
1564 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 45 , NO. 12, DECEMBER 1998

Object-Based Selection Within an
Analog VLSI Visual Attention System

Tonia G. Morris, Timothy K. Horiuchi, and Stephen P. DeWeerth

Abstract—An object-based analog very large-scale integration
(VLSI) model of selective attentional processing has been im-
plemented using a standard 2.0-�m CMOS process. This chip
extends previous work on modeling a saliency-map-based se-
lection and scanning mechanism to incorporate the ability to
group pixels into objects. This grouping, or segmentation, couples
the circuitry of the object’s pixels to act as a single, larger
pixel. The grouping of pixels is dynamic, driven solely by the
segmentation criterion at the input. In this demonstration circuit,
image intensity has been chosen for the input saliency map and
the segmentation is based on spatial low-pass filtering followed
by an intensity threshold. We present experimental results from a
one-dimensional implementation of the object-based analog VLSI
selective-attention system.

Index Terms—Focal-plane processing, neuromorphic analog
VLSI, object segmentation, subthreshold circuits, visual attention,
winner-take-all.

I. INTRODUCTION

A PRIMARY obstacle to solving visual processing prob-
lems in real time is the vast amount of information in a

given scene. To fully process all parts of an image in parallel,
a large amount of processing circuitry and wiring is needed. In
both engineering and biological systems, such computational
resources are rarely available and are costly in terms of
power, space, and reliability. Most tasks performed by visual
processing systems do not require information from all parts
of the visual field, however, and thus much of the information
processing problem can be handled by subdividing the image
data in both space and time. Biological vision systems serve
as excellent examples of this type of processing strategy. The
varying density of photoreceptors on the retina is one simple
example of how some biological systems strategically focus
their processing resources while maintaining coverage of the
full scene. Selective visual attention is another example where
extensive processing is performed on subregions of an image
[1].

We have developed a system framework for selective at-
tention processing in analog CMOS focal-plane processing
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systems. Previous implementations based upon this framework
have included pixel-based processing arrays that perform a
winner-take-all computation with excitatory and inhibitory
feedback [2], [3]. The input to the winner-take-all computation
is an array of values that represent levels of interest across
the visual field. These levels of interest, or saliency values
[4], are task-dependent and can be computed by combining
several feature measures such as spatial derivatives, temporal
derivatives, motion, and orientation selectivity. The winner-
take-all computation selects a single region of interest that
defines the spotlight of attention for further processing, thus
enabling the visual processing system to perform complex
processing on only a small region of the visual field. The
excitatory feedback provides a mechanism for hysteresis, or
persistence, in the selection. The inhibitory feedback induces
shifts of attention even when the input levels do not change
(i.e., the visual scene is static.)

From a computational perspective, it is desirable for the
selected region to correspond to various object sizes within the
visual field. Since the visual scene is constructed from objects,
and not single points, the selective-attention processing should
perform an object-based computation, as opposed to a pixel-
based computation. This necessary shift to object-based pro-
cessing has motivated the circuits we present in this paper. Our
previously published selective-attention circuits performed all
operations within a pixel-based processing paradigm [2], [3].
We have now extended the computations of the selective-
attention framework such that the processing can be performed
on contiguous groups of pixels. To identify these contigu-
ous groups of pixels within the visual field, a segmentation
computation is necessary for distinguishing objects from one
another and from the background. The circuits we present in
this paper address the necessary paradigm shift to object-based
processing within selective-attention analog very large-scale
integration (VLSI) systems. In addition, we present circuits
for segmenting images on the focal plane.

Local pixel-based processing is commonly used in the
focal-plane processing arrays that have been developed in
analog VLSI [5]–[8]. Global image-based systems have also
been implemented using the same collective architecture to
compute a single measure for the entire visual field [9]–[11].
Bridging the gap between these two forms of processing, a
dynamic wires approach has been implemented that separates
regions of the visual field into multiple-pixel sections [12].
The dynamic wires implementation enables the application of
global processing to smaller regions of the visual field. Some
of the techniques introduced by the dynamic wires approach
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Fig. 1. Description of the object-based selection system architecture and operation. A single processing element (pixel) is shown in (a). The input to each
computation is an analog current. The computations include normalization, filtering, thresholding, segmentation, and object-based selection. Communication
to the nearest neighboring elements is necessary for the spatial low-pass filtering, the segmentation, and the object-based selection. The digital output from
the thresholding operation is used to control the communication (dynamic wires) for the segmentation and object-based selection operations. The effect of
each stage of processing on a hypothetical one-dimensional array of inputs is shown in (b).

can be applied to selective-attention processing circuits. The
circuits we present utilize these dynamic wires in a unique way
to implement variable-granularity selection processing circuits.

Section II describes the system that was implemented to
test the object-based selective attention circuits. Section III
describes the circuits that perform the segmentation and object-
based selection. Section IV describes the performance of these
circuits with the presentation of experimental results.

II. SYSTEM ARCHITECTURE

The design of analog systems demonstrates many advan-
tages over digital systems in terms of power consumption and
silicon area. One of the biggest disadvantages, however, is the
complexity of the design and testing. The implementation we
present focuses on the circuit-level issues by including only a
few processing elements, which facilitates circuit characteriza-
tion. The design of each processing element is such that it can
be incorporated into a large two-dimensional array [13]. To
concentrate on the lower-level issues, the system we discuss
in this paper is a one-dimensional array of 20 object-based
selective-attention processing elements. The input to the array
of processing elements represents the saliency map, which is
a scalar encoding of interest values across the visual field. In
the implementation presented here, we use intensity levels to
signify saliency. Other features used in previous work have
included spatial and temporal derivatives [14].

A diagram demonstrating the organization of the processing
elements and the function of each processing stage is shown in
Fig. 1. These processing stages include: 1) phototransduction;

2) normalization; 3) spatial low-pass filtering; 4) thresholding;
5) segmentation-based filtering; and 6) object-based selection.
The photocurrents are normalized using a linear normalization
circuit and then passed through a spatial low-pass filter. The
low-pass filter is used to suppress outliers in the input and
emphasize larger contiguous regions. After filtering, the signal
is compared against a globally set threshold, above which
pixels qualify as object pixels. The thresholded output is
binary and is passed to subsequent stages of processing to
control the dynamic connections to neighboring processing
elements. The segmentation-based filtering uses these dynamic
connections to determine the peak current within each object
and replicate that current value in every pixel within the object,
thus defining an object-based saliency measure. In the final
stage of processing, the object-based selection circuit also
uses dynamic connections to neighboring processing elements.
The dynamic connections couple specific nodes in the pixel-
based selection circuits such that the collection of processing
elements included in an object acts as a single selection
processing element. In this way, all of the pixels within an
object act together and compete as a single unit.

III. CIRCUIT DESCRIPTIONS

Each processing element contains analog, current-mode,
subthreshold circuits that perform the object-based attentive
selection processing. We partitioned the functions of the pro-
cessing elements into three circuits: 1) the normalization,
filtering, and thresholding circuit; 2) the segmentation-based
filtering circuit; and 3) the object-based selection circuit. The
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Fig. 2. Normalization, filtering, and thresholding circuit. The linear normal-
ization computation is performed through the combination of theM3 and
M4 transistors and a global current set by the value ofVnorm. The filtering
is implemented by a current-mode resistive network composed of transistors
M5 andM6. A high-gain stage is used to compare the output of the filter to
a constant threshold value, which is controlled by theVthresh voltage.

descriptions for each of these circuits assumes the following
model of the subthreshold current–voltage relationship for the
MOSFET devices operating in saturation

(1)

is the drain current, is the leakage current, and
are the gate and source voltages referenced to the bulk

potential, is the gate efficiency factor, and is the thermal
voltage. The transistors in these circuits were all implemented
with aspect ratios of one, with the channel lengths equal
to 6 m. We used larger gate lengths than the minimum for
the process to avoid appreciable channel-length modulation
effects. Thus, channel-length modulation is not included in
the equations for analysis.

A. Normalization, Filtering, and Thresholding

The circuit used for the normalization, filtering, and thresh-
olding is shown in Fig. 2. The phototransistor current serves as
the input to the normalization computation. The normalization
is necessary to ensure that later stages of processing receive
current levels within a set range of subthreshold values.
Transistors and within each pixel are used to compute
the normalized value [16]. A single transistor on the end
of the array sets the sum of the normalized output currents

via the bias voltage . The relationship between
the photocurrents and the normalized currents is

(2)

is the voltage at the common node in the normalization
circuit, which is the source node for all the parallel output
transistors. The voltage on this node is set such that the
normalization criteria of having a constant sum of output
currents is met. The equation represents the ideal case where

and for the transistor pairs are perfectly matched.
The output currents of the normalization feed into a current-

mode resistive network [8] that performs the spatial low-pass

filtering. Transistor implements the lateral resistance of the
resistive network. The resistive network can best be described
according to its response to a single input current within the
array, also known as its point-spread function (PSF). The PSF
for this current-mode resistive network is approximated as

(3)

where is the characteristic length for the spatial filter and
is the location of the single input current. The characteristic
length of the filter is controlled by the value of the gate voltage

on transistor . We can approximate this relationship in
a closed-form solution by making an assumption that the gate
efficiency factor for the p-type MOSFET’s is close to one. The
assumption is not very accurate, but allows us to gain intuition
as to how the different voltages control the characteristic length
of the filter.

(4)

(We have distinguished the leakage currents and gate effi-
ciency factors for the p-type and n-type transistors by adding
another level of subscripting.) As is demonstrated by the
relationship in (4), an increase in the value causes an
increase in the characteristic lengthof the filter. The peak
value of the PSF can also be approximated by using the same
set of assumptions

(5)

As is evident from this relation, an increase in the value
causes the peak output for the PSF to decrease.

Two copies of the low-pass-filtered output current
are mirrored via transistors and . Transistor is
combined with to create a high-gain comparator stage for
the thresholding operation. The threshold value is set by
the global voltage . The second copy of the low-pass-
filtered output current and the binary threshold output
voltage are sent as inputs to the next stage of processing.
The combination of filtering and thresholding directly affects
the spatial extent and peak saliency of the objects. An increase
in the characteristic length for the resistive network increases
the extent of the point-spread function of the low-pass filter,
thus emphasizing objects of larger spatial extent.

There are many circuit nonidealities that can cause vari-
ations among the processing elements. Mismatch in the
and values within the normalization transistors could cause
inputs to switch their ordering in terms of relative magnitudes.
The thresholding circuit can also cause slightly unpredictable
behavior due to mismatches in the locally generated threshold
current; one possible outcome could be the segmentation of
an object into two objects. The low-pass filtering alleviates
both of these problems by ensuring that single pixel values
within an object do not vary significantly from one location
to the next. The finite gain of the thresholding stage can
impact subsequent stages of processing by failing to produce
a strong binary output signal. These effects will be discussed
in Sections III-B and III-C.
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Fig. 3. Segmentation-based filtering circuit. Switches for the dynamic wires
are implemented by theM4 andM5 transistors. The winner-take-all circuit
is used to compute the maximum value among the saliency value inputs in
the object. The communication (dynamic wires) of the global winner-take-all
common line is controlled by the output of the thresholding circuit. The
maximum value is duplicated at every pixel within the object.

B. Segmentation-Based Filtering

The segmentation-based filtering implemented in this sys-
tem detects the peak input value within each object and
replicates that value as the output of all the pixels. In this
way, a single value (the object’s peak value) is specified as
the object’s saliency value. All pixels below the threshold
are isolated from their neighbors and operate as single-pixel
objects. These single-pixel objects simply pass their input
values as their output values. The use of a peak value as the
object’s saliency value is only one of several options. Further
discussion of the merits of various object saliency measures
can be found in [15].

The circuit used to implement the peak-detection
segmentation-based filtering is shown in Fig. 3. In this
circuit the binary threshold output voltage is used to
couple nodes of the pixel’s circuit to the corresponding nodes
of its neighboring pixel’s circuit. If a given pixel is part of an
object (i.e., its filtered input exceeds the threshold described
in Section III-A), the node couples with its neighbors on
either side only if each of the neighbors is also part of an
object. This adaptively controlled coupling is an example of
the dynamic wires approach [12]. The coupling is performed
by the transistors and , each of which performs one
half of the logicalAND operation with its neighbor pixel to
make a composite switch. When theAND condition is true,
both transistors conduct and the dynamic wire is formed.

The winner-take-all subcircuit (transistors and ) [17]
detects the peak input current among the object’s pixels via
the communication along the effective node within each
object. Only those winner-take-all elements that share the same
common node compete against one another to determine the
peak value. The bias current for the winner-take-all (generated
by ) must be included in each processing element due to
the dynamic nature of the connections. The input transistor
for all elements in the object shares the same gate voltage,
aside from any voltage drops across the switches. The feedback
via the transistor sets the value and the gate voltages
for the transistors such that all input currents within the
object are matched by the currents through their respective
input transistors. The sum of the output currents going through
the transistors must also equal the bias currents sourced

by the transistors. The input transistor at the peak input
location within each object operates in the saturation region,
while all other input transistors are pushed into the ohmic
region. Thus, encodes the maximum input current, which
is regenerated by transistor at each pixel. For the case
when the pixel is not part of an object (i.e., below threshold),
the original input current is replicated at the output. The single
winner-take-all element operates as a simple current mirror.

The winner-take-all computation is highly nonlinear. Thus,
small mismatches in the input transistors can cause the winning
location to become unpredictable when two input currents
are very close in value. Due to the duplication of the peak
value to all locations within the object, these mismatches are
not critical. They would only cause a small difference in
the assignment of the object’s saliency value. A nonbinary
threshold output at any pixel’s location within an object could
also cause a small change in the circuit’s intended mode of
operation. If the dynamic wires begin to have a significant
voltage drop across the switches, the winner-take-all begins to
operate as a local winner-take-all circuit [17]. The effect is that
the common node would no longer encode the same current
for all pixels in the object; however, the input to the selection
circuit averages these values, thus minimizing the effect.

C. Object-Based Selection

The basic winner-take-all circuit [17] used to compute the
peak-saliency in the segmentation-based filtering circuit is the
same compact circuit that we use in the object-based selection
circuit. In contrast to the previous circuit, the dynamic wires
are not used to isolate clusters of parallel winner-take-all com-
putations. For the object-based selection, the dynamic wires
are instead used to “grow” each winner-take-all element to the
size of the object. The winner-take-all selection encompasses
the full extent of the array, but the number of winner-take-all
elements changes according to the number of objects.

The object-based selection circuit is shown in Fig. 4. The
transistors and compose the winner-take-all stage for
a single pixel. When the binary segmentation voltage is
high, the switches implemented by and close, creating
a connection to neighboring pixels at the input node. The
effective shorting of this node to its neighbors causes the
input transistors of each pixel to be connected in parallel.
Thus, the input transistors within an object operate as a single
transistor with a larger aspect ratio. The same result occurs
with the output transistors of the winner-take-all, . For an
object pixels wide, input currents are summed at the
common input node and passed through thewinner-take-all
input transistors in parallel. Thus, the input values are averaged
over the extent of each object. In this case, the average value is
the peak saliency of that object since all inputs have been
set to the peak saliency. The output current going through
each of the individual transistors of a winning object is
equal to the bias current divided by the number of pixels in
the selected object.

The mismatch among the input transistors of the winner-
take-all are averaged for large objects due to the parallel
combination of these input transistors. Nonbinary threshold
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Fig. 4. Object-based selection circuit. Switches for the dynamic wires are
implemented by theM3 andM4 transistors. The dynamic wires are used
here to create a different effect from that of the segmentation-based filtering
circuit. The input and output transistors are actually connected in parallel
with the corresponding transistors in neighboring elements, creating one larger
effective input transistor and one larger effective output transistor. Thus, the
group of winner-take-all processing elements within the same object acts as
a single processing element.

outputs at any location in the object could cause a variation in
the output current at that location. These outputs are typically
aggregated within a position-encoding circuit [2], [11], thus
minimizing the effect of variation across the object. We
originally had some concerns about increasing time constants
for the object-based winner-take-all circuit, but we have not
observed any such adverse effects during our experiments.
While the capacitance on the coupled input node of the winner-
take-all increases linearly with the size of the object, the total
input current also increases. The bias current should be set to
a reasonably high value (compared to subthreshold currents),
in order to satisfy the stability criteria for the winner-take-all
circuit [17].

IV. EXPERIMENTAL RESULTS

The chip was implemented in a 2.0-m CMOS process
through the MOSIS silicon brokerage service. The size of
the chip was 2.25 mm. The system included 20 processing
elements within a one-dimensional array along the width of
the chip. The parasitic vertical bipolar phototransistors were
extended the remaining height of the chip in order to avoid
any alignment issues with the optical testing setup. By using
an on-chip decoder and several additional control voltages, we
were able to multiplex each intermediate current value off the
chip for measurement.

We present two experiments to demonstrate system perfor-
mance under different conditions. For each of the experiments,
a static input image was used to determine the processing
performance under well-defined conditions. The input signals
were the result of imaging two LED’s onto the photodetector
array. Output measurements were taken of the low-pass filter-
ing and normalization, the segmentation-based filtering, and
the object-based selection. The voltage was set to 5.0 V
for all testing. According to the MOSIS parametric test results,
the threshold voltages for the NMOS and PMOS devices were
0.78 and 0.94 V, respectively, for this fabrication run.

A. Experiment One

In the first experiment we looked at the effects of low-pass
filtering on the segmentation and the winner-take-all selection.
We set the value of to four different values while keeping

the threshold voltage constant. The normalization was
also constant with set to 0.943 V. Each value of

causes a different space constant in the exponentially
decaying impulse response. The measured currents from the
normalization and filtering circuit for all four values of
are shown in Fig. 5. The solid curves indicate the interpolation
of the measured values across the array. For comparison to
later stages of processing, the threshold value used in this
experiment is indicated by the horizontal dashed line, and
the theoretical expectation of the peak-saliency segmentation
filtering is indicated by the dotted line. The first value of

is 0.00 V [Fig. 5(a)]. Thus, the spreading is turned off
and the output of the filter is the same as the output of the
normalization. To produce significant spreading through the
resistive network, the value of had to be set to values
greater than . The need for such high voltages is due to
the fact that the subthreshold input currents cause the source
voltages of the lateral transistors to be close to ; the
gate voltage must be much higher than the source voltage to
overcome the backgate effect, as modeled byin (1). When

is set to 5.50 V [Fig. 5(b)], the amount of spreading in
the current-mode resistive network increases, and smoothing
is evident by the lower peak current values. The low-pass
filtering effect is further enhanced with increased values of

, as shown in Fig. 5(c) and (d). When is set to 5.70
V [Fig. 5(d)], the spreading is so extensive that the currents
between the two peaks rise considerably.

The segmentation outputs were measured for each of the
four low-pass filtered examples. The threshold value was
constant; the value of was set to 0.707 V, which caused

to be 14 nA. The measured peak-saliency currents are
shown in Fig. 6. The individual data points are the measured
values, and the solid curves are the theoretical expectations
that were indicated in Fig. 5. The plots shown in Fig. 6(a)–(d)
correspond to the settings of 0.00, 5.50, 5.60, and 5.70
V. When no spreading occurs, with V, the output
of the segmentation-based filtering reveals two objects that
have saliency values above the threshold value. The results
of the thresholding operation are evident by the duplication
of the peak value at each position within an object. The poor
matching characteristics of the current mirrors are revealed by
the difference in value from one pixel to the next. Ideally, these
values would be constant over a single object. The offsets are
acceptable, however, because of the averaging effect that takes
place at the input of the selection circuit. When
V [Fig. 6(b)], the output of the segmentation-based filtering
demonstrates little change from the previous plot in Fig. 6(a).
The current levels again show the presence of two objects
above threshold. A slight difference in the value of the current
at position 18 demonstrates a limitation in the thresholding
caused by finite gain. As the increased spreading changes the
inputs to the segmentation computation, the extents of the
objects increase, as shown in Fig. 6(c) for V.
When the spreading increases even further for V,
most of the current levels surpass the threshold and the two
objects merge into one, as shown in Fig. 6(d).

Measurements of the winner-take-all output currents for
each of these four examples reflect the ability of the selection
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Fig. 5. Experimental results showing the performance of the filtering and normalization circuit. The exponential spreading of the filter’s impulse function
is increased by increasing the value ofVres. The plots shown in (a)–(d) demonstrate how the filtered, normalized current distribution changes whenVres is
set to 0.00, 5.50, 5.60, and 5.70 V. The threshold value for the segmentation is indicated by the constant horizontal line at 14 nA. The expected output of
the peak-saliency computation, based on the 14-nA threshold, is also indicated by a dotted line in each graph.

Fig. 6. Experimental results showing the performance of the segmentation-based filtering circuit. The peak-saliency values for four different filtered input
distributions are shown in (a)–(d). The filtered, normalized currents are those that result whenVres is set to 0.00, 5.50, 5.60, and 5.70 V, as shown
in Fig. 5. The measured data from the segmentation-based filtering circuit is indicated by the individual data points. The expected peak-saliency values
that were indicated in Fig. 5 are repeated here as the solid curves.

circuit to change its effective processors according to the extent
of the input objects. The total output current of the winner-
take-all circuit was set to 114 nA, with V. The
output of the winner-take-all is shown for each setting of
in Fig. 7. The measured values are indicated by the individual
data points, and the theoretical expectation is indicated by the

solid curve. The theoretical curve was calculated by dividing
the total winner-take-all bias current by the number of pixels in
the selected object. The measurements shown in Fig. 7(a) and
(b) are essentially identical. The segmentation-based filtering
output for the object with the highest peak value is the same for
both trials, as was shown in Fig. 6(a) and (b). The level of the
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Fig. 7. Experimental results showing the performance of the object-based selection circuit. The output of the winner-take-all computation is shownfor four
different input distributions. The segmentation currents shown in Fig. 6 were the inputs to the selection circuit. The spatial extent of the selectedobject
determines the spatial extent of the winner-take-all output currents. The current levels are inversely proportional to the size of the object. The measured
values are indicated by the individual data points. The theoretical expectation was calculated by dividing the total winner-take-all bias current by the number
of pixels included in the object. These values are indicated by the solid curve.

output currents in Fig. 7(a) and (b) is between 25 and 30 nA,
which indicates that the total winner-take-all current is being
distributed across an area of four pixels. The output for the
case when V is shown in Fig. 7(c). The average
output current is between 15 and 20 nA, indicating that the
total winner-take-all current is distributed among six pixels.
For the case when the segmentation output results in a single
object for V, the winner-take-all output changes
accordingly, as shown in Fig. 7(d). Again, the smaller nonzero
output values of the winner-take-all circuit indicate the larger
area of the selected object.

B. Experiment Two

In the second experiment we measured the output of the
segmentation-based filtering stage when different values of
the threshold voltage were used. The results of this
experiment are shown in Fig. 8. The low-pass filtered input to
the segmentation processing was the same as that shown in
Fig. 5(d). The first setting of the threshold voltage,

V, is the same value used in the previous experiment.
Thus, the output of the peak-saliency computation shown in
Fig. 8(a) is the same as that shown in Fig. 6(d). The threshold
value was increased to 0.72 V [Fig. 8(b)], 0.73 V [Fig. 8(c)],
and 0.74 V [Fig. 8(d)]. In each case the number of pixels above
the threshold value decreased, thus causing a decrease in the
spatial extent of the objects. The mismatch of the transistors
in the high-gain stage used for the thresholding limited the
accuracy when predicting the output of the segmentation-based
filtering. When the threshold value was low, such as in the
cases shown in Fig. 8(a) and (b), the differences between the

normalized input values near the threshold value were not large
enough to overcome the noise introduced by the mismatch of
the transistors. Thus, the output of the thresholding is low
at position 12 [Fig. 8(b)] before it goes low at position 11
[Fig. 8(c)], even though the actual values have the opposite
order and differ by about 1 nA.

V. CONCLUSIONS

We have presented analog VLSI circuits that implement
object-based processing for selective-attention. The segmen-
tation of objects within an image is a critical preprocessing
stage for object-based selection. The initial implementation
presented in this paper performs the segmentation with a
filtering and thresholding computation. The combination of
filtering and thresholding allows some flexibility for empha-
sizing particular object characteristics in the selective-attention
competition. The thresholding output is used to segment the
image into objects. The segmentation is first used to find
the peak saliency within each object and later used to define
the granularity of the selection operation. The implementation
demonstrates an elegant method of modeling the dynamic size
of the attentional spotlight. The circuits are scalable and do not
require a large number of transistors beyond that of the initial
pixel-based selective-attention system. While nonidealities in
the fabrication of these circuits will cause some signals to
degrade, all of the described effects can be referred back to
the input as noise and do not cause the system to fail.

The segmentation- and object-based selection circuits have
been tested with object-based excitatory and inhibitory feed-
back, which incorporates the remaining components of the
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Fig. 8. Experimental results showing the performance of the segmentation-based filtering circuit when the threshold level changes. The input to the
segmentation-based filtering stage is the array of inputs that was shown in Fig. 5(d). The value ofVthresh was changed from its original value of (a) 0.71 V to
(b) 0.72 V, (c) 0.73 V, and (d) 0.74 V. The extent of the segmented objects is demonstrated by the number of pixels that have similar peak-saliency outputvalues.

selective-attention framework. The entire object-based system
demonstrates the expected behavior, thus successfully imple-
menting a selective-attention system with a dynamic spotlight
size. All of these features for selective-attention processing
have been integrated together in a two-dimensional chip (25

24 array of elements) that is currently undergoing extensive
testing to determine the limits of operation for these analog
circuits in larger two-dimensional arrays [13].
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