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A Spike-Latency Model for Sonar-Based
Navigation in Obstacle Fields
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Abstract—The rapid control of sonar-guided vehicles through
obstacle fields has been a goal of robotics for decades. How sen-
sory data are represented strongly affects how obstacles and goal
information can be combined to select a direction of travel. Many
approaches combine attractive and repulsive effects to steer; we
have implemented an algorithm that first evaluates the desirability
of different directions followed by a winner-take-all (WTA) mech-
anism to guide steering. We describe a neuromorphic VLSI imple-
mentation of this algorithm using the inherent echo delay of obsta-
cles to produce a range-dependent gain in a “race-to-first-spike”
neural WTA circuit.

Index Terms—Collision avoidance, echolocation, neuromor-
phic VLSI, obstacles, spike latency, spike timing, step inhibition,
winner-take-all (WTA).

I. INTRODUCTION

T HE EASE with which echolocating bats appear to use ul-
trasonic echoes to perceive their 3-D world has long been

the fascination of scientists and engineers. Capable of flying
through dense forests in complete darkness during their hunt
for flying insects and other prey, echolocating bats must do
more than simply home in on the closest object. How biolog-
ical systems can transform the storm of sensory information into
short-term motion plans amid multiple obstacles and goals is an
ongoing quest for many roboticists and neuroscientists. Noisy,
ambiguous sensory data, limited time to make decisions, and the
tricky question of what an obstacle is, all make this a difficult
task.

Recent approaches to this local obstacle-avoidance problem
have utilized the summation of repulsive or attractive torques
generated by obstacles and goals to steer a particular creature
(e.g., [1] and [2]). While these approaches are successful and
interesting because they also include vehicle dynamics into the
steering choice, there are a few considerations that suggest a dif-
ferent philosophical approach. There are situations where obsta-
cles on either side of the creature and a goal straight ahead can
force the creature into a collision with a narrow gap. In these
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Fig. 1. (Left) An echolocating bat that is attempting to fly directly forward
detects two obstacles (filled circles). (Right) The evaluation pattern consists of
a constant plus a wide low-amplitude Gaussian with two dips created by the
suppression from the two obstacles. Multiple choices are available; however,
a WTA function selects the direction with the highest evaluation. In a simpler
reflex-based system, this right turn toward an object would generally not be
an option. The dotted line indicates the default evaluation with no obstacles
present. Simulation and robot movies can be viewed at http://www.isr.umd.edu/
~timmer.

approaches, an obstacle produces a repulsive torque in a spe-
cific direction, whereas it seems that obstacles should not turn
the creature in any particular direction but only indicate to the
creature where it should not go.

A. “Openspace” Algorithm

The approach presented here is similar to the work by Boren-
stein and Koren [3] which takes a risk-minimization view of
navigation, using the sonar system to first evaluate the desir-
ability of different directions of travel simultaneously and then
to select the direction with the highest evaluation.

The evaluation process begins with a field of evaluation units
that receive an initial input pattern that represents prior assump-
tions about the desirability of various directions. This pattern
could incorporate information about actuation limits, vehicle
dynamics, energy conservation, single or multiple goal direc-
tions, history of previous choices, etc. Obstacles then produce
a pattern of suppression (i.e., inhibition) on the evaluation pat-
tern such that close objects produce deep, wide suppressions and
faraway objects produce only narrow, shallow suppressions (see
Fig. 1). In this context, the inhibition depth represents the confi-
dence with which a direction should not be selected. A winner-
take-all (WTA) process then selects the direction with the max-
imum evaluation. In this approach, echo amplitude (which can
represent the confidence about the existence of an object) could
further modulate suppression such that weaker echoes produce
weaker suppression, eliminating the problem of determining de-
tection thresholds to decide when to suppress. From the selected
direction, we assume that a motor control subsystem (not de-
scribed) will steer our creature onto the desired heading. This
process of simultaneous direction evaluation is similar to other

1549-8328/$26.00 © 2009 IEEE

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 26, 2009 at 12:00 from IEEE Xplore.  Restrictions apply. 



2394 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 56, NO. 11, NOVEMBER 2009

mean-field-theory approaches to robot navigation and behavior
selection [4].

By utilizing a narrow suppression profile, a closely spaced
cluster of objects produces deep suppressions with only a
modest growth in the width of suppression. Another advantage
to the WTA approach is that an open direction on the far side
of an obstacle from the direction of travel can be selected
(e.g., Fig. 1). Unlike the activity of most neurons recorded in
the bat echolocation system which fire in response to echoes,
the neurons in our model produce the greatest activity for
directions where there are no obstacles (i.e., lack of stimulus).
While little is known about how or where obstacle avoidance
and goal pursuit is performed in the brain of the bat, studies in
other mammals suggest a role for the superior colliculus (SC).
We discuss this in further detail in Section IV.

The evaluation function for each direction can be described
by

(1.1)

The first term is a constant bias term to allow the eval-
uation to remain positive following subtraction by other terms.
In general, this term does not need to be constant, but could
incorporate information about the desirability of certain direc-
tions due to actuation limits. In the spiking neural network in
later sections, represents the baseline firing rate. The coef-
ficient is the amplitude of an additive Gaussian term (with
its center at and width controlled by ) which represents
an increase in the desirability due to a known target location.
The center of the Gaussian should be steerable with changing
goal directions. The index refers to the obstacles that sup-
press the evaluation with a subtractive Gaussian term that is
scaled inversely with the range (i.e., distance) of each ob-
stacle. The lateral spread of inhibition was range dependent, i.e.,

for , where
was the maximum sensory range; this range dependence

was not a critical feature and was made constant for the circuit
described later.

Simulations of this simple algorithm (see Fig. 2 for an ex-
ample trajectory) have shown that, for light to moderate tree
densities, successful parameters for collision avoidance are easy
to find. Software implementations of this algorithm have been
tested on wheeled mobile robots at speeds of up to 0.5 m/s. To
utilize this algorithm on a flying mobile robot, however, we are
interested in developing a very low power high-speed VLSI im-
plementation.

B. Spiking Neuron Implementation

Our laboratory’s principal interest is the neuromorphic VLSI
implementation of the neural circuits of bat echolocation and
thus we have developed a neurally plausible model. An obvious
neural implementation of the openspace algorithm is to start
with a field of neurons that fire tonically to a uniform input
bias current. These neurons also receive a steerable Gaussian-
shaped excitatory input pattern with the peak centered on the de-
sired goal direction. The obstacle detection system (i.e., sonar)

Fig. 2. In this MATLAB simulation of the openspace algorithm, a “bat” moves
through an imaginary “forest of trees” toward a target at ����� ��� and evades
collisions. The sensory field of view used in this simulation is 180 in front
of the bat and out to ten units of range. In this simulation, the target bearing is
always known.

projects inhibition onto this field with a strength and width in-
versely proportional to the range. Thus, the evaluation for each
possible direction is represented as the input to each neuron. If
each neuron fires monotonically with the strength of its input,
the evaluation pattern is observable in the pattern of the neuron
firing rate. By incorporating a global inhibitory feedback con-
nection based on the evaluation neuron activity, the well-known
WTA or “soft-WTA” function can be implemented on this field
of neurons [5].

Although the mean firing rate could be used to represent the
evaluation, the interpulse interval also carries the same informa-
tion but on a shorter timescale. If we had a time-zero reference
and simultaneously reset (i.e., strongly inhibit and then release)
all neurons, the input currents would be inversely expressed in
the spike latency across the field of neurons [see Fig. 3(a)].
The neurons which integrate to threshold first are considered
to be the winners. Temporal WTA circuits like this have previ-
ously been fabricated and used in neuromorphic VLSI contexts
(e.g., [6]).

In echolocation, the returning echoes from obstacles arrive at
different times according to their range. If the field of neurons
is reset at the time of the sonar pulse and echoes trigger long-
lasting but weak inhibitory currents, the latency will increase as
inhibitory pulses start earlier [see Fig. 3(b)]. The use of such step
currents in neural computation is described by Maass [7] and has
also been used in a VLSI circuit for visual processing [8].

For a neuron with a membrane capacitance , a spike
threshold , a constant excitatory bias current , and a
step-inhibition current at time , the latency of the spike is
given by

(1.2)
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Fig. 3. (a) Increasing the strength of the excitatory inputs to a neuron shortens
the latency of the spike following a reset pulse. By determining the neuron that
fires first, we find the neuron with the largest average input. (b) Long-lasting
inhibitory current delays the spike or prevents firing altogether. Inhibitory cur-
rents that start earlier will produce a longer added delay in firing.

Fig. 4. Example plot of calculated spike latency versus echo delay (target
range) for an example parameter setting. Without inhibition, the neuron will
fire at 30 ms.

We assume that and that .
Thus, we obtain an increased latency for closer obstacles
without explicitly computing the range or increasing the
synaptic strength. A plot of this dependence is shown in Fig. 4.

To obtain WTA functionality, evaluation neurons excite a
global inhibitory cell that, in turn, fires the global reset pulse.
In the extreme case, if the connections between the evaluation
neurons and the inhibitory cell are sufficiently strong, the first
neuron in the evaluation field to fire will trigger a spike from
the inhibitory cell, preventing any other cell from firing and
allowing only a single neuron (or a small number of neurons)
to fire.

In the sections to follow, we describe the design and testing
of a neuromorphic VLSI implementation of a slightly modified
version of the openspace algorithm as described previously. Por-
tions of this work have been previously reported in conference
proceedings [9].

Fig. 5. System block diagram. The goal-direction voltage input biases the field
of neurons to fire, while the address–event inhibitory spikes (echo triggered) in-
crease the spike latency following a reset pulse. The global inhibitor implements
a WTA function once the first set of spikes occurs.

II. CIRCUITS

A. System Design

To facilitate the communication of spikes in and out of
the chip, we use a communication protocol known as the
“address–event” representation [10]. In this communication
system, an asynchronous digital bus provides the address of a
target synapse and produces a handshaking pulse, delivering
a brief ( s or shorter) digital voltage pulse or spike to
the target address. This same signal representation is used to
transmit neuron spikes out of the chip. The dynamic inputs to
the system (Fig. 5) are the goal direction and the echo-trig-
gered address–event spikes corresponding to different obstacle
directions. The outputs from the chip are the spikes from the
evaluation neuron array. The test chip consists of 25 evaluation
neurons and one global inhibitory neuron.

B. Steerable Excitatory “Bump” Bias

The bias term and the steerable Gaussian excitation term
in (1.1) are provided as a current to the neuron by the “bump”
[11] circuit in Fig. 6. The parameter fixedbias controls the ex-
citatory DC current, and goalv (provided by the user from off-
chip) corresponds to the goal direction (from Fig. 5). The drain
current of M2 as a function of (goalv res_R) is approximately
a Gaussian.

C. Spiking AER (Evaluation) Neuron

The integrate-and-fire neuron circuit in Fig. 7 is based on sev-
eral different neuron designs [12], [13] that utilize the inverter
(M1–M3) threshold and decouple the large integration capac-
itor from vmem during the outgoing spike. This allows fast but
low-power operation by avoiding the need to charge C1 up to
vdd and then back down to 0 V in a very short time. This neuron
also has a refractory period controlled by the parameter labeled
refr.

In this circuit, input currents from the synapses and bias
sources enter the circuit onto the node labeled vmem. If we first
consider the neuron in its nonfiring state with V,
we can see that the output of the inverter defined by M1 and
M3 is at vdd. This turns off M7 (that provides the positive feed-
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Fig. 6. Resistive ladder (created by connecting res_R to the neighboring cir-
cuit’s res_L and different endpoint voltages) gives each neuron a unique refer-
ence voltage. A global signal goalv is compared to this signal by the bump circuit
and produces a maximum current when goalv equals the reference voltage. All
transistors have a � over � ratio equal to �������, given in micrometers.

Fig. 7. Neuron circuit receives current from the synapses into the node labeled
vmem and produces a digital voltage spike at spike. The spike is passed to the
address–event transmitter system with the handshake signals reqbar (active low)
and ack (active high). The signal spike is used to drive the on-chip synapses
onto the global inhibitory neuron. C1 was made large to allow long integration
times �� ��� ms�. ��� ratios were 1.8/1.8 for M15–M20 (inverters), 3.6/1.8
for M12 and M14, and 3.6/3.6 for other transistors. Measurements are given in
micrometers.

back pathway for spike generation) and turns on M13 (which
connects C1 to vmem). The input current charges C1 until the
M1/M3 inverter flips state and drives spike high. When spike
goes high, a request (active low) is sent to the address–event
representation (AER) arbiter (not shown) through the inverters
M15/M16 and M17/M20, the positive feedback current is
switched on (M7), and the capacitor C1 is disconnected from
the input node. With the capacitor disconnected, the positive
feedback can very rapidly charge vmem. Once the AER arbiter
provides the active-high acknowledge signal ack, the capacitor
C1 is discharged (M12), and vmem is pulled to ground (M14),
withdrawing the AER request and ending the spike.

D. Excitatory and Inhibitory Synapses

The synapse circuits used to interconnect the evaluation neu-
rons and the inhibitory neuron are shown in Fig. 8. The evalua-
tion neurons produce short digital voltage spikes with durations

Fig. 8. (Left panel) Excitatory synapse circuit (that connects evaluation neu-
rons to the inhibitory neuron). (Right panel) Inhibitory synapse circuit (that con-
nects the global inhibitory neuron to the evaluation neurons). The input spike
drives the gate of M2 to the voltage esynw (or isynw), and the linear leak by M1
controlled by esyntau (or isyntau) creates a quick-onset current with an expo-
nential decay that is injected into (or drawn from) the membrane capacitance of
the postsynaptic neuron. Transistors M2 and M3 have a ��� � �������, and
M1 has a ��� � ��	���	. Measurements are given in micrometers.

largely defined by the speed of the address–event arbiter circuit
(a circuit that determines which neuron is allowed to transmit
off the chip first when there are timing conflicts) for transmit-
ting spikes off of the chip.

These voltage spikes charge the upper plate of the capacitor
C1 (via transistor M3) to the voltage esynw. Transistor M2 op-
erates in saturation and sets the output synaptic current. The pa-
rameter esyntau defines a constant current in transistor M1 to
linearly reduce the gate voltage of M2. If M2 operates in the
subthreshold region of operation, the output synaptic current de-
creases exponentially with time. These synapses can be biased
to operate as either as long-duration weak synapses or short-du-
ration, strong synapses (see Section III.B).

E. Diffusive AER Inhibitory Synapse

The obstacle-dependent inhibition begins with an ad-
dress–event input spike, namely, aerispikebar (active low),
that triggers a long-lasting inhibitory current pulse (Fig. 3,
bottom). In the circuit that generates this pulse (Fig. 9), the
voltage on the upper node of C1 is abruptly charged to vdd and
then slowly discharged by M7 (controlled by slowtime) down
to 0 V. M5 primarily acts as a switch for the current defined
by M4 (controlled by w_islow). The inhibitory current is then
subtracted from the neuron via the two mirrors M1/M2 and
M9/M10. The pFET mirror is connected via nFET transistors
to adjacent inhibitory circuits, creating a “diffusor” network
[14] that shares inhibitory current with neighboring neurons.
The point-spread function for the diffusor is an exponentially
decaying function in both directions (left and right) instead of
the desired Gaussian in the original algorithm. Although set
to zero in these experiments, the leak input control allows a
constant DC leak current to be applied equally to all neurons
in the array.

Our evaluation equation now becomes

(2.1)

where the range dependence of the inhibition is linear and that of
the lateral spread of inhibition is a decaying exponential instead
of a Gaussian.
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Fig. 9. Echo-triggered inhibition (via address–event) produces laterally spread
inhibitory currents through the diffusor transistor M3. Transistors M6 and M8
have a��� � �������, and all others have a��� � �������. Measurements
are given in micrometers.

III. TEST RESULTS

The chip was fabricated in a commercially available 0.5- m
2-poly 3-metal CMOS process. This process had an nFET
threshold voltage estimated at 0.74 V and a pFET threshold
voltage estimated at V. This chip consisted of an array
of 25 evaluation neurons and one inhibitory neuron. For a
sonar system, viewing a full 180 in front of the animal would
have an angular resolution of 7.2 , sufficient for the task of
collision avoidance given repeated measurements. Testing was
performed using both computer-generated signals and, later,
with an echolocation system (ultrasonic and air coupled). Input
and output spikes were communicated using the address–event
protocol; output spikes were captured with a timing resolution
of 1 s.

A. Mean-Firing-Rate Mode

As a basic test of its operation, the mean spiking-rate behavior
was evaluated. Spike trains were collected for approximately 10
s, and the mean firing rate was reported. First, a constant iden-
tical DC current ( V, see Fig. 6) was pro-
vided to each neuron to estimate the functional mismatch in the
array. All inhibitory currents were disabled and the neurons had
very short refractory periods V . As shown in
Fig. 10(a), for relatively low firing rates, mismatch is visible.
This firing-rate mismatch is likely to be the result of mismatch
in the DC current-source transistors and neuron threshold mis-
match. In this experiment, the mean firing rate was 81.9 spikes/s
with a standard deviation of 8.0 spikes/s. This level of fixed-pat-
tern mismatch can produce a bias toward some neurons to be
consistently preferred over others; this will not prevent the suc-
cessful operation of the system but will affect the sensitivity of
the system to respond to subtle changes in the sensory input.
Next, the bump circuit, diffusive inhibitory synapses, and the
global inhibitory neuron (i.e., WTA behavior) are demonstrated
in mean-rate operation [Fig. 10(b)–(d)].

Fig. 10. Operation in mean-rate firing mode. Panels (a)–(c) are generated with
the inhibitory neuron disabled. (a) Constant DC current is applied equally to all
neurons �����	
��� � ���� V�. (b) Bump circuit provides increased current
to the central set of neurons �

��
��� � ���	 V�. (c) Inhibitory current
profile is applied to neuron #16 (� ����� � 
��� V and �	��� � ���	 V).
(d) Inhibitory neuron is activated (������
 � 
��� V, ����� � 
��� V,
����� � 
���V, and ������
 � 
��	V), and a small group of neurons with
the strongest activation continues to fire. Neuron #25 is the global inhibitory
neuron.

Fig. 11. Neuron spikes versus time. The steerable bump of excitatory bias cur-
rent is driven by a dynamic input voltage goalv. In this case, although the in-
hibitory neuron is firing vigorously (neuron #25), all of the global feedback
inhibitions have been turned off.

To demonstrate the steerable bias currents (bump circuit,
Fig. 6), a sinusoid-like voltage was used at the goalv input, pro-
ducing rapid neural firing at changing locations (Fig. 11). All
feedback inhibitory currents were turned off in this experiment.
For this experiment, V, V,

V, V, and
V.

In Fig. 12, the global feedback inhibition was activated by
the field of neuron using weak excitatory synapses and weak
feedback inhibitory synapses. For this experiment,

V, V, V, and
V. With this weak inhibition, the global inhibitory neuron

does not reset the field of neurons with a single spike, and this
WTA behavior operates in a mean-firing-rate regime.
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Fig. 12. Neuron spikes versus time. In this case, weak feedback inhibition was
activated, shutting off weakly driven neurons. In this example of soft-WTA be-
havior, the inhibitory neuron fires rapidly, but provides inhibition using long-du-
ration weak inhibitory synaptic currents. Notice that neurons near the center lo-
cation of the bump generally fire at a higher frequency than neurons at the edges
of the bump. Neuron #25 is the global inhibitory neuron.

B. Spike-Latency Mode

As discussed earlier, to properly implement the openspace al-
gorithm in the mean-rate mode of operation, obstacle range in-
formation would need to be incorporated into the strength of
inhibition applied. In particular, range information would there-
fore need to be extracted. In the spike-latency mode, however,
echo delay can functionally implement our range-dependent in-
hibition.

Under conditions of strong feedback inhibition (i.e., quick
reset of all neurons), interesting firing patterns emerge at short
timescales (Fig. 13), revealing that the spike latencies following
a reset pulse are related to their input strength, whereas the
firing frequency is identical for all neurons that are firing. In
the left panel, weak excitation from the neurons in the array
to the global inhibitory means that many neurons will fire be-
fore the inhibitor fires and resets the whole field of neurons. By
changing the strength of the excitatory synapse onto the global
inhibitory neuron, the size of the winning group can be mod-
ulated by changing how many input spikes it takes to produce
a spike. Fig. 13 (right) shows the extreme case where a single
spike from a neuron stops the competition by driving the global
inhibitory cell with a very strong excitatory synaptic current. An
example of a moving target is shown in Fig. 14, where mismatch
produces different group sizes.

To show the lateral spread of inhibition and its effective-
ness in delaying spike times, we provided a DC bias current

V along with a bump profile of current
centered on the array V . An inhibitory
input spike targeted at neuron 12 for three different simulated
echo delays results in changes of the first-spike latency (Fig. 15)
for neuron 12 and its neighbors. Example first-spike latencies
are shown for no inhibition, 25-ms delay, and 35-ms delay.

By taking the difference in first-spike times between the case
where no inhibition was applied and the other two delayed inhi-
bition cases, we obtain a measure of the increase in latency pro-
duced by our laterally spread inhibitory step current (Fig. 16)
targeted at neuron #12.

Fig. 13. (Left) Strong excitation of the inhibitory neuron resets the neuron array
repeatedly, allowing only the most strongly activated neurons to fire. For this
experiment, ����� � ���� V, ������	 � ���� V, 
���� � ���� V, and

�����	 � ���� V. Note that the synapse transistors are initially (at the mo-
ment of the input spike) operating above threshold. (Right) Further strength-
ening of the excitation of the inhibitory neuron reduces the size of the winning
group to one. For this experiment, esyntau was lowered to 0.67 V, increasing the
duration (and, thus, efficacy) of the excitatory synaptic current pulse.

Fig. 14. Example response of the neuron population (spike-latency mode) to a
moving goal (goalv is swept). Neuron #25 is the global inhibitory neuron.

Fig. 15. A single inhibitory spike produces differential effects with its latency.
With feedback inhibition off, all neurons integrate to their first spike (other
spikes removed). (Short-dashed line with dots) With no echo-triggered inhi-
bition, neurons 4–18 form a prominent arc of first spikes consistent with the
bump input currents. (Solid lines with dots) When an inhibitory spike is deliv-
ered 35 ms after the reset to neuron 12, the neuron and its neighbors are delayed.
(Dashed-dotted line with dots) If the inhibitory spike at neuron 12 occurs earlier
(simulating a closer obstacle) at 25 ms, the effect of the inhibition is greater, and
the neurons fire even later.

C. Sonar-Triggered Behavior

To demonstrate the use of the chip with live sonar-triggered
signals, we connected a simple custom binaural sonar system
[15] that produces a spike signal to the openspace chip for re-
setting all of the evaluation neurons at the time of the outgoing
sonar emission and generates a spike at the time of an echo with
an address that is proportional to the direction from which it ar-
rived. An important feature of this sonar (and any active sensory
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Fig. 16. Neighborhood size and amount of latency increase are larger for in-
hibitory spikes that arrive earlier.

Fig. 17. Photograph of the test system with binaural sonar, the angle calculation
on a PIC microcontroller, and the openspace chip.

system) is the suppression of sensory-driven spikes in response
to the outgoing sound.

Fig. 17 shows a photo of the demonstration system with the
binaural sonar head triggered by an onboard microcontroller
(PIC12CE674, PIC Microchip Inc.) that generates the transmis-
sion and initiates all timing in the system. The two analog ul-
trasonic microphone signals are amplified and sent to another
PIC microcontroller (PIC18F2620) on which the direction is
estimated. Address–event spikes representing the direction of
the sound are generated as echoes arrive and are sent to the
openspace chip to produce the desired inhibition pattern.

It should be noted that, in testing this chip, the time constant
of the global inhibitory synapses (onto each neuron) was ac-
tively modulated to simulate two different inhibitory synapses:
one that is strong and short in duration to reset all of the neurons
and synchronize the race-to-first-spike and one that is strong and
longer in duration that stops the race-to-first-spike and holds all
of the neurons quiet.

Using the sonar to trigger inhibition due to an obstacle,
Fig. 18 shows the latency-delaying effect of the step inhibition
on the rise of the vmem node voltage.

Fig. 18. Demonstration of the increase in latency due to a sonar-triggered inhi-
bition. The bottom trace indicates the digital signal used to trigger the sonar
emission. The sonar envelope signal compares examples from two different
emissions: (Dashed line) “Without object’ and (solid line) ‘with object.’ A sup-
pression signal (see dotted line, top trace, vmem) produced by the sonar trans-
mitter suppresses any neural response to the outgoing sound. When an object is
detected (see sonar envelope, second bump), two sonar-derived spikes are sent
through the AER interface system to inhibit the neuron. The resulting inhibition
(starting at the time of the object echo) delays the time when vmem reaches the
threshold voltage and resets to 0 V.

Fig. 19. WTA behavior in the network in response to an object oscillating in
front of the sonar. In this demonstration, the bump circuit is biased to select a
central location. The left panel shows the firing rates of the neurons without the
WTA inhibitory feedback activated. The peak firing rate occurs at neuron #11.
The sonar system detects the echo, determines the direction of the object (fixed
distance), and sends an AER spike to the diffusive inhibitory synapse of the
appropriate neuron approximately 25 ms after the outgoing pulse. The object is
moved back and forth to interfere with the selection of the winning neuron. As
the (red circles) inhibitory activity generated by the object slides across the array,
the (black dots) winning location is, at first, deflected away from the inhibition,
but as it passes, the winning location snaps to the opposite side of the inhibition.

To demonstrate the sonar and chip working together to select
a winning openspace direction, an object was moved side to side
in front of the sonar at approximately 75-cm distance. It was
moved specifically to occlude the goal direction specified by the
bump circuit. The binaural sonar calculates the echo direction
based on intensity comparisons and provides direction-specific
inhibition to the neuron array (using the AER interface) to delay
spikes in that direction. Fig. 19 shows the effect of a moving
sonar obstacle on the winning location as it oscillates in front of
the sonar. In this case, the goal direction was fixed, and global
inhibition was activated for the full WTA behavior.
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Fig. 20. In this example, two sonar targets are presented at 40 cm (neuron #9)
and 55 cm (neuron #15), and the resulting latencies in the first spike are com-
pared. The same dc bias current was applied to all neurons to allow a better
comparison. (Left) Dark solid line is the response with targets, and the thin
dotted line is the response latency without targets. (Right) Latency difference.
The closer target (at neuron #9) provides more inhibition.

In our final demonstration (Fig. 20), the sonar system was
used to provide multiple inhibitory events corresponding to mul-
tiple targets at different ranges. We demonstrate that closer tar-
gets produce deeper and wider inhibition and that multiple ob-
stacles can be integrated.

Although the source of goal-direction information was not
discussed, it is assumed that another system (presumably based
on information coming from the echolocation system) would
determine goal directions. In bats, goals would typically include
detected insects (temporally modulated echoes), other bats, nav-
igational waypoints or flyways, and its home or resting roosts.

IV. DISCUSSION

The use of input spike timing to modulate the efficacy of
a synaptic connection in an ongoing computation can be an
effective mechanism that does not rely on the modulation of
synaptic strength or on increased spike rates. This type of candi-
date mechanism for spike-based neural computation has poten-
tial in systems where a race-to-first-spike is a fundamental as-
pect of the problem due to a globally synchronizing signal. We
have found a natural match of this computational mechanism
with the echolocation-based openspace algorithm proposed ear-
lier in this paper.

An important issue that is commonly faced when using WTA
systems is the effect of device mismatch. Often overlooked in
theoretical or software-based models of these networks, (gain
and/or offset) mismatch can make it difficult to compare inputs
“fairly” to determine the input with the largest input. While the
use of synaptic modification in biological systems seems like a
likely choice for compensation, the use of populations of neu-
rons that display symmetrical zero-mean mismatch distributions
may also be a biologically plausible solution. In this case, neu-
rons within a population would have lateral excitatory connec-
tions within the group. This type of spiking neuron network
with lateral excitation and global inhibitory feedback is well
known and has been constructed in mean-rate coded neuromor-
phic VLSI in several different contexts (e.g., [16] and [17]). In
the race-to-first-spike WTA, the outcome depends more heavily
on individual neuron characteristics because the averaging ef-
fects from the neighborhood are not available. Toward this end,

a floating-gate calibration approach seems most appropriate for
the analog VLSI system described in this paper.

While our specific application is focused on bat echolocation
where the echo delay can directly generate desired inhibitory
scaling effects, the basic openspace algorithm in the mean-rate
mode of operation can also be used to merge information from
multiple sources of spatial information (vision, somatosensory,
whiskers, etc.). In the brains of mammals, an obvious candidate
area for merging multiple sensory modalities for the purpose
of orienting the animal is the superior colliculus (SC). Studied
in many different animals, the SC has a well-documented role
in motor control of the orienting behavior of the eye, pinnae,
head, and body, as well as a lesser studied role in avoidance
behavior [18]. While little is known about the role of the SC
in collision avoidance or goal pursuit during locomotion, eye-
movement studies in primates suggest that the SC is involved
in target selection when multiple choices are presented and that
inhibitory circuits are involved in this selection [19]. The SC
likely operates in concert with the frontal cortex to integrate
fast reflexive behavior (SC) with slower volitional control of
navigation (frontal cortex).
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