effects 
to directly determine steering, we are investigating an algorithm 
that evaluates multiple directions simultaneously followed by a 
winner-take-all (WTA) function which then guides steering.  In 
this paper we describe a neuromorphic VLSI implementation of 
this algorithm using the inherent echo delay to create a range-
dependent gain in a ‘race-to-first-spike’ neural WTA circuit.  The 
chip was fabricated in a commercially-available 0.5µµµµm CMOS 
process and in this paper we present preliminary test results. 
 

Index Terms— step inhibition, spike-timing, winner-take-all, 
bat echolocation, multiple obstacles, robot navigation. 

I. INTRODUCTION 

cholocating bats are capable of flying through dense 
forests in complete darkness during their hunt for flying 

insects and other prey.  How biological systems can turn the 
storm of sensory information into short-term motion plans 
amidst multiple obstacles and goals is an ongoing quest for 
many roboticists and neuroscientists.  Noisy, ambiguous 
sensory data, limited time to make decisions, and the tricky 
question of what an obstacle is, all make this a difficult task. 

Recent approaches to this short-term obstacle avoidance 
problem have utilized the summation of repulsive or attractive 
forces and torques to steer a particular creature (e.g., [1]).  
While this approach has proven to be quite successful in many 
cases, there are a few drawbacks to consider.  An extended 
object, if detected as two closely-spaced objects, could 
produce twice the repulsive force.  This force-field approach 
can also produce trajectories between closely-spaced objects, 
such as in room corners.  Part of the problem is that an 
obstacle that produces a repulsive force (or torque) attempts to 
turn the creature in a particular direction, whereas obstacles 
should only inform the creature of where it should not go. 

A. The “Open Space” Algorithm 

The approach we are taking is a risk-minimization view of 
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navigation, using the sonar system to evaluate the desirability 
of different directions of travel simultaneously and selecting 
the direction with the highest evaluation.   

The evaluation process begins with a field of evaluation 
units that receive an initial evaluation that represents the prior 
assumptions about the desirability of a given direction.  This 
can incorporate information about actuation limits, energy 
conservation, single or multiple goal directions, history of 
previous choices, etc.  Obstacles then produce a pattern of 
suppression (i.e., inhibition) on the evaluation pattern such that 
close objects produce deep, wide suppressions and faraway 
objects produce only narrow, shallow suppressions (see Fig. 
1).  A winner-take-all (WTA) process then selects the direction 
with the maximum evaluation.  In this approach, echo strength 
could further modulate suppression such that weaker echoes 
produced weaker suppression, eliminating the problem of 
detection thresholds.  From the selected direction, we assume 
that a motor control subsystem will steer our creature onto the 
desired heading.  This process of simultaneous direction 
evaluation is similar to other mean-field-theory approaches to 
robot navigation [2].    

With this approach, closely-spaced objects produce only 
deep suppressions, but not necessarily very wide supressions 
in the evaluation function.  In addition, an open direction on 
the far side of an obstacle from the direction of travel can be 
selected (e.g., Fig. 1).  Unlike the activity of neurons recorded 
in the bat echolocation system, the neurons in our model 
produce the greatest activity when there is only open space. 

The evaluation function for each direction θ can be 
described by the equation:  
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The first term, Eo is a constant bias term to allow the 
evaluation to remain positive following subtraction by other 
terms. In general, this term does not need to be constant, but 
could incorporate information about the desirability of certain 
directions due to actuation limits. The coefficient g is the 
amplitude of an additive Gaussian term which represents an 
increase in the desirability due to a known target location.  The 
center of the Gaussian should be steerable with changing goal 
directions.  The index i refers to the N obstacles that suppress 
the evaluation with a subtractive Gaussian term that is scaled 
inversely with the range, ri.  Notice that the σ parameter is also 
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a function of range.  

B. A Spiking Neuron Implementation 

While there are many implementation possibilities, we are 
interested in dedicated VLSI approaches that could operate in 
real-time on a model aircraft.  Because our laboratory’s 
principal interest is in the neural implementation of navigation 
in bats, we have considered a neural model. 

An obvious neural implementation of the “open space” 
algorithm is to use a field of neurons that fire tonically to a 
uniform input bias.  These neurons also receive a steerable 
Gaussian-shaped excitatory input pattern with the peak 
centered on the desired goal direction.  The obstacle detection 
system (i.e., sonar) projects inhibition onto this field with a 
strength and width inversely proportional to the range.  Thus, 
the evaluation for each possible direction is represented as the 
input to each neuron.  If each neuron fires monotonically with 
the strength of its input, the evaluation pattern is observable in 
the pattern of neuron spiking.  By incorporating a global 
inhibitory feedback connection, the well-known winner-take-
all (WTA) function can be implemented on this field of 
neurons [3]. 

Although the mean firing rate could be used to represent the 
evaluation, the inter-pulse-interval also carries the information, 
but on a shorter timescale.  If we had a time-zero reference and 
simultaneously reset (i.e,. strongly inhibit) all neurons, the 
input currents would be inversely expressed in the spike 
latency across the field of neurons (see Fig. 2a).  The neurons 
which integrate to threshold first are considered to be the 
winners.  Temporal WTA circuits like this have recently been 
fabricated [3]. 

In echolocation, the returning echoes from obstacles arrive 
at different times according to their range.  If the field of 
neurons is reset at the time of the sonar pulse and echoes 
trigger long-lasting, but weak inhibitory currents (see Fig. 2b), 
the latency will increase as inhibitory pulses start earlier.  The 
use of such step currents in neural computation is described by 
Maass [4] and has recently been used in a VLSI circuit for 
visual processing [5]. 

For a neuron with a membrane capacitance Cmem, a spike 
threshold Vthresh, that receives a constant excitatory bias 
current Eo and a step-inhibition current at time ti, the latency of 
the spike, T, is given by Equation 1.2.  
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obtain increased latency for closer obstacles without explicitly 
computing the range or increasing the synaptic strength. 

To obtain WTA functionality, evaluation neurons excite a 
global inhibitory cell that in turn fires the global reset pulse.  If 
the connections between the evaluation neurons and the 
inhibitory cell are strong enough, the first neuron in the 
evaluation field to fire will trigger the inhibitory cell, 
preventing any other cell from firing, allowing only a single 
(or small number of cells) to fire.  

II.  CIRCUITS 

A. System Design 

To facilitate the communication of spikes in and out of the 
chip, we use a communication protocol known as the “address-
event” representation [6].  In this system, an asynchronous 
digital bus provides the address of a target synapse and 
produces a handshaking pulse, delivering a brief (~1µs) 
voltage spike to the target address.  This same system is used 
to transmit neuron spikes out of the chip.  The inputs to the 
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Figure 1.  Left: An echolocating bat that is attempting to fly directly 
forward detects two obstacles (filled circles).  Right: The evaluation 
pattern consists of a constant plus a wide, low-amplitude Gaussian with 
two dips created by the suppression from the two obstacles.  A WTA 
function selects the direction with the highest evaluation.  The dotted line 
indicates the default evaluation with no obstacles present.  Simulation 
and robot movies can be viewed at: http://www.isr.umd.edu/~timmer 
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Figure 2.  (a)  Increasing the strength of the excitatory inputs to a neuron 
shortens the latency of the spike following a reset pulse.  By determining 
the neuron that fires first, we find the neuron with the largest average 
input. (b) A long-lasting inhibitory current delays the spike or prevents 
firing altogether.  Inhibitory currents that start earlier will produce a 
longer added delay in firing.   
 



 

system (Fig. 3) are the goal direction and the echo-triggered 
address-event spikes corresponding to different obstacle 
directions.  The outputs are the spikes from the evaluation 
neuron array.  The test chip consists of 25 evaluation neurons 
and one global inhibitory neuron. 

B. A Steerable Excitatory “Bump” Bias 

The bias term Eo and the steerable Gaussian excitation term 
in equation 1.1 are provided as a current to the neuron by the 
“bump” [7] circuit in Fig. 4.  The parameter fixedbias controls 
the excitatory DC current and goalv corresponds to the goal 
direction.  The drain current of M2 as a function of (goalv – 
res_R) is approximately a Gaussian. 

C. The Spiking AER Neuron 

The integrate-and-fire neuron circuit in Fig. 5 is based on a 
neuron design [8] that utilizes the inverter (M1-M3) threshold 
and decouples the main integration capacitor during the spike 
allowing fast, but low-power operation.  This neuron also has a 
refractory period controlled by the parameter refr. 

D. Excitatory and Inhibitory Synapses 

The synapse circuits used to interconnect the evaluation 
neurons and the inhibitory neuron are shown in Fig. 6.  For 
these synapses, the input signal is a logical high voltage pulse. 
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Figure 6.  Excitatory synapse circuit (left) and inhibitory synapse circuit 
(right).  The input spike drives the gate of M2 to the voltage esynw (or 
isynw) and the linear leak by M1 controlled by esyntau (or isyntau) 
creates a quick-onset current with an exponential decay that is injected 
into (or drawn from) the membrane capacitance of the postsynaptic 
neuron. 

0

M6

M2

diff_L

slowtime

M9

M1

M11

0
aerispikebar M8

leak

M7

M4

vmem

M10

C1

50 fF

diffvdd

vdd0

vdiffusor

M5

0

0

w_islow

diff_R

0

M3

 
Figure 7.  Echo-triggered inhibition (via address-event) produces laterally-
spread inhibitory currents through the diffusor transistor M3.   

E. A Diffusive AER Inhibitory Synapse 

The obstacle-dependent inhibition begins with an address-
event spike input, aerispikebar, that triggers a long-lasting 
inhibitory current step (Fig. 7).  The voltage at C1 is abruptly 
charged to Vdd and then slowly discharged by M7 (controlled 
by slowtime) down to 0V.  M5 acts as a switch for the current 
defined by M4 (controlled by w_islow).  The inhibitory current 
is then subtracted from the neuron.  The pMOS mirror is 
connected via nMOS transistors to adjacent inhibitory circuits, 
creating a “diffusor” network [9] that shares inhibitory current 
with neighboring neurons.  The point-spread function for the 
diffusor is an exponentially-decaying function in each 
direction, instead of the desired Gaussian. 
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Figure 5.  The neuron circuit receives current from the synapses through 
the node labeled vmem and produces a digital voltage spike at spike.  The 
spike is passed to the address-event transmitter system with the handshake 
signals reqbar and ack.  The signal spike is used to drive on-chip 
synapses.  C1 was made large to allow long time constants (~100 ms). 
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Figure 3.  System Block Diagram.  The goal direction input biases the 
field of neurons to fire, while the address-event inhibitory spikes (echo-
triggered) increase the spike latency following a reset pulse.  The global 
inhibitor implements a WTA function once the first set of spikes occur. 
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Figure 4.  A resistive ladder (created by connecting res_R to the neighboring 
circuit’s res_L and different endpoint voltages) gives each neuron a unique 
reference voltage.  A global signal, goalv, is compared to this signal by the 
“bump” circuit and produces a maximum current when goalv equals the 
reference voltage. 



 

III.  TESTING RESULTS 

The chip was fabricated in a commercially-available 0.5 
µm, 2-poly, 3-metal CMOS process.  For testing, we used a 
software-generated pattern of address-event spikes as input to 
the chip and captured the address-event output spikes with 
timing resolution of 1 µs.  To first demonstrate the steerable 
bias currents, a sinusoidal voltage was used at the goalv input, 
producing rapid firing at changing locations (Fig. 8, left). In 
Fig. 8 (right), feedback inhibition was activated by using weak 
excitatory synapses and weak feedback inhibitory synapses.  
With weak inhibition, the global inhibitor does not reset the 
field of neurons and this WTA behavior operates in a mean 
firing rate regime. 

Under conditions of strong feedback inhibition, interesting 
firing patterns emerge at short time scales (Fig. 9), revealing 
that the spike latencies following a reset pulse are related to 
their input strength.  By changing the strength of the excitatory 
synapse onto the global inhibitor the size of the winning group 
can be modulated.  Fig. 10 shows that, following the sonar-
triggered reset of the neurons, the timing of echo-triggered 
inhibition can indeed control the race-to-first-spike 
competition.  The diffusive inhibitory synapse is also shown to 
create a neighborhood of suppression. 

IV.  DISCUSSION 

The use of input spike timing to modulate the efficacy of a 

connection in an on-going computation can be an effective 
mechanism that does not rely on the modulation of synaptic 
strength or on increased spike rates.  We have found a natural 
match of this computational mechanism with the echolocation-
based “open space” algorithm proposed above. 
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Figure 8.  Neuron spikes vs. time.  The steerable “bump” of excitatory bias 
current is driven by a dynamic input voltage, goalv.   Neuron spike rasters 
show the firing of different neurons over time.  (Left) inhibition turned off, 
(Right) weak feedback inhibition activated. 
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Figure  9.  (Left) Strong excitation of the inhibitory neuron resets the neuron 
field repeatedly, allowing only the most activated neurons to fire.  (Right)  
Further strengthening of the excitation of the inhibitor reduces the size of the 
winning group to one.  
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Figure 10.  With feedback inhibition off, all neurons integrate to their 
first spike (other spikes removed).  With no echo-triggered inhibition 
(dots with dotted lines) neurons 8 through 17 form an arc of first spikes 
consistent with the “bump” input currents.  When an inhibitory spike is 
delivered 40 ms after the reset (circles with solid lines) to neuron 12, the 
neuron and its neighbors are delayed.  If the inhibitory spike at neuron 12 
occurs earlier (i.e., a closer obstacle) at 25 ms (dots with solid lines), the 
effect of the inhibition is greater and the neurons fire even later. 


