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Abstract

We have designed, built and tested a number of
analog CMOS VLSI circuils for computing 1-D mo-
tion from the time-varying intensily values provided
by an array of on-chip phototransistors. We present
experimental data for three such circuits and dis-
cuss their relative performance. One circuit approz-
imates the correlation model, one the gradient model,
while a third chip uses resistive grids to compute zero-
crossings to be iracked over time by a separate digi-
tal processor. All circuits integrale image acquisition
with image processing functions and compule velocity
in real ttme. Finally, for comparison, we also describe
the performance of a simple motion algorithm using
off-the-shelf components.

1 Introduction

There exist two broad categories of algorithms for
recovering the optical flow field underlying the time-
varying intensity patterns falling onto a retina or cam-
era (for an overview, see [38]).! Token-based or long-
range schemes identify low or high-level tokens in ev-
ery image, such as edges, corners or missiles, and track
these from frame to frame [37] [24]. They lead to an
estimate of motion at sparse locations in the image.
The key problem associated with these schemes is the
correspondence problem, i.e. matching up the tokens
in frame ¢ with the same tokens in frame : + 1. The
difficulty associated with the correspondence problem
decreases with sampling interval At between frames
and with number of tokens.

The second class of motion algorithms uses the in-
tensity or a linear function of the intensity at every lo-
cation to compute the optical flow field throughout the
image. During the last decade there has been an in-
creasing interest in these intensity-based or short-range
methods (for a review see [11] and [32]). The two main
approaches that have been proposed for determining
the optical flow are the correlation, second-order or
spatio-temporal energy methods [8] [30] [1] [40] [43]

1Given the topic of this paper, we make no distinction here
between the optical flow field induced by the time-varying im-
age intensities and the underlying 2-D velocity field, a purely
geometrical concept [13] {41}.

TH0390-5/81/0000/0312/$01.00 © 1991 |IEEE

33] [3] [5] and the differential methods [29] [6] [15] [36]
10] [44] [39] [42]. Common to all correlation meth-
ods 1s that the mtensity I(z,y,t) is passed through
a linear spatio-temporal filter and multiplied with a
delayed version of the filtered intensity from a neigh-
boring receptor [30]. The output of these methods is
a quadratic functional from which velocity or speed
has to be extracted. A number of population coding
schemes have recently been proposed for this purpose
[9] [7]. Gradient methods, on the other hand, exploit
the relationship between the velocity and the ratio of
the temporal to the spatial derivative. These methods
yield a direct estimate of the optical flow field. How-
ever, they require evaluation of first or second-order
spatial and temporal derivatives of the image intensi-
ties.

In two dimensions, most intensity-based methods
are plagued by the aperture problem in either its
strong or its weak form [24] [32]. For instance, the
standard gradient scheme only estimates the velocity
component perpendicular to the local image gradient
[15]. Thus, in these cases computing optical flow is
an ill-posed problem, since no unique solution exist
[31]. In other cases (e.g. [33] [39]), the optical flow is
merely ill-conditioned, that is, it depends on the exact
knowledge of the initial values. In most cases a regu-
larization step is imposed so that the final optical flow
obeys some sort of smoothness constraint.

Common to all these methods is a large asso-
ciated computational overhead, preventing real-time
machine vision applications within most industrial,
military or deep space/planetary settings except on
anything but large, costly and power-hungry comput-
ers. Special-purpose hardware for computing optical
flow in real-time becomes therefore a very attractive
possibility. Here at Caltech, the laboratories of Carver
Mead as well as ours have focused on a special class of
such vision systems, analog, non-clocked CMOS VLSI
circuits with on-chip photoreceptor arrays [27] [16] (for
an alternative approach see [14]). A number of work-
ing chips, integrating image acquisition with different
early vision algorithms, such as filtering, edge detec-
tion, binocular stereo and surface interpolation, have
been designed, fabricated (via the government silicon



foundry MOSIS) and successfully tested (for an up-to-
date overview, see [25]). We here discuss three differ-
ent analog circuits for computing the 1-D optical flow
associated with the on-chip 1-D photoreceptor array.
The next section discusses a chip approximating a Re-
ichardt correlation algorithm, while section 3 presents
data from a mixed analog-digital circuit. This system,
tracking thresholded zero-crossings, bears similarity to
the Marr & Ullman [24] scheme of computing velocity
along zero-crossings of the V2G operator. Section 4
describes the performance of the Tanner-Mead mo-
tion detector circuit [35] in a novel mode of operation.
Finally, in section 5, we compare the performance of
these three analog, non-clocked chips with that of a
simple system built out of a 1-D CCD imager and a
programmable microprocessor.

1.1 Data acquisition and circuit design

When testing the performance of our different mo-
tion chips, we tried to directly compare their output
under the same test conditions, in particular using the
same stimulus and speed as well as background in-
tensity. Accordingly, we built a conveyor belt system
using an electric motor; belts with square wave grat-
ings of various contrasts and spatial frequencies could
be moved in view of the chips, with velocities that
ranged over more than an order of magnitude. Mov-
ing stripe patterns were imaged onto the silicon sur-
face using a narrow aperture lens directly positioned
onto the chip. However, we did not achieve our initial
goal of comparing all of the chips under identical op-
erational conditions. This was mainly due to the fact
that the different circuits have different optimal op-
erating characteristics (e.g., some operate best under
very low light conditions while others require higher
light intensities).

All the data shown in this article is based upon
measured data from working chips and not from cir-
cuit simulations. The chips were implemented with a
standard 2.0 gum CMOS process available through the
MOSIS silicon foundry.

Finally, we would like to mention that most of our
circuits are directly or indirectly inspired by biologi-
cal counterparts in the motion pathway of flies, rab-
bits or primates. In fact, it has been our experience
that thinking about biological motion estimation sys-
tems (e.g. {17] [42]) leads to the design of more robust
electronic circuits, while thinking about machine vi-
sion systems leads to a better understanding of the
problems — such as gain-control, limitations in the
precision of components — that any biological vision
system must face.

2 A Pulse-Coded Correlation Circuit

The circuit discussed in this section was directly
inspired by the correlation model as well as by the
computational architecture found in the auditory sys-
tem of owls [19]. We designed an analog VLSI chip
that contains a large array of velocity-tuned units that
correlate two events in time, using a delay-line struc-
ture [12]. In building motion detection systems us-
ing correlation methods, a typical approach with a
clocked system measures the image shift over a fixed
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Figure 1. Block diagram of the pulse-coded correlation
chip, showing two motion detector units. Rising light
intensity signals at the photoreceptors are converted
into pulses and sent down the delay line. Velocity
is determined by the location where two pulses meet.
The axon delay-line is drawn as a heavy dashed line
and correlators are drawn as circles. See the text for
explanation.

sampling time, while a dedicated analog hardware ap-
proach lends itself to the measurement of image shift
time over a fixed distance. The latter is a local compu-
tation that gracefully scales to different velocity ranges
without suffering from the problems of extended inter-
connection. It is this local property that we are using
to compute motion.

2.1 System architecture

Fig. 1 shows the conceptual design of the detec-
tor and the organization of the chip. The image is
directly focussed onto a one-dimensional array of 28
on-chip hysteretic photoreceptors spaced 50um apart
[4]. These photoreceptors enhance temporal changes
in the incident light intensity. While configured like a
follower, the circuit has its highest gain at higher fre-
quencies. Additionally, the circuit has a compressive
gain function for the amplitude of the signal, making it
responsive to both small and large signals. Each pho-
toreceptor is connected to a half-wave rectifying neu-
ron circuit {21] that fires a single digital pulse of con-
stant duration when it receives a quickly rising (but
not falling) light-intensity signal. The duration of the
pulses can be adjusted from approximately 1 msec to
0.08 msec.

This rising light intensity signal is interpreted as a
moving edge in the image passing over the photorecep-
tor. This signal is the image feature to be correlated.
Note that from a computational point of view, we can
use either the rising or the following intensity values,
corresponding to an ON or to an OFF edge, as the fea-
ture to be correlated with. Due to the faster turn-on
characteristics of the photoreceptor, however, a rising
signal was chosen. Each neuron circuit is connected to
an axon circuit [27] that propagates the pulse down its
length. By orienting the axons in alternating propa-
gation directions, as shown in Fig. 1, any two adjacent
receptors generate pulses that will “race” toward each



other and meet at some point along the axon. Correla-
tors between the two opposing axons detect when the
two pulses pass each other, indicating the detection of
a specific time difference. The width of the pulse in
the axon circuits, which is adjustable, determines the
pulse propagation rate down the line; the propagation
rate determines the detectable velocity range.

2.1.1 Computing coincidences

To compute motion, the system measures the time
that a feature takes to travel from one photoreceptor
to one of its neighbors. By placing two delay lines in
parallel that propagate signals in opposing directions,
a temporal difference in signal start times from op-
posite ends will appear as a difference in the location
where the two signals will meet. Between the axons,
correlation units perform a logical AND with the axon
signals on both sides. If pulses enter adjacent axons
with zero difference in start times (i.e. infinite veloc-
ity), they meet in the center and activate a correlator
in the center of the axon. If the time difference is small
(i.e. the velocity is large), correlations occur near the
center. As the time difference increases, correlations
occur further out toward the edges. The left and right
halves of the axon represent different directions of mo-
tion. At the chip level, when a single stimulus (e.g. a
step edge) is passed over the length of the photorecep-
tor array with a constant velocity, a specific subset of
correlators are activated that all represent the same
velocity.

The major sources of error in the computation are
related to fabrication offsets and noise. Component
non-uniformities in the axon cause the pulses to be of
slightly different durations which changes the propa-
gation speeds at each location in the axon. This can
shift the resulting correlation position, with the ac-
cumulated errors being the largest at longer time dif-
ferences. Given the circuit component variability, we
compute these coincidences for 27 pairs of opposing
axons. A current summing line is connected to each of
these correlators and is passed to a winner-take-all cir-
cuit [22] as one of the competing time delay channels.
The winner of the winner-take-all computation corre-
sponds to the bin that is receiving the largest number
of correlated inputs. The output of the winner-take-all
is scanned off the chip using an external input clock.
Because the frequency of matches affects the confi-
dence of the data, scenes that are denser in edges pro-
vide more confident data as well as a quicker response.

Note that the scheme we use to compute the
velocity—by estimating the coincidence event receiv-
ing the maximal amount of support—approximates
the “ridge” strategy Grzywacz and Yuille [7] advo-
cate to compute velocity from a population of spatio-
temporally oriented receptive fields.

2.1.2 Single versus bursting mode

The circuit described thus far uses a single pulse to
indicate a passing edge. Due to the statistical nature
of this system, a large number of samples are needed
to make a confident statement of the detected time
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difference. By externally increasing the amplitude of
the signal passed to the neuron during each event, the
neuron can fire multiple pulses in quick succession.
With an increased number of pulses traveling down the
axon, the number of correlations increases, but with
a decrease in accuracy, due to the multiple incorrect
matches. The incorrect correlations are not random,
however, but cluster around the correct velocity. The
end result is a net decrease in resolution in order to
achieve increased confidence in the final output.

The chip output is the measured time difference
of two events in multiples of 7, the time-delay of a
single axonal section. The final velocity v is given
by const/At, where At corresponds to the signed
time difference (measured in seconds/pixel). We set
const = 1. Due to this inverse relationship, we ex-
pect to obtain the highest velocity resolution for slow
speeds. However, due to the relatively small number of
correlations at slower speeds, the signal-to-noise ratio
will decrease. This will be less troublesome as larger
photoreceptor arrays are implemented. The variable
resolution in this computation can be an acceptable
feature for control of robotic motion systems since
higher velocity motions are often coarse, with fine con-
trol needed only at the lower velocities.

2.2 Performance

We fabricated the circuit shown in Fig. 1 using a
double polysilicon 2um process on a MOSIS Tiny Chip
die containing about 8000 transistors. The chip has 17
velocity channels 88 channels in each direction as well
as a center channel), and an input array of 28 photore-
ceptors. The voltages from the winner-take-all circuit
are scanned out sequentially by on-chip scanners, the
only clocked circuitry on the chip.

In testing the chip, gratings of varying spatial fre-
quencies and natural images from newspaper photos
and advertisements were mounted on a rotating drum
in front of the lens. Although the most stable data
was collected using the gratings, both image sources
provided satisfactory data. Fig. 2(a) shows the win-
ning time interval channel vs. actual time delay. The
response is linear as expected. In Fig. 2(b), the data
from Fig. 2(a) is converted into a measured velocity vs.
input velocity plot. As described above, at the lower
velocities, correlations occur at a lower rate, thus some
of the lowest velocity channels do not respond. This is
interpreted as zero velocity. Increasing the number of
parallel photoreceptor channels will improve this sit-
uation. The circuit has been shown to measure, with
varied settings of the axonal unit time constant, veloc-
ities from about 50 pixels/sec to over 1150 pixels/sec.
Any given setting will measure a range of velocities
just over one order of magnitude.

The response time for the chip depends strongly
upon the type of stimuli used and the velocity range
detected. The number of correlations per second de-
termines the confidence in the channel, which deter-
mines the strength with which the channel drives the
winner-take-all circuit. For faster velocities or stimuli
with more edges, the chip will respond more quickly
than for the slower speeds or sparser stimuli. While
strongly dependent upon many parameter settings and
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Figure 2a. Plot of winning output channel vs. in-
put time interval. Each output channel represents a
difference in the axon start times of 27. The high-
est velocities correspond to the shortest time interval.
The horizontal shift in the negative velocities is be-
lieved to be due to a propagation delay in the long
signal line on the chip. Its effect can be seen in the
slightly different slopes in Fig. 2b.

conditions, typical response times run from 0.5 sec to
2 sec.

The performance under differing light levels de-
pends primarily upon the ability of the photoreceptor
and feature extraction circuit to deliver reliable fea-
ture detection signals. As described before, the hys-
teretic photoreceptor is extremely sensitive to both
large and small changes in the intensity and allows the
chip to operate at quite low light levels. Usable data
was obtained with DC illumination from 1 mW/m?
up to 1000 mW/m? over various gain settings of the
coupling circuit between the photoreceptor and axon
circuits.? With any particular gain setting it is possi-
ble to operate reliably over slightly greater than one
order of magnitude of light intensity. The limiting fac-
tor for illumination is at the higher end where the dc
level of the photoreceptor begins to reduce the amount
of signal that is coupled into the neuron circuit.

2.3 Summary

Our implementation of the correlation model shows
promise due to its relative robustness to light levels
and contrast. Some of the issues to be discussed in-
clude flicker sensitivity, noise, velocity range, and pos-
sible design expansion.

The first and most limiting aspect of this particu-
lar circuit is the feature extraction circuit. The hys-

2Note that the solar-constant is about 1400 W/m? while a
value of 1 mW/m? corresponds to candle-light illumination.
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Figure 2b. Plot of measured velocity vs. input ve-
locity using data from Figure 2a. Each output chan-
nel represents a specific velocity which is related to
the inverse of the difference in axon start times. This
relationship maps a large range of velocities into the
short time interval channels, giving a coarse resolution
at higher speeds. We only show the response of the
chip up to about £500 pixels/sec, since our conveyor
belt system fails to move at higher speeds.

teretic photoreceptor is intended to enhance the tem-
poral changes in the light signal and thus detect edges.
This circuit is extremely sensitive and allowed the op-
eration of the circuit to continue down into very low
light levels and low contrast stimuli. However, tem-
porally differentiating circuits in hardware are trou-
blesome due to noise amplification, and in our circuit
this manifests itself in the form of flicker sensitivity.
Under fluorescent and some AC incandescent lighting,
all of the photoreceptors’ circuits fire consistently at
120H z, indicating infinite velocity and thus making it
unusable in such lighting. A modification of the cir-
cuit to include a more sophisticated feature extraction
stage would eliminate this problem.

The statistical nature of the computation allows the
system to perform successfully in the presence of noise
as well as to produce a usable confidence level mea-
sure. By sumining votes for specific velocities across
the chip and by using the burst-mode described above,
it is possible to obtain a strong signal above the noise.
If a different method for extracting the detected time
difference were used in the place of the winner-take-
all circuit, the current levels in each of the summing
lines would provide a confidence level for each par-
ticular channel. It is interesting to note that despite
the apparent loss of resolution caused by bursting, the
confidence level measure can provide additional infor-
mation to allow interpolation between the discretized
velocity outputs.



A natural next step in developing motion detection
circuits is the design of a 2-D array of motion detec-
tion units in order to integrate motion over an array.
It should be remembered, however, that this partic-
ular circuit exploits the second spatial dimension on
the silicon to represent time, making it necessary to
use three dimensions to build a similarly designed 2-D
motion detector.

3 Motion from Zero-crossings

This system computes motion by using an ana-
log chip to localize zero-crossings and a digital mi-
croprocessor to track the zero-crossings. It approxi-
mates the scheme proposed by Marr & Ullman {24],
but without their use of X and Y cells. The ana-
log chip is a one-dimensional 64 pixel device which
exploits on-chip photoreceptors and the natural fil-
tering properties of resistive networks to implement
an edge-detection scheme similar to the Difference of
Gaussians (DOG) operator proposed by Marr and Hil-
dreth [23]. The chip localizes the zero-crossings asso-
ciated with the difference of two exponential weight-
ing functions, and reports the locations of only those
zero-crossings which have a slope greater than an ad-
justable threshold. A conventional digital micropro-
cessor receives the locations of the zero-crossings from
the analog chip and tracks their displacements over
time to compute velocity.

3.1 The analog VLSI zero-crossing chip
Similar to a DOG, our chip takes the difference of
two filtered versions of the input light intensity, but
we avoid the difficulties associated with implementing
Gaussian kernels in silicon and filter with first-order
resistive networks instead. In these networks, each
node is connected to an input data voltage via a con-
ductance G and to its neighbors via resistances R.
The characteristic length, corresponding to the stan-
dard deviation ¢ of a Gaussian, of the resulting filter

function is given by A = 1/v/RG. The Green’s func-
tion of the resistive network, a symmetrical decaying

exponential, i.e. e~ 1#/* differs somewhat from the
Gaussian filter, in particular at £ = 0. Two resistive
networks with different values of A, achieved by using
different resistances, then implement a difference-of-
exponentials, or DOE, operator. This filter has some
similarities to a V2G operator; for instance, the out-
put of this DOE operator to a constant input is zero
(for more details see [2]). The rounded peak of the
Gaussian makes the DOG look like a “Mexican-hat”,
while the pointed peak of the decaying exponential
makes the operator implemented by our chip appear
more like a pointed “Witch-hat”. After filtering the
input image with the DOE operator, the chip local-
izes zero-crossings which ideally correspond to edges
in the image and object boundaries in the scene. The
entire process, from imaging to edge detection, occurs
on-chip in four stages of analog circuitry: photore-
ceptors capture incoming light, a pair of 1-D resistive
networks smooth the input image, transconductance
amplifiers subtract the smoothed images, and mixed
analog and digital circuitry localizes and thresholds
the zero-crossings. Fig. 3 shows a block diagram of
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Figure 3. Zero-crossing chip circuit diagram. Loga-
rithmic photoreceptors encode light intensity as volt-
ages, V P, which are reported to the nodes of two re-
sistive networks via transconductance amplifiers con-
nected as followers. The voltage biases VG set the
conductances. The network resistances, R1 and R2,
are implemented as saturating resistors and are exter-
nally adjustable from voltage biases. The filtered im-
ages are subtracted by wide-range transconductance
amplifiers which output a current, I, proportional to
the voltage difference across their inputs.

the first three stages of this processing, which is de-
scribed in more detail below.

The chip receives input from an array of photore-
ceptors spaced 100um apart, encoding the logarithm
of light intensity as a voltage. The set of voltages
from the photoreceptors are reported to corresponding
nodes of two resistive networks via transconductance
amplifiers connected as followers. The followers’ volt-
age biases can be adjusted off-chip to independently
set the data conductances for each resistive network.
The network resistors are implemented using saturat-
ing resistors developed by Mead [27]. Another pair of
voltage biases allow independent off-chip adjustment
of the resistances along the two resistive networks.
The data conductance and network resistance values
determine the space constant of the smoothing filter
which each network implements. The sets of voltages
along the networks represent the two filtered versions
of the image. These filtered images are subtracted
by wide-range transconductance amplifiers [27] which
produce an output current proportional to the differ-
ence in voltage applied across their inputs. The array
of currents produced by this circuitry corresponds to
the result of applying the DOE operator to the input
Iimage.



The final stage of processing detects zero-crossings
in the array of currents from the wide-range amplifiers
and implements a threshold on the slope of those zero-
crossings. Each pair of neighboring currents charge or
discharge the inputs of an exclusive OR gate. The
binary output of this gate indicates the presence or
absence of a zero-crossing between two nodes. A sec-
ond signal is generated by subtracting a threshold cur-
rent from the magnitude of the difference between the
neighboring currents mentioned above. If the charging
current, representing the slope of the zero-crossing, is
greater than the threshold current set by an off-chip
bias voltage, then this signal charges a node to logical
1, otherwise, that node is discharged to logical 0. The
conjunction of a zero-crossing and a steep slope causes
the chip to report the existence of an edge at that lo-
cation for any of 63 possible locations. The output can
be thought of as a 63 bit word where each bit codes
for the presence or absence of a zero-crossing at that
particular location.

3.2 Data from the zero-crossing chip

Fig. 4 shows data taken from the zero-crossing chip.
The input light profile is a bright bar. Oscilloscope
traces show the filtered versions of the image from
the nodes along the resistive networks. By setting the
space constants of the networks differently, we have
achieved varying amounts of smoothing. The differ-
ence of these two smoothed voltage traces is shown
in Fig. 4c; arrows indicate the locations of two zero-
crossings which the chip reports at the output. The re-
ported zero-crossings accurately localize the positions
of the edges in the image. Other zero-crossings were
not reported because their slopes were less than the
adjustable threshold. Thresholding allows for noise
and imperfections in the circuitry and can be used to
filter out weaker edges which are not relevant to the
application.

Fig. 5 shows the response when two fingers are held
1 m in front of the lens and swept across the field of
view. The fingers appear as bright regions against a
darker background. The chip accurately localizes the
four edges (two per finger) as indicated by the pulses
below each voltage trace. As the fingers move quickly
back and forth across the field of view of the chip, the
image and the zero-crossings follow the object with no
perceived delay. From sequences of frames like these,
we can compute optical flow. Note that these are not
successive frames, but are more representative of every
100-th frame that the motion detection system will
receive (see below).

3.3 The microprocessor and motion de-
tection

The motion detection system consists of a zero-
crossing chip interfaced to a 12.5 MHz 80286
microprocessor-based single-board computer. The in-
terface allows the microprocessor to receive 63-bit
frames of zero-crossing data at just over 320 frames per
second. As each new frame is read, the microproces-
sor updates the cumulative displacement of each zero-
crossing and increments the number of frames over
which that displacement has occurred. The system
assumes that zero-crossings will not move more than
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Figure 4. Measured response of the zero-crossing chip
to a light bar stimulus. (a) Input light intensity, %bg
voltage traces from the two resistive networks, and (c
difference of the voltage traces, corresponding to the
image intensities convolved with a difference-of-two-
exponentials (DOE) operator. The circuit correctly
localizes the location of the two edges (arrows). The
threshold suppresses zero-crossings with small magni-
tude slope.
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Figure 5. Zero-crossing chip response as two fingers
are waved about 1 m in front of the lens. The upper
traces show voltages from one resistive network; the
lower traces show positions of zero-crossings reported
by the chip.-



2 pixels per frame. With our optics, this assumption is
violated only at velocities in excess of approximately
700 degrees per second.

After tracking zero-crossings for a fixed number of
frames, their individual velocities are computed in pix-
els per frame. These velocities are averaged for all
zero-crossings which have been tracked for longer than
a fixed number of frames. For the data shown here,
an average full-field velocity is reported every second.
Fig. 6 shows the average and standard deviation of the
reported velocity over a 1 min period for a range of
input velocities.

3.4 Performance analysis

Fig. 6 shows the output of the system for image ve-
locities ranging from 0 to 450 pixels per second at two
different light levels. The error bars show the stan-
dard deviation of the output velocity. Over most of
this range, the standard deviation was less than four
percent of the average value. Image velocity was lim-
ited by the lens and stimulus. The data shown for
10 W/m? is representative of the system response for
light levels of 1 W/m? and higher. Below 1 W/m?, the
zero-crossing chip was unable to localize higher veloc-
ity zero-crossings. We believe this is due to R-C time
constants associated with the circuitry of the analog
chip. Also, as seen in Fig. 6, the reported velocity
is less than the image velocity but remains linear. At
lower light levels, zero-crossings due to offsets are more
prevalent and introduce zeros into the average veloc-
ity computation, thus lowering the reported velocity.
Such spurious zero-crossings can undermine the accu-
racy of the average velocity in more subtle ways as
well. As light intensity drops, the linear range of out-
put for this system becomes smaller around zero. Be-
low 100 mW/m?, the zero-crossing chip fails to detect
edges, and the system cannot even detect direction
of motion. Qualitatively, the useful range of opera-
tion for this system is from bright sunlight to dim in-
door fluorescent or incandescent lighting. This range
is achieved without changing gain or other parameters.

The zero-crossing chip fails at low light and con-
trast levels due to the small signal-to-offset ratio. Im-
perfections in the fabrication process cause many of
the signals in the analog chip to be corrupted. The
magnitude of this noise, called offsets, is a substantial
fraction of the magnitude of the signal reported by the
logarithmic photoreceptors. Although the logarithmic
receptor allows operation over a wide range of lighting
conditions, it compresses the range of voltages which
are used to encode any particular scene and therefore
decreases the signal-to-noise ratio. A hysteretic pho-
toreceptor similar to the one used in the correlation
chip described in the previous section would improve
the signal-to-noise ratio, but would also increase sen-
sitivity to lighting changes, and possibly compromise
sensitivity to small velocities.

Another limitation in the performance of the zero-
crossing chip is the photoreceptor response time. The
measured response time of the chip to the appearance
of a detectable discontinuity in light intensity varies
from about 100 psec in bright indoor illumination to
about 10 msec in a dark room, and these response
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Figure 6. Zero-crossing motion detection system out-
put for two light intensities. At higher light intensities
(about 10 W/m? and above) the output is linear and
accurate over a large range of velocities. At lower
intensities, the zero-crossing chip cannot localize fast
edges, and lower signal-to-offset ratios introduce spu-
rious zero-crossings that compromise accuracy {error
bars show standard deviation).

times seem to be dominated by the phototransistor.

Finally, spatial and temporal aliasing limit the per-
formance of this system. As the spatial frequency
of features increases, zero-crossings appear closer to-
gether and the correspondence problem arises. This is
a function of the environment, the lens, and the pho-
toreceptor spacing on the chip. Interfacing the zero-
crossing chip to a digital computer requires clocking
the output from the chip. In theory, this causes tem-
poral aliasing at higher velocities, but the slow time
response of the photoreceptors cause the system to fail
before temporal aliasing is noticed.

4 Computing Motion from Derivatives
of Intensity

The Tanner and Mead optical motion detector cir-
cuit [34] [35] [36] implements the gradient model, in
which the ratio of the temporal derivative to spatial
derivative is computed. The circuit was origally
tested with idealized inputs over a limited range of
light levels. Our goal was to put a lens on the chip
and to demonstrate a robust response to a wide range
of real-world moving scenes. As developed below, a
multiplication rather than a ratio of derivatives is used
to achieve this goal with this circuit.

4.1 Modes of operation of the Tanner-
Mead motion detection circuit

The gradient model of motion estimation relies on

the assumption that the total derivative of intensity

over time does not change. If we assign a unique ve-

locity v to any given location and assume that the



intensity profile I(z,¢) translates rigidly in the plane,
we have in one dimension:

di
- = (1)
dt
where I, and I, are the spatial and temporal inten-
sity derivatives. This can be written as

I

v= - ®)
In analog circuitry, no simple way exists to directly
divide two signed variables, i.e., to directly evaluate
z = z/y. Instead, we use a multiplication—easy to
implement—within a feedback circuit, such that the
overall circuit minimizes (z-y—z)%. At the minimum,
z-y =z and the signed variable z corresponds to the
desired ratio. The original Tanner-Mead motion de-
tector is more complicated since it computes this ratio
for a two-dimensional input. In one dimension, how-
ever, the above simplification applies, and the analo-
gous one-dimensional circuit computes the value of v

that minimizes

lel-f-ll = 0,

Z_ (I(3)zv + I(i))?, (3)

where the sum is taken over all locations i. The
underlying assumption is that the velocity v is con-
stant over the patch containing all locations i. When
this functional is minimized, the velocity is the correct
ratio of derivatives. The associated Euler-Lagrange
equation that the circuit is computing is

Z (I(@)zv+ IG@)) I()), = E (4)

When the term F + 0, eq. 3 is minimized. The
second multiplication by I, eliminates the singularity
that would otherwise result when I, = 0, i.e., when
there is no detail in the scene. This was a practical
point in the design that also has elegant mathematical
underpinnings.

Two constants in the actual chip scale the additive
terms of this expression: K; weights the time deriva-
tive I, while K, weights the error signal fed back as
velocity. In terms of these parameters, the equation
for the signal E is

Z (e®21(i),v + X1 1(i),) I(i), = E (5)

These exponential factors originate in the exponen-
tial dependency of the source-drain current on the gate
voltage in the subthreshold domain we operate our
device in. For e¥1 > %2, eq. 5 reduces to a multi-
plication of the spatial and the temporal derivatives
(the associated gate voltages are K; < 0.5Volt and
K3 ~ 0.8Volt). The feedback loop is then broken,
since the value fed back for v has no effect on the er-
ror signal. While the division mode of operation has
been demonstrated successfully [34] [35)] [36] for ideal-
ized inputs, the multiplication mode of operation gives
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more robust output for general stimuli and so it is the
mode of operation explored here.

4.2 Performance

The motion detection circuit operating as a mul-
tiplier was tested for moving stripes of various spa-
tial frequencies at different light levels. We fabricated
and tested chips with a single one-dimensional motion
detection element analogous to the original Tanner-
Mead 2D element as well as chips with 30 such el-
ements that compute an aggregate output signal by
combining the error signals of all 30 elements. Fig-
ure 7 shows the response of the single-element cir-
cuit (containing two, spatially offset photoreceptors)
to moving, high contrast stripes. At the top the out-
put of the two photoreceptors can be seen. The output
shown in the bottom part of the figure is essentially
zero for the times when the stripe edge does not fall
on the photoreceptors. The noisy character of the re-
sponse is due to circuitry developed for the division
mode of operation; besides introducing this artifact,
it does not affect the performance of the chip in the
multiplication mode.

In the multiplication mode, with a stimulus con-
sisting of high contrast black-and-white stripes, the
circuit produces an output signal which is linear in
velocity (over a limited velocity range) when inte-
grated over time. From eq. 5, the output signal is
E = 37, I(i): - I(i); in this mode. Each stripe edge
produces a single pulse with the correct sign of the ve-
locity; the value of E integrated over time indicates the
number of stripes that have gone by in that time. The
faster the pattern moves, the greater the integrated
value of E. For chips with a single element, integra-
tion is achieved off-chip via an RC circuit with a long
time constant (1—3 seconds). For multi-element chips,
the aggregation process itself performs some temporal
integration; further integration off-chip may be used
as well.

The response of the chip varies with light level for
two reasons. First, the photoreceptor response itself
varies with light level. The AC response increases and
the DC level drops as the light level increases. Second,
when the AC signal from the photoreceptor is larger
than a certain level, the amplifiers saturate and the
time derivative computation is distorted such that I, is
reported as artificially high. The consequence of this is
shown in Fig. 8. Here, the response of a single element
is plotted for a range of velocities at high, medium and
low light levels. The response is relatively linear at a
given llumination, and drops off (but remains linear)
as the illumination is decreased. This drop-off is due
to distortion in the time derivative computation [28].
The chip does respond, however, over a range of two
and a half orders of magnitude of illumination. This
1s due to the compressive logarithmic nonlinearity of
the photoreceptors [26] [27]. These data are for high
contrast stripes—the chip responds poorly to targets
of medium or low contrast.

Fig. 9 shows the output of a chip with 30 elements
computing an aggregate velocity. A motor is driving
a wheel with stripes on its rim in view of the chip;
the motor is powered with a current from a function
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generator set to produce slow triangle waves. The cir-
cuit is again linear in the velocity of the pattern—both
positive and negative phases of the triangle wave are
reproduced well. The common aggregation line serves
to temporally integrate the outputs of the elements,
smoothing over the noise evident in Fig. 7 (no off-chip
temporal integration is performed here). This figure
also demonstrates the unwanted side effect that the
chip reports higher velocities as the light intensity in-
creases. Increasing the photoreceptor AC output is
achieved by bringing the lamp closer and closer to the
wheel over a twenty second period (Fig. 9). Mirroring
this, the peak velocity output increases in time.3

In this mode of operation, the chip evaluates an ex-
pression of the form I, - I, and responds with a signed
pulse to a moving edge. Thus, for our square grat-
ing stimulus operating at a fixed light level, doubling
the spatial frequency of a striped pattern doubles the
pulse rate. A low-pass filtered version of the output,
then, should be linear in spatial frequency. Fig. 10
shows this for high-contrast striped patterns at three
spatial frequencies and a range of velocities. The rel-
ative spatial frequencies of the patterns with 1/4, 1/2
and 1 inch wide stripes are 4,2 and 1 respectively. The
slope roughly doubles from the 1 inch to 1/2 inch pat-
terns and from the 1/2 inch to 1/4 inch patterns. This
data was taken from a multi-element chip and so its
output is the aggregate (sum) of the error signals from
its elements. The summation saturates fastest for the
highest frequency, later for the middle frequency, and
not at all for the lowest frequency pattern at the high-
est available test velocity.

4.3 Summary

The principal problems with this motion circuit are
the variation in the output with light level and con-
trast and the very fact that this mode of operation
must be used when the chip is used on arbitrary im-
ages. Variation of the chip output with spatial fre-
quency derives from its mode of operation.

These problems could be solved in two ways. First,
the range of the differential pairs throughout the cir-
cuit should be widened. Second, a more sophisticated
photodetector should be incorporated in this circuit.
DC level clamping and AC gain control at the photore-
ceptor level would eliminate the variation in velocity
output with light level and would extend the sensi-
tivity to lower contrasts. Indeed, with a better in-
put, this circuit would be able to operate as originally
intended and spatial frequency dependency would be
eliminated.

5 A Fully Digital System

In order to compare our analog circuits against their
digital counterparts as well as to be able to quickly test
vision algorithms using the reliability of a CCD sys-
tem, a completely digital circuit was built incorporat-
ing a linear 256 pixel element as well as a small micro-
processor designed for real-time use. We use a Harris
RTX2001A microprocessor operating at 8 MHz. It
includes 8K of RAM memory and executes FORTH

3Note that in Fig. 9 the dead zones in the velocity output
are due to the motor threshold.
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Figure 11. The output of our digital system, using
a one-dimensional, commercial 256 pixel CCD cam-
era, is demonstrated here. The reported velocity re-
main constant as long as the image intensity is above
120 mW/m?. The waviness of the output is due to
the fact that the minimal reported shift 1s 1 pixel. In-
terpolation would allow sub-pixel accuracy.

directly. The system computes a 1-D field velocity
based upon a simple correlation method. The CCD
(Fairchild Linear CCD) retrieves image data at a max-
imum rate of 2800 images/second with greater than 12
bits of accuracy. Each pixel is sent through an 8-bit
A/D converter, which updates the processor memory
at a maximum rate of 2000 images/second. With this
structure, the processor is able to access the image
residing in memory as rapidly as possible.

The global image velocity is estimated by first stor-
ing two images sampled 10 msec apart. These two
images are then subtracted from each other and the
absolute value of this difference, summed over the en-
tire 1-D image, is computed. We term this the error
associated with a 0O pixel shift. The same operation
is also performed when the second image is shifted by
41,42, 43 and +4 pixels with respect to the first im-
age. The computer then finds the shift corresponding
to the smallest error signal. In other words, it approx-
imates a correlation model in a manner reminiscent of
the algorithm of Biilthofl et al. [3]. The micropro-
cessor then retains the second image, waits 10 msec,
stores a new image, and performs the shift comparison
again. In the interest of speeding up the algorithm, we
did not perform any filtering on the image. In spite
of this lack of pre-filtering, the algorithm performed
remarkable well. Simple modifications of this algo-
rithm enable the system to also compute the spatially
varying optical flow field as well as time-to-contact.

The amplitude of the shift (from —4 to +4) is ac-
crued over a period of one second and this sum (num-
ber of pixels moved/sec) is plotted against actual im-
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7 Conclusion

The work reported here represents an effort over
three years to build robust, analog motion sensors with
on-chip photoreceptors. We have achieved moderate
success in that we are able to compute the global ve-
locity of a 1-D image in real-time.

We are continuing to port our vision chips onto
small, highly mobile and autonomous vehicles (toy
cars) in order to demonstrate their use as smart sen-
sors in a real-life environment [18]. We are also contin-
uing our quest for more robust motion circuits. Our
next major goal, however, is the design of circuits en-
abling us to compute the 1-D optical flow, 1.e. to es-
timate a velocity vector at different locations across
the retina, in order to compute such quantities as the
focus of expansion and time-to-contact [13].

Correlation methods are substantially more robust
than methods requiring the evaluation of spatial and
temporal derivatives and constant photoreceptor out-
put. Of course, correlation methods appear to be used
throughout the animal kingdom, from flies to humans
[37] [11] {32] [5]. While gradient methods have been
very popular 1n the computer vision community (e.g.
[29] [6] [15] [10] [44] [39]), they require very accurate
components, such as are available in 16 and 32 bit ma-
chines. However, given the limited accuracy we can
achieve today in our MOSIS fabricated circuits (no
more than 7 — 8 bits and possibly less) and given the
limited accuracy of neuronal components,” it seems
unlikely that gradients methods are robust enough to
yield the precise optical flow fields required for various
vision tasks, such as computing the 3-D velocity field
or finding structure-from-motion.
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"Laughlin [20] estimates that the light-induced signal gen-
erated in fly photoreceptors and transmitted to their next in-
terneuron, the large monopolar cell, has about 80 levels of dis-
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away and the signal is produced by an array of over 1200
synapses, responding in parallel to 6 highly correlated signals
from identical photoreceptors, at best 6 — 7 bits of information
is available. '
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a,%le velocity in Fig 11. One can see the step-function
where the calculated velocity is rounded to the nearest
multiple of integer pixel shifts. In addition, the points
between the steps are a result of the averaging effect
of sampling for 1 sec. This simple algorithm can be
altered to better demonstrate that the output is lin-
ear. By shifting the image further in each direction,
each step will be shallower and the graph will better
approximate a continuous line. Furthermore, we can
approximate sub-pixel velocities by interpolating be-
tween steps by utilizing the computed error function.
At any setting, the CCD provides valid output over
light intensities differing by more than one order of
magnitude, in DC or 120 H z illumination. The system
operates down to 120 mW/m?, at which point features
are no longer detected and the reported velocity drops
sharply to zero. Preliminary tests show promising re-
sults from zero-crossing detection and from edge track-
ing schemes. As a result, we look forward to exploring
these options and making comparisons between them
and others in the near future.

6 Comparison

We have described four methods of motion mea-
surement: pulse correlation on a single analog chip,
digital tracking of zero-crossings provided by a sin-
gle analog chip, derivative multiplication on a single
analog chip, as well as digital autocorrelation of grey
levels from a CCD imager. In this section, the four
methods of motion measurement are compared.

6.1 Operating range

The four methods differ in their ability to measure
motion as the lighting conditions are changed. The
derivative multiplication chip operates over a range of
two to three orders of magnitude of light intensity, but
its output is, in general, not directly proportional to
velocity and varies with light level. The pulse corre-
lation chip operates over one order of magnitude of
light level; this range may be adjusted, and the out-
put does not vary within this range. The zero-crossing
chip can provide good zero crossings to a digital sys-
tem for tracking over two orders of magnitude of light
level.# The CCD imager used in the grey-level au-
tocorrelation system responds to light over a range of
two orders of magnitude; the range of operation can be
varied by varying the integration time of the CCD out-
put scheme.® The zero-crossing tracking system—using
logarithmic photoreceptors—is the most robust of the
four in this respect, since it reports consistent veloci-
ties as the light level is varied over the greatest range.
The pulse correlation chip uses hysteretic photorecep-
tors, which have very high gain for small changes in
intensity. While this endows the chip with superior
contrast sensitivity, it also responds strongly to the
120 Hz flicker seen in ordinary room lights. However,

4Note that these are the upper two decades of intensity that
we tested. The zero-crossing chip works well outdoors, at image
intensities not available in our laboratory.

5Note, however, that autogain, a common feature on
CCD cameras, would increase this range by several orders of
magnitude.
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we could eliminate this sensitivity by appropriate on-
chip filtering.

6.2 Spatial frequency dependency

All of the methods except the derivative multipli-
cation chip report the same velocity as the spatial
frequency of striped patterns is varied. The deriva-
tive multiplication chip output is linear in spatial fre-
quency, as discussed in section 4.

6.3 Contrast sensitivity

The pulse correlation chip and the grey-level au-
tocorrelation system have the best sensitivity to con-
trast. The pulse correlation chip owes its superior con-
trast sensitivity to its hysteretic photoreceptors, which
have very high gain for small changes in intensity.5
The digital grey level autocorrelation method owes its
superior contrast sensitivity to the extremely low noise
of the CCD that provides its input. The other two
systems work best for high contrasts. There exists a
trade-off between contrast and light level sensitivity,
such that the systems that are more sensitive to low
contrasts operate best only within a relatively small
range of light levels.

6.4 Power consumption

The lowest-power method is the derivative multi-
plication chip. It requires only a single off-chip oper-
ational amplifier to give velocity readings. Total on-
chip power consumption is < 1mW, most of which is
used in the photoconversion stage. The zero-crossing
chip used in the feature tracking method uses slightly
more power, since its outputs are scanned off with digi-
tal shift registers. Of course, the tracking is performed
with a PC which requires a large amount of power in
comparison to the analog chips; correlation or tracking
circuitry on the same chip as zero-crossing detection
is possible and would tremendously reduce the com-
plexity and power requirements of this method. The
pulse correlation chip has the next greater power re-
quirement, due to the quasi-digital nature of the de-
lay lines, but it does not require any external compo-
nents. Finally, the grey level autocorrelation method
uses far more power than any of the individual analog
chips, since it requires special clocking chips to drive
the CCD, analog-to-digital converters, and a micro-
processor, but this system still uses less power than
the PC interfaced to the zero-crossing-chip.

6.5 Robustness

In terms of overall robustness, we have ranked
the methods as follows: the grey-level autocorrelation
method is most robust, followed in order of decreas-
ing robustness by the zero-crossing tracking method,
the pulse correlation chip, and the derivative multi-
plication chip. Interestingly, this roughly corresponds
to their relative use of power. The CCD imager, a
conventional, off the shelf component that forms the
front end of the system, is not nearly as noisy as the
photoreceptors we use on the analog chips. This is not
surprising as many hundreds of man-years of engineer-
ing have been devoted to building very accurate CCD
cameras.

6However, the receptor also makes the chip sensitive to the
120 Hz flicker of ordinary room lights.



