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Abstract — The rapid control of sonar-guided vehicles throub
obstacle fields has been a goal of robotics for dmtes. How
sensory data is represented strongly affects how stacles and
goal information can be combined to select a direin of travel.
While typical approaches combine attractive and replsive effects
to directly determine steering, we are investigatig an algorithm
that evaluates multiple directions simultaneously dllowed by a
winner-take-all (WTA) function which then guides seering. In
this paper we describe a neuromorphic VLSI implemetation of
this algorithm using the inherent echo delay to crate a range-
dependent gain in a ‘race-to-first-spike’ neural WTA circuit. The
chip was fabricated in a commercially-available 0.am CMOS
process and in this paper we present preliminary t& results.

Index Terms— step inhibition, spike-timing, winner-take-all,
bat echolocation, multiple obstacles, robot navigain.

I. INTRODUCTION

navigation, using the sonar system to evaluated@sirability
of different directions of travel simultaneouslydaselecting
the direction with the highest evaluation.

The evaluation process begins with a field of eatidun
units that receive an initial evaluation that reygrets the prior
assumptions about the desirability of a given dioec This
can incorporate information about actuation limie)ergy
conservation, single or multiple goal directiongstdry of
previous choices, etc. Obstacles then producettarpaof
suppression (i.e., inhibition) on the evaluatiottgr@ such that
close objects produce deep, wide suppressions aadvdy
objects produce only narrow, shallow suppressi@es (Fig.
1). A winner-take-all (WTA) process then seletis dlirection
with the maximum evaluation. In this approach,cestrength
could further modulate suppression such that weaképes
produced weaker suppression, eliminating the problsf
detection thresholds. From the selected directicmassume

cholocating bats are capable of flying through densthat a motor control subsystem will steer our ereabnto the

forests in complete darkness during their huntfligng

insects and other prey. How biological systems tcan the
storm of sensory information into short-term motiplans
amidst multiple obstacles and goals is an ongoingsy for
many roboticists and neuroscientists.  Noisy, annnig
sensory data, limited time to make decisions, dwedtticky
question of what an obstacle is, all make thisffecdlt task.

Recent approaches to this short-term obstacle awmoé
problem have utilized the summation of repulsivatractive
forces and torques to steer a particular createrg.,([1]).
While this approach has proven to be quite sucekssfmany
cases, there are a few drawbacks to consider. xfenaed
object, if detected as two closely-spaced objectsld
produce twice the repulsive force. This forcediapproach
can also produce trajectories between closely-spabgects,
such as in room corners. Part of the problem & #n
obstacle that produces a repulsive force (or tgrgttempts to
turn the creature in a particular direction, wherehstacles
should only inform the creature of where it showtd go.

A. The “Open Space” Algorithm
The approach we are taking is a risk-minimizatiggwof
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desired heading. This process of simultaneousctitire
evaluation is similar to other mean-field-theorypagaches to
robot navigation [2].

With this approach, closely-spaced objects prodocky
deep suppressions, but not necessarily very wigeessions
in the evaluation function. In addition, an opérection on
the far side of an obstacle from the directionraf/¢l can be
selected (e.g., Fig. 1). Unlike the activity olinens recorded
in the bat echolocation system, the neurons in rodel
produce the greatest activity when there is onlsrogpace.

The evaluation function for each directioh can be
described by the equation:
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The first term E, is a constant bias term to allow the
evaluation to remain positive following subtractiby other
terms. In general, this term does not need to Imstaat, but
could incorporate information about the desirapitif certain
directions due to actuation limits. The coefficiemtis the
amplitude of an additive Gaussian term which regmés an
increase in the desirability due to a known tatgeation. The
center of the Gaussian should be steerable withgthg goal
directions. The indekrefers to the N obstacles that suppress
the evaluation with a subtractive Gaussian term ithacaled
inversely with the range;. r Notice that they parameter is also

(1.1)



a function of range.

B. A Spiking Neuron Implementation

While there are many implementation possibilitie®, are
interested in dedicated VLSI approaches that coplerate in
real-time on a model aircraft. Because our lalooyé
principal interest is in the neural implementatafmavigation
in bats, we have considered a neural model.

Two detected obstacles in ‘view’

bias + goal steering + obstacle inhibition

winner-take-all
/ selects the max

‘openspace’ evaluation

direction units

Figure 1. Left: An echolocating bat that is attéimg to fly directly

forward detects two obstacles (filled circles). giti The evaluation
pattern consists of a constant plus a wide, lowldnge Gaussian with
two dips created by the suppression from the twstamites. A WTA
function selects the direction with the highestlezion. The dotted line
indicates the default evaluation with no obstaglessent. Simulation
and robot movies can be viewed at: http://www.isidwedu/~timmer

An obvious neural implementation of the “open space

algorithm is to use a field of neurons that firaitally to a
uniform input bias. These neurons also receiveearable
Gaussian-shaped excitatory input pattern with theakp
centered on the desired goal direction. The olestetection
system (i.e., sonar) projects inhibition onto thied with a
strength and width inversely proportional to thaga Thus,
the evaluation for each possible direction is repnted as the
input to each neuron. If each neuron fires moriotdly with
the strength of its input, the evaluation patternbservable in
the pattern of neuron spiking. By incorporatinggi@bal
inhibitory feedback connection, the well-known wéntake-
all (WTA) function can be implemented on this fietd
neurons [3].

Although the mean firing rate could be used toesent the
evaluation, the inter-pulse-interval also carrles information,
but on a shorter timescale. If we had a time-zeference and
simultaneously reset (i.e,. strongly inhibit) akumons, the
input currents would be inversely expressed in $péke
latencyacross the field of neurons (see Fig. 2a). Theares
which integrate to threshold first are consideredbe the
winners. Temporal WTA circuits like this have rethg been
fabricated [3].

In echolocation, the returning echoes from obstaal&ive
at different times according to their range. & tfield of
neurons is reset at the time of the sonar pulse eatabes
trigger long-lasting, but weak inhibitory curreifsee Fig. 2b),
the latency will increase as inhibitory pulsestsearlier. The
use of such step currents in neural computatigeseribed by
Maass [4] and has recently been used in a VLSuitifor
visual processing [5].

For a neuron with a membrane capacitaGeem a spike

threshold Vihresh that receives a constant excitatory bias

currentE, and a step-inhibition current at tirgethe latency of
the spike T, is given by Equation 1.2.
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obtain increased latency for closer obstagliéhout explicitly
computing the range or increasing the synaptiagthe
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Figure 2. (a) Increasing the strength of thetexaory inputs to a neuron
shortens the latency of the spike following a regsése. By determining
the neuron that fires first, we find the neuronhvitie largest average
input. (b) A long-lasting inhibitory current delati®e spike or prevents
firing altogether. Inhibitory currents that stegrlier will produce a
longer added delay in firing.
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inhibition

To obtain WTA functionality, evaluation neurons #&ca
global inhibitory cell that in turn fires the gldbaset pulse. If
the connections between the evaluation neurons taed
inhibitory cell are strong enough, the first neuron the
evaluation field to fire will trigger the inhibitgr cell,
preventing any other cell from firing, allowing gna single
(or small number of cells) to fire.

Il. CIRCUITS

A. System Design

To facilitate the communication of spikes in and ofithe
chip, we use a communication protocol known asdheress-
event” representation [6]. In this system, an akyonous
digital bus provides the address of a target symagmsd
produces a handshaking pulse, delivering a briefug)-
voltage spike to the target address. This santersys used
to transmit neuron spikes out of the chip. Theutapo the



system (Fig. 3) are ttgoal directionand the echo-triggered
address-event spikes corresponding to differenttaches
directions. The outputs are the spikes from thaluation
neuron array. The test chip consists of 25 evanateurons
and one global inhibitory neuron.
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Figure 3. System Block Diagram. Tgeal directioninput biases the

field of neurons to fire, while the address-everibitory spikes (echo-
triggered) increase the spike latency followingset pulse. The global
inhibitor implements a WTA function once the fisgt of spikes occur.

B. A Steerable Excitatory “Bump” Bias
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Figure 5. The neuron circuit receives current frth@ synapses through
the node labeledmemand produces a digital voltage spikespike The

spike is passed to the address-event transmitiegraywith the handshake
signals regbar and ack The signalspike is used to drive on-chip

synapses. C1 was made large to allow long timsteots (~100 ms).
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Figure 6. Ex<:|tat0ry synapse circuit (left) andjnhn'tory synapse circuit

esymau

The bias terni, and the steerable Gaussian excitation term (ight). The input spike drives the gate of M2the voltage esynw (or

in equation 1.1 are provided as a current to theareby the
“bump” [7] circuit in Fig. 4. The parametéixedbiascontrols
the excitatory DC current angbalv corresponds to thgoal
direction. The drain current of M2 as a function goalv —
res_R is approximately a Gaussian.
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Figure 4. A resistive ladder (created by conneatis_Rto the neighborin
circuit's res_Land different endpoint voltages) gives each nearanique
reference voltage. A global signgbaly, is compared to this signal by the
“bump” circuit and produces a maximum current whealvequals the
reference voltage.

C. The Spiking AER Neuron

The integrate-and-fire neuron circuit in Fig. Soissed on a

neuron design [8] that utilizes the inverter (M1 MBreshold
and decouples the main integration capacitor dutiegspike

allowing fast, but low-power operation. This neuadso has a

refractory period controlled by the parametsr.

D. Excitatory and Inhibitory Synapses

The synapse circuits used to interconnect the atialu
neurons and the inhibitory neuron are shown in Big.For
these synapses, the input signal is a logical hajiage pulse.

isynw) and the linear leak by M1 controlled by esyn (or isyntau)
creates a quick-onset current with an exponengahy that is injected
into (or drawn from) the membrane capacitance & fostsynaptic

neuron.
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Figure 7. Echo-triggered inhibition (via addreser) produces laterally-
spread inhibitory currents through the diffusonsiator M3.

E. A Diffusive AER Inhibitory Synapse

The obstacle-dependent inhibition begins with adress-
event spike inputaerispikebar that triggers a long-lasting
inhibitory current step (Fig. 7). The voltage dt iS abruptly
charged tovdd and then slowly discharged by M7 (controlled
by slowtimg down to OV. M5 acts as a switch for the current
defined by M4 (controlled bw_islow). The inhibitory current
is then subtracted from the neuron. The pMOS miiso
connected via nMOS transistors to adjacent inhipitircuits,
creating a “diffusor” network [9] that shares initilny current
with neighboring neurons. The point-spread functior the
diffusor is an exponentially-decaying function inacé
direction, instead of the desired Gaussian.
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Figure 8. Neuron spikes vs. time. The steeranlerp” of excitatory bias
current is driven by a dynamic input voltagealv. Neuron spike rasters
show the firing of different neurons over time.eff) inhibition turned off,
(Right) weak feedback inhibition activated.
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The chip was fabricated in a commercially-availabl&
um, 2-poly, 3-metal CMOS process. For testing, wedua
software-generated pattern of address-event spikesput to
the chip and captured the address-event outpuespikth
timing resolution of 1us. To first demonstrate the steerable
bias currents, a sinusoidal voltage was used ajdhér input,
producing rapid firing at changing locations (F&.left). In
Fig. 8 (right), feedback inhibition was activateg using weak
excitatory synapses and weak feedback inhibitoryagges.
With weak inhibition, the global inhibitor does nmset the
field of neurons and this WTA behavior operatesaimean
firing rate regime.

TESTINGRESULTS

ooooooooooo

ooooooooooo

Neuron Address

01 om0 om 02 002 004 006 008 01 012 014 016 018 02

Time (sec)

Time (sec)
Figure 9. (Left) Strong excitation of the inhilriy neuron resets the neuron
field repeatedly, allowing only the most activatezlirons to fire. (Right)
Further strengthening of the excitation of the fitoir reduces the size of the
winning group to one.

Under conditions of strong feedback inhibition,eirgsting
firing patterns emerge at short time scales (Fjg.révealing
that the spike latencies following a reset pulse r@lated to
their input strength. By changing the strengtlthef excitatory
synapse onto the global inhibitor the size of tleming group
can be modulated. Fig. 10 shows that, following #onar-
triggered reset of the neurons, the timing of ethymered
inhibition can indeed control the race-to-firstigpi
competition. The diffusive inhibitory synapse Isashown to
create a neighborhood of suppression.

IV. DISCUSSION
The use of input spike timing to modulate the effi¢ of a

connection in an on-going computation can be ancéffe
mechanism that does not rely on the modulationyofgtic
strength or on increased spike rates. We havedfaumatural
match of this computational mechanism with the émtation-
based “open space” algorithm proposed above
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Figure 10. With feedback inhibition off, all neasintegrate to their
first spike (other spikes removed). With no ectiggered inhibition
(dots with dotted lines) neurons 8 through 17 fammarc of first spikes
consistent with the “bump” input currents. Wheni@mbitory spike is
delivered 40 ms after the reset (circles with shiids) to neuron 12, the
neuron and its neighbors are delayed. If the itdripspike at neuron 12
occurs earlier (i.e., a closer obstacle) at 25doss(with solid lines), the
effect of the inhibition is greater and the neurbireseven later.
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