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Abstract.

In this paper we describe an analog VLSI circuit, fabricated using a standard 2 �m, n-well, BiCMOS
process, which utilizes 
oating-gate structures for non-volatile, on-chip, analog parameter storage. This
circuit is designed to operate in the context of a hardware model of the primate oculomotor system and
performs visually-guided, saccadic adaptation. The chip contains a one-dimensional array of photorecep-
tors and 
oating-gate circuits which are used to map retinal positions to motor output commands. The
system's functionality is demonstrated by training the chip with several di�erent mapping functions using
a supervised-learning technique.

Keywords: neuromorphic analog VLSI, saccadic eye movements, learning, 
oating-gate, short-term adap-
tation

1. Introduction

The most common eye movements in primates are

the quick reorienting movements known as sac-

cades. Our eyes often reach speeds up to 750

degs/s during a saccade which severely impairs

our visual acuity. It is therefore important to min-

imize the time during which the eyes are moving.

While typical human saccades have a duration of

40ms to 150 ms, changes in the optics, the oculo-

motor plant, or the underlying neural circuitry can

cause de�cits which delay optimal viewing condi-

tions.

There have been many types of adaptation be-

havior identi�ed in the primate oculomotor sys-

tem in response to di�erent induced de�cits. For

example, Optican and Robinson [11] showed that

weakening of the horizontal recti muscles in the

rhesus monkey initially caused saccades which fell

short and exhibited post-saccadic drift of the eye-

ball. Recovery from this type of damage, which

a�ects all saccades in a given direction, requires

about 3-5 days. In contrast to this long adaptation

period, which involves hundreds of thousands of

saccades, experiments where saccadic targets are
moved a short distance during the saccade, require
only hundreds of trials for the adaptation to reach

steady-state. This type of visually-induced mod-
i�cation of saccade amplitude is known as short-
term adaptation. Experiments by Frens and van
Opstal [6] show this adaptation to be con�ned to a
limited range of saccade vectors around the adap-
tation target.

Our laboratory is involved in building a hard-
ware model of the primate oculomotor system [10]
using analog VLSI circuitry. The model oculomo-
tor plant simulates linear dynamics and provides a
good foundation upon which to build biologically-
realistic eye movement systems. The current sys-
tem can be triggered using both visual and audi-
tory stimuli [9] and begins to model the conver-

gence of multi-modal spatial information at the
level of the superior colliculus. Three aspects of
this modelling system that have become impor-
tant are the compensation for non-linearities, the
need for self-calibration, and on-chip storage of
these parameters.

The intermingling of memory and computa-
tion is an important and powerful aspect of neu-
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ral architectures which has not yet been well ex-

ploited in neuromorphic VLSI designs. Smaller
designs have been manageable by the use of exter-

nal sources of parameters or by array structures

which share global parameters. With the advent

of large, multi-chip, neural systems, however, the

automatic selection, storage, and maintenance of

these parameters will become an unavoidable is-
sue as it is in biological systems. The majority of

circuit designs which have attempted to use on-

chip storage of parameters have used digital RAM

or externally-refreshed, capacitive storage, both of

which are generally bulky and low-precision. Until

recently, the use of 
oating-gates (a MOS transis-

tor gate completely isolated from the circuit by
silicon dioxide) required the use of ultra-violet ra-

diation or bidirectional tunneling processes which

have also been fraught with di�culties, impeding

their widespread use. The development of a com-

plementary strategy of tunneling and hot-electron

injection [7] in a commercially-available BiCMOS

process has alleviated some of these di�culties.

In previous work, we demonstrated the use of


oating-gate devices in a model of the saccadic

burst generator to reduce post-saccadic drift us-

ing visual motion as an error signal [8]. In this

paper we present a chip which uses 
oating-gate

structures to store a mapping of retinal position to

motor command voltage. In the beginning of the
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Fig. 1. System Block Diagram: This chip consists of an ar-
ray of 32 pixels which consist of an adaptive photoreceptor

(P), a temporal derivative circuit (TD), a centroid circuit
(C), a 
oating-gate circuit (FG) which provides reference
voltages to the centroid circuit, and a control circuit (U/D
= "up/down") for training the 
oating-gate.

next section we will discuss the architecture of the
chip, in section 3 we present the circuits and their
behavior, and in section 4 we discuss the chip's
performance within the training system.

2. Vector-Speci�c Adaptation

In an experiment where human subjects are
performing saccades from a �xation point to a
visible target, if the target of a speci�c retinotopic
position consistently moves to a new location dur-
ing the saccade, Frens and van Opstal (1994) have
shown results indicating that the adaptation time-
course to learn the o�set is short (requiring only
a few hundred presentations) and that the adap-
tation is con�ned to a limited range of saccade
vectors around the target [6]. This type of learn-
ing can be explained by a mapping similar to that
of a look-up table.

In the previous implementation of our analog
VLSI-based saccadic system [10], visual stimuli
were mapped linearly from pixel position to motor
command in a functional model of the deep lay-
ers of superior colliculus. Any non-linearities in
the optics, photoreceptor triggering circuit, burst
generator, or motor plant would create errors in
proper programming of the saccade. We have
modi�ed the visual-triggering circuit [10] (also in
�gure 2) to use the output of a 
oating-gate cir-
cuit to determine the proper motor command for
each pixel.

As shown in Figure 1, an array of adaptive
photoreceptor circuits (P) are used to drive a
temporal-derivative circuit (TD), activating re-
gions in an image where the intensity is changing.
These temporal derivative signals trigger three cir-
cuits: one which activates a slowly decaying mem-
ory of which units have been active (U/D), an-
other which drives a centroid circuit (C) to map
the pixel's position to a motor command voltage,
and �nally a triggering circuit which compares
the total activity on the chip to a threshold (not
shown). The trigger circuit provides an output
signal from the chip, indicating that something
has occurred in the image and that the centroid
output information is \valid". The centroid cir-
cuits [4] require reference voltages (motor com-
mand voltages) at each pixel which represent the
saccade vector required to center the stimulus on
the center of the array.
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Fig. 2. Temporal Triggering Circuit (P+TD+C): On the far left, the adaptive photoreceptor circuit ampli�es temporal
change in the light intensity while slowly adapting to the mean light level. The temporal-derivative (TD) circuit acts as a

high-pass �lter by measuring the di�erence in voltage between the original photoreceptor value and a low-passed version of
it. The signal is then full-wave recti�ed and mirrored to the U/D, centroid, and thresholding circuits. The centroid circuit

(on the right), operates as a follower powered by the current from the temporal derivative circuit. The motor command
reference voltage is received from the 
oating-gate ampli�er circuit (FG).
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Fig. 3. Floating-gate ampli�er circuit (FG): The 
oat-

ing node de�nes a subthreshold current in transistor PB2
which is mirrored and used in a high-gain ampli�er stage

which has variable output limits. Cascode transistor N1
de�nes PB2's drain voltage to prevent hot-electron injec-

tion. Nodes Vd1, Vs1, and the high-voltage tunneling node
are �xed global values which de�ne an equilibrium
oating-
gate value, and a decay rate towards this value. Modi�ca-
tion of the 
oating-gate voltage is performed by capaci-
tively moving the 
oating-gate up or down transiently to
either increase injection or increase tunneling.

In previous versions of this visually-based, trig-

gering circuit [10], the motor command voltages

were provided by a resistive line running across the

array. Each end of the resistive line was held at a

di�erent voltage, providing each pixel in the array

with a unique voltage reference, which changed

linearly across the array. In contrast, the pixels in

this new system are provided with the output volt-

age of a 
oating-gate circuit, each of which can,
in principle, be set to arbitrary values, making it

similar to a programmable, look-up table.
The training input to the system is a global

signal indicating whether the system's output was
too high or too low. Pixel locations which con-

tributed to the output remain active for a short
amount of time (about 3 sec) via the U/D circuit.
When the training signal becomes active, after

evaluating the centroid output voltage, only those
units which contributed to the output are trained
in the appropriate direction. Since the trigger-

ing stimuli may activate a neighborhood of pix-
els, the learning is similar to Kohonen's stochas-
tic learning algorithm where the topology of the

network is preserved by training a node and its
neighborhood at the same time. This technique
has been explored in software in the context of

saccadic learning by both Ritter et al. [13] and by
Rao and Ballard [12].

The training system consists of a workstation
which 
ashes visual stimuli (bars) at di�erent lo-

cations on its monitor. The chip, with a lens, is
positioned to image the stimuli on its photorecep-
tor array. The centroid output voltage is measured

after each 
ash using a GPIB-equipped (General
Purpose Interface Bus) oscilloscope. Each stim-
ulus position on the monitor is assigned a tar-

get centroid output value. If the measured value
is lower than the target value, the training in-
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Fig. 4. Up/Down learning control circuit (U/D): This cir-
cuit consists of two competing followers, a weak follower
carrying the center referencevoltage and a stronger follower
which receives the training voltage from o�-chip. When a
given pixel in the array generates a pulse of current in

the TD circuit, this current is mirrored onto transistor P1,
charging the capacitor node up towards Vdd. A small leak
current discharges the capacitor slowly. This node acts as a

switch to turn on the strong ampi�er to drive the 
oating-
gate control node towards the globally-received, training

voltage. In this fashion, only those circuits which partici-
pated in generating the output centroid voltage receive the

training signal.

put voltage, (driven by a GPIB-equipped volt-
age source) is lowered to a pre-determined train-
ing voltage for a �xed amount of time to increase
that stored value by increasing the tunneling rate.
Similarly, if the measured value is higher than the
target value, the training input is raised. After re-
peated trials, a target function can be learned to a
level of accuracy limited primarily by the system
noise.

3. Circuits

The implementation of the architecture described
above was fabricated on a TinyChip (2.25mm x
2.22mm)using a 2.0 �m, n-well, double-poly, BiC-
MOS process. The chip we discuss in this paper
is a one-dimensional array of 32 pixel elements.

Figure 2 shows the combined circuit schemat-
ics for the adaptive photoreceptor (P) (left), the
temporal-derivative (TD) (middle), and the cen-
troid circuit (C) (right). The adaptive photore-
ceptor [1] is a high-gain photoreceptor circuit
which slowly adapts to the average light level
to prevent saturation. The temporal derivative
circuit combines a lowpass �lter with a \bump"
circuit [2] to signal the absolute-value of the
temporal-derivative. The centroid circuit [4] com-
putes the weighted-average, motor command volt-

age. Since every cell in the array would connect

to an n-type mirror, the gray box in the �gure de-

notes the use of a single, common mirror on the

edge of the array to reduce capacitance on the

output node. An amplifying ratio of 6 to 1 was

used on the mirror for inverting the bump cur-

rent to cancel the tail currents of the di�erential

pair. Overall, these circuits map the retinotopic

location of temporal change to a motor command

voltage.

The 
oating-gate circuit (�gure 3), is a mod-

i�cation of the circuit used by Hasler et al. [7]

to train a 2x2 array of 
oating-gate synaptic ele-

ments. A tunneling process is used to remove elec-

trons from the 
oating node and a hot-electron

injection process is used to put electrons onto

the 
oating node. The tunneling current is con-

trolled by manipulating the di�erence in voltage

between the 
oating-node and the high-voltage

tunneling line. Larger voltage di�erences produce

larger tunneling rates. Injection of electrons is

performed in an n-type transistor fabricated in the

Pbase layer provided for the construction of bipo-

lar transistors. The threshold voltage for this type

of transistor is near 6 volts, which allows the gate

to capture high-energy electrons 
owing through

the drain while the transistor is still operating in

the subthreshold. Since the injection current is

the product of the injection e�ciency (controlled

by the drain voltage) and the source current, in-

jection current can be adjusted by manipulating

the source current in the Pbase transistor.

The 
oating-gate circuit (Figure 3) uses two

Pbase transistors, one used as an electron injector

(PB1) and the other used as the current source

for the ampli�er (PB2). Since PB2 is only setting

the ampli�er current (and not injecting), its drain

voltage Vd2 can be set to a low voltage allow-

ing the upper limit of the ampli�er's output range

to be fairly large. Modi�cation of the 
oating-

gate charge is performed by transiently increasing

the rate of either the tunneling or injection. This

is performed by capacitively raising or lowering

the 
oating-gate using the Up/Down control in-

put. Raising the 
oating-node both increases the

source current in PB1 and reduces the 
oating-

gate to tunneling voltage. Likewise, lowering the


oating-node both increases the 
oating-node to
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Fig. 5. Top trace: Photoreceptor voltage, Middle trace:
Centroid output voltage (analog), Bottom trace: trigger

signal (digital). The photoreceptor output voltage jumps
from 0.96 volts to 1.30 volts during the 
ash of the stim-

ulus. The oscillation riding on the step response of the
photoreceptor is due to the 
icker induced by the monitor.

The centroid circuit also shows some 60 Hz noise, resulting
from feed-through of noise from the high-gain 
oating-gate
circuits.

tunneling voltage and decreases the source current

in PB1.

As in the system described by Hasler et al. [7],

the tunneling and hot-electron injection currents

are both active, but extremely low and in oppo-
site directions. Since both processes operate in

a negative-feedback fashion (e.g. the tunneling

process raises the 
oating-gate which tends to re-
duce the rate of tunneling), the system reaches

an equilibrium value when the tunneling current

equals the injection current. When the 
oating-

gate voltage is larger than the equilibrium volt-
age, the hot-electron injection current dominates

the tunneling current and the 
oating-gate voltage

drops. Conversely, when the 
oating-gate voltage
is lower than the equilibrium voltage, tunneling

dominates and the voltage rises.

While this technique avoids high-voltage
switching circuits, it su�ers (or possibly bene�ts)

from the eventual loss of stored information as

the 
oating-gate decays back to its equilibrium

voltage. This decay rate, however, can be set
to be extremely slow by using a low Vd1 (tran-

sistor PB1) and a low tunneling voltage. Since

the tunneling and injection parameters are kept
constant, the equilibrium voltage should not de-

pend on the stored value and the memory should

decay towards an equilibrium determined solely
by these parameters. Memory decay tests of our


oating-gates exhibited extremely low, tunneling-
dominant rates (less than 0.07 mV/hour), while

the injection-dominant rates showed a decay of

about 1.0 mV/hour. For more details of the
physics of these 
oating-gate devices, see Hasler

et al. [7] and Diorio et al. [5]

The \learning" can also be turned o� by bring-

ing Vd1, Vs1, and the tunneling voltage down
to zero. Unfortunately, the absolute voltage level

of all the 
oating-gates will be DC-shifted down-
wards as the tunneling voltage drops due to ca-

pacitive coupling. This shift can easily be coun-
tered by increasing the U/D circuit's center refer-

ence voltage until the values have returned to their

trained state. This step, however, may introduce
a DC shift error since it is done manually.

To train the chip for a certain mapping, pixels

are stimulated and the resultant centroid output

voltage is determined to be either too high, too
low, or inside a window of tolerance around the

target value. Since the pixels which contributed
to the output value are the ones that need to be

modi�ed, some mechanism is required to remem-
ber those pixels. The Up/Down circuit shown in

Figure 4 performs this function by storing charge

at each pixel location that contributed to the cen-
troid output. If the pixel has not been active,

the circuit holds the output to a global reference
voltage. If the pixel was just used to drive the

centroid output, the U/D circuit drives the output
to an externally-provided voltage level for approx-

imately �ve seconds (with our current leak set-

tings). This external signal is the training voltage
which is used to increase or decrease the 
oating-

gate voltages at those locations which contributed
to the previous output.

Figure 5 shows some of the relevant signals dur-
ing a pulse of light on the array. Although not

visible, the centroid output rises to a stable value
approximately 2ms after the beginning of the tem-

poral change.

The data presented in this paper was taken us-

ing a tunneling voltage of about 26 volts, Vd1 =
3.1 volts, Vs1 = 0.2 volts with the 
oating-gate

values centered around 5.5 volts. The Up/Down

control line was moved from 4.0 to 7.0 volts for
increased hot-electron injection and from 4.0 to
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Fig. 6. When a bar of one line-width (de�nedby the graph-

ics board) is 
ashed at the chip, it stimulates a single pho-
toreceptor as shown in the top plot and the one pixel is
trained for a mean duration of 2.75 seconds. This timing is

primarily determinedby the leak bias (see Figure 4). When
the bar is widened to 3 line-widths (middle plot), 2 adja-

cent pixels are stimulated and they are trained together in
the same direction. A bar width of 5 line-widths stimlates

3 pixels as shown in the bottom plot. In the multi-scale
training regime, all three types of bars were used randomly

interleaved in the training set. The bar of 5 line-widths was
also used to generate Figure 10. These plots show the re-
sults of measuring the mean time each pixel spent training

for bars of di�erent widths 
ashed at a position on the
monitor near pixel #7. The mean was computed over 7

trials.

0.0 volts for increased tunneling. The coupling
coe�cient between the U/D control line and the

oating-gate was measured to be about 0.6. In
order to scan o� the 
oating-gate values, we op-
erated the chip using a Vdd of 8 volts.

4. System Performance

In training, the chip is aimed at a computer
monitor which 
ashes vertical bars at di�erent
positions in the �eld of view. While the cur-
rent chip has only 32 pixels, the training system

ashes stimuli at the maximum line resolution of
the screen. Our current optics con�guration al-
lows for approximately 75 di�erent locations at
which we can stimulate the array of 32 pixels. This
is done both to map the subpixel behavior as the
stimulus moves from one pixel location to the next
and to train the pixels individually rather than as
groups of pixels.

In real-world situations, however, the pixels will
be activated in groups and the subsequent output
will be an appropriate average of the individual
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Fig. 7. Flat Target Function - In this case, all stimulus po-
sitions were trained to lie at 2.500 volts. This plot shows
the performance of the chip after approximately 20,000

presentations spread over 75 positions. The 
oating-gate
outputs were initially spread between 2.4 and 2.6 volts.

After training, the centroid array was \queried" sequen-
tially from left to right �ve times without training. The

error bars represent one standard deviation. The training
procedure continued to modify the 
oating-gate until the
voltage was within 1 mV of the target voltage.

pixel values. Although training the system with

large stimuli does work, the training time dramat-

ically increases since the training must rely on the

uniform statistics of the training set to sort the

proper values out. The training stimulus size also

sets the minimum size for which the array will re-

port the proper value. For this reason it is impor-

tant to also train at the appropriate resolution.

A multi-resolution training schedule may be the

best strategy since training can occur in parallel,

yet the smaller stimuli can �ll in the details at

each position. The training positions are chosen

by shu�ing a list of positions and selecting them

from the list without replacement. Once the list is

exhausted, the whole list is reshu�ed. This sets an

upper bound on the inter-example training time

and guarantees a uniform distribution.

After training, the array can be \probed" with

either a bar of one line-width or a bar of 5 line-

widths to stimulate output values. The one line-

width bar will stimulate individual pixels and the

5 line-width bar will stimulate the average of a

group of 3 pixels. (See Figure 6) The e�ects of

averaging can be seen in Figure 10 for the case

of the sinewave mapping, which is a particularly

di�cult case to learn, since individual pixels can-
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Fig. 8. Linear Target Function - This functionmost closely
represents a realistic sensorimotor mapping function for

triggering saccades to a visual target. The training and
testing procedure is the same as in the previous graph.

The error bars represent one standard deviation.
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Fig. 9. Sinewave Target Function - In this case, the tar-
get values followed a sinewave. Photoreceptor granularity
is evident by the \staircasing" seen in the plot. Stimulus
locations where the 
ashed bar occurs on the boundary of

two pixels exhibit large variations in output voltage due to
the narrow (one line-width) stimuli being used. Figure 10
shows the same pattern being probed with a much wider
stimulus (three line-widths). The training and testing pro-
cedure is the same as in the previous graphs. The error

bars represent one standard deviation.

not satisfy the wide range of values occuring on a
steep part of the function.

The �rst test of system level operation we dis-
cuss is an experiment in which we attempt to load

a 
at target function. With this function it is eas-
iest to see the accuracy with which the system
can learn a speci�c value. Figure 7 shows the re-

sults after extended training. From initial con-
ditions where the 
oating-gate ampli�er outputs
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Fig. 10. Sinewave Target Function - In this case, the eval-
uation of the pattern in Figure 9 was performed using a

bar which spanned 3 pixels. The training and testing pro-
cedure is the same as in the previous graphs. The error
bars represent one standard deviation.

were sitting at fairly random voltages, the sys-

tem was presented approximately 20,000 examples
at 75 di�erent stimulus locations (approximately
625 examples per pixel) and then the system was
probed at the 75 stimulus locations to evaluate the
mapping. Noise in the chip and in the testing sys-

tem contribute to the variations seen in repeated
trials. It should be noted that the 
oating-gate
ampli�ers are non-linear and the highest gain oc-
curs in the center of the range. Since the target
value for the 
at function in �gure 7 is in the cen-

ter of the range, we expect the largest reporting
variance here due to noise. The error tolerance of
the training system for this mapping was 1 mV.

The linear target function (�gure 8) is the map-
ping which was previously used to map retinal po-
sition to motor command, where 2.60 volts repre-
sented a full-scale saccade to the right and 2.40
volts represented a full-scale saccade to the left.

In this case and in the following mappings, the
error tolerance for learning was 2.5 mV.

In order to challenge the system we also tested a

sinewave target function (�gures 9 and 10) whose
spatial derivative was di�cult to match with the
resolution of the current system. The expected
�nal value in this situation when training with
a uniform distribution of examples and balanced

step sizes is the average of the di�erent target val-
ues associated with the same pixel. This behavior
is seen most clearly in �gure 9. Convergence of
this mapping function takes much longer due to
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the statistical nature of the equilibrium and the
�nal value is not very stable since nearly all the
training examples drive the pixel away from its
current value.

During the testing process, we determined that
modi�cations should be made to reduce the gain of
the 
oating-gate output ampli�er. The measured
DC gain from the 
oating-gate to the output of
the ampli�er was found to be approximately 60.
This created many problems with noise, particu-
larly at 60 Hz due to electrical noise in the lab-
oratory and the 60 Hz light 
icker coming from
the monitor. We partially solved this problem by
using a considerably smaller output voltage range
(2.4 volts to 2.6 volts) to push the ampli�er's out-
put transistors partially out of saturation for the
subthreshold current regime. This had the e�ect
of reducing the gain down to about 2.0, but left a
very small signal range with which to work.

5. Discussion

We have successfully fabricated and tested a train-
able array of 
oating-gate memories whose oper-
ation and modi�cation is integrally related to a
speci�c visual task. By storing information lo-
cally about which units contributed to a com-
putation, the distribution of the training signal
back through the system has been made simpler.
The hardware approach to this problem of de-
layed assignment-of-error may provide a valuable
testbed in which to consider how this problem is
solved in biological systems.

The neurobiological substrate for this adapta-
tion is still unknown. Both the superior collicu-
lus and the frontal eye �elds are attractive ar-
eas for investigation of this adaptation due to
their vector-speci�c organization for driving sac-
cadic eye movements. While both areas are ca-
pable of driving of saccadic eye movements, the
frontal eye �elds are implicated in the genera-
tion of \volitional" saccades and the superior col-
liculus has been implicated in the generation of
re
exive, visually-guided saccades. Experiments
by Deubel [3] indicate that there are context-
dependent di�erences in vector-speci�c, short-
term adaptation. Adaptation performed during
re
exive, visually-guided saccades was not ex-
pressed during volitionally-driven saccades. The

converse has also been found to be true. Frens
and van Opstal [6] also demonstrated the trans-
fer of vector-speci�c adaptation to saccades trig-
gered by auditory cues. These experiments to-
gether point to the interpretation that the adap-
tation is occurring at a stage after integration of
these di�erent sensory modalities, but before the
parallel streams of information from the superior
colliculus and frontal eye �elds have converged.
Following these constraints, it is our hope to also
demonstrate this transfer of adaptation with our
VLSI-based auditory localization system.

The investigation of neural information pro-
cessing architectures in analog VLSI can provide
insight into the issues that biological nervous sys-
tems face. Analog VLSI architectures share many
of the advantageous properties with neural sys-
tems such as speed, space-e�ciency, and lower
power consumption. In addition, analog VLSI
must face similar constraints such as real-world
noise, component variability or failure, and inter-
connection limitations. With the development of
reliable 
oating-gate circuits, the powerful ability
of neural systems to modify and store their pa-
rameters locally can �nally be realized in analog
VLSI.

Beyond our e�ort to understand neural sys-
tems by building large-scale, physically-embodied
biological models, adaptive analog VLSI senso-
rimotor systems can be applied to many com-
mercial and industrial applications involving self-
calibrating actuation systems. In particular, we
believe that for real-world tasks such as mobile
robotics or remote sensing, these circuits will be
invaluable for systems trying to keep up with the
ever-changing world.
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