Auditory Neuroscience with Magnetoencephalography: New Quantitative Approaches

> Jonathan Z. Simon University of Maryland, College Park

> > APAN 2010

Outline

 Auditory Magnetoencephalography - MEG Fundamentals - Neural Source Localization • "Newish" Quantitative Approaches • MEG in the Fourier Domain • Signal Separation & Denoising

Outline

 Auditory Magnetoencephalography - MEG Fundamentals - Neural Source Localization • "Newish" Quantitative Approaches • MEG in the Fourier Domain • Signal Separation & Denoising

Origin of MEG Neural Signal

Dendritic currents not Axonal currents

Photo by Fritz Goro

Magnetoencephalography

- Non-invasive, Passive, Silent Neural Recordings
- Simultaneous Whole-Head Recording (~200 sensors)
- Sensitivity
 - high: ~100 fT (10-13 Tesla)
 - low: $\sim 10^4 \sim 10^6$ neurons
- Temporal Resolution: ~1 ms
- Spatial Resolution
 - coarse: ~1 cm
 - ambiguous

Functional Brain Imaging

fMRI

imaging

Hemodynamic techniques

Functional Brain Imaging = Non-invasive recording from human brain

> Electromagnetic techniques

Excellent **Spatial** Resolution $(\sim 1 mm)$

Poor Temporal Resolution (~1 s)

Poor

Spatial

 $(\sim 1 cm)$

Excellent

Temporal

 $(\sim 1 ms)$

Resolution

Resolution

PET positron emission tomography

> fMRI & MEG can capture effects in single subjects

EEG electroencephalography

MEG magnetoencephalography

functional magnetic resonance

Magnetic Field Strengths

JAMAN A. MANAG

- Dr Low dies The Arabic and British

The manual tor was monowing to the states

MEG Magnetic Signal

MEG Auditory Field Flattened Isofield Contour Map

MEG Auditory Field 3-D Isofield Contour Map

Chait, Poeppel and Simon, Cerebral Cortex (2006)

Time Course of MEG Responses

- Auditory Evoked Responses
 - MEG Response Patterns Time-Locked to Stimulus Events
 - Robust
 - Strongly Lateralized
- Auditory Induced Responses
 - MEG Response Patterns not Time-Locked to Stimulus Events
 - Not Addressed Today

Broadband Noise

Outline

 Auditory Magnetoencephalography - MEG Fundamentals - Neural Source Localization • "Newish" Quantitative Approaches • MEG in the Fourier Domain • Signal Separation & Denoising

Neural Source Localization

- No Unique Solution from Magnetic Field to Neural Current Distribution ("Inverse Problem")
- Several Plausibly Phyisological Solutions
 - Equivalent-Current Dipoles
 - Minimum Norm Estimation & variants
 - Beamforming & variants
 - Others

Neural Source Troubles

- Equivalent-Current Dipoles
 - How Many?
 - Non-intuitive side effects
- Minimum Norm Estimation vs. Beamforming
 - Each side can produce datasets that show misleading results form other method
- Excellent Tutorial
 - Lütkenhöner & Mosher in "Auditory Evoked Potentials" by Burkard et al.

Neural Source Solutions?

- · All of the major methods are good
 - · Can give physiologically plausible result
 - · Can give "correct/true" result
- · Any of the major methods might get you into trouble
 - · Each has weaknesses
- The best method to use may be the one which is used by people whose results you trust
 - · Knowing an expert always helps

Outline

 Auditory Magnetoencephalography - MEG Fundamentals - Neural Source Localization • "Newish" Quantitative Approaches • MEG in the Fourier Domain • Signal Separation & Denoising

MEG STRF from Speech

- Stimulus: 2 minutes of monaural speech
- Speech Spectrogram → MEG Response
- Method: Boosting with cross validation
- Accuracy comparable to individual AI neuron

Ding & Simon, Submitted

Separation of Dichotic Speech

- Stimulus: 2 minutes of dichotic speech
- STRF robust against spatial masking of speech
- Strong attentional modulation of neural representation (STRF)

Ding & Simon, Submitted

Information Content in MEG Signal

- Cross-correlation of speech envelope & MEG response diagonal for long segments
- Stimulus Decoding: strongest correlation = best stimulus guess
- Predictions worsen when too many small-duration segments
- Conservative estimate (linear)
- Stimulus decoding accuracy:
 - 4 bit/s in right hemisphere
 - 1 bit/s, in left hemisphere

Ding & Simon, Submitted

Outline

 Auditory Magnetoencephalography - MEG Fundamentals - Neural Source Localization • "Newish" Quantitative Approaches • MEG in the Fourier Domain • Signal Separation & Denoising

MEG Frequency Response

Stimulus: Amplitude Modulation at 32 Hz

400 Hz tone carrier 100 trials @ 1 s (concatenated)

Amplitude + Phase...

Whole Head Steady State Response *Phasor Isofield Contour Map*

f = 32 Hz

Simon and Wang, J. Neurosci. Methods (2005)

Example: Auditory Streaming

Whole Head Transfer Function

Complex Magnetic Field with / without generated contours

Current-Equivalent Dipoles

Raw Magnetic Field Data

Two Dipole Fit

Left Hemisphere Current Equivalent Dipole Right Hemisphere Current Equivalent Dipole

Complex Neural Current Sources

Simon and Wang, J. Neurosci. Methods (2005)

Outline

 Auditory Magnetoencephalography - MEG Fundamentals - Neural Source Localization • "Newish" Quantitative Approaches • MEG in the Fourier Domain Signal Separation & Denoising

Separating Signals from each other and/or from noise

- Data driven spatial filtering: many available methods—ICA, PCA, DSS
- Generate spatial filters & their outputs ("components")
- DSS: Denoising Source Separation: Särelä & Valpola (2005)
- DSS components ordered by reproducibility
 - 1st component "maximally reproducible" = most stimulus driven

DSS Example

- Most reproducible filter & component
- Optimally filters out trial-to-trial-variable signal = neural noise
- Filter can be applied to other signals, e.g. single trials

Chevergne & Simon, J. Neurosci. Methods (2008)

DSS Example: Spectral

Frequency Spectrum before DSS

Frequency Spectrum after DSS

Ding & Simon, J. Neurophysiol (2009)

DSS Examples: Phase

Phasor Spread before DSS

at the same the

Phasor Spread after DSS

Ding & Simon, J. Neurophysiol (2009)

Outline

 Auditory Magnetoencephalography - MEG Fundamentals - Neural Source Localization • "Newish" Quantitative Approaches • MEG in the Fourier Domain • Signal Separation & Denoising

Acknowledgements

Collaborators Alain de Cheveigné Mounya Elhilali David Poeppel Shihab Shamma

ALL STORETAS

Postdocs Dan Hertz Yadong Wang

Funding

NIH R01 AG 027573 NIH R01 DC 007657 NIH R01 DC 008342 NIH R01 DC 005660 Graduate Students Nai Ding Kim Drnec Kai Sum Li Jiachen Zhuo

Past Grad Students

Nayef Ahmar Claudia Bonin Maria Chait Victor Grau-Serrat Ling Ma Raul Rodriguez Juanjuan Xiang

Collaborators' Students Julian Jenkins Huan Luo **Undergraduates** Marko Modric

Past Undergraduates Abdulaziz Al-Turki Nicholas Asendorf Sonja Bohr Corinne Cameron Julien Dagenais Marisel Villafane Delgado Kevin Kahn Andrea Shome

TENURE-TRACK ASSISTANT PROFESSOR: SENSORY NEUROBIOLOGY

The Department of Biology at the University of Maryland, Conege and invites applications for an Assistant Professor in **sensory neurobiology**. We cook an outstanding candidate taking experimental and/or theoretical approaches to major questions in sensory neurobiology at the molecular, cellular, and/or organismal levels. Applicants must have a doctorate degree and should have developed, or demonstrate the potential to develop, an outstanding research program and a record of extramural funding. Applicants should also exhibit a commitment to excellence in teaching. Postdoctoral experience is preferred.

Applicants should apply electronically to <u>https://jobs.umd.edu</u>, specifying Sensory Neurobiology, Dr Catherine Carr, Search Committee Chair (position #116926). Applications should consist of a single PDF file containing (1) a letter of application, (2) a curriculum vita, (3) a statement of research interests and plans, (4) a statement of teaching experience and interests. PDFs of selected publications can be submitted as supplementary information if desired. Please arrange for three recommendation letters to be submitted directly to <u>https://jobs.umd.edu</u>, specifying the same information as above. For best consideration, applications should be complete by Dec. 30, 2010

The University of Maryland is an equal opportunity/affirmative action employer. Applications from minorities and women are encouraged.

Single Orientation Current Sources

Auditory Streaming I

- Stream Segregation & MEG
- Foreground vs. Background
- Attentional Modulation of Neural Representation
- Neural Correlate of Behavioral Buildup

Neural Correlates of Therapy for

- Combine MRI with MEG
- Competing Neural Source Localization Algorithms not Unique
- Campus MRI system
 on track for summer
 2011

In Progress, Ding, Simon & Faroqi-Shah