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* Cortical connectivity may change under difficult listening z
conditions 2

« Connectivity characterized by the temporal predictability of
activity across brain regions via Granger causality (GC)
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+ Challenges with M/EEG: the data are low-dimensional, noisy, se
and linearly-mixed versions of the true source activity ::
+ Conventional methods: E 1
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Fig. 2. GC link (i — i) implies temporal predictability of source i byi .

+ Drawbacks: bias propagation, spatial leakage

* Goal: directly localize GC influences without an intermediate _ _

source localization step + MEG observation model « Consider link (i — )
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Fig. 1. Schematic depiction of connectivity during transverse relative predictive variance explained
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* Fisi >0 1 GC link exists
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- Reject null hypothesis at a confidence level and control FDR via BY procedure [5]

» Test strength characterization
- Calculate Youden’s J-statistic for all links

Objective: to estimate dynamic source model parameters

0= (A k=1, qdagQ)) Timiy = 1= @ = P, (Fag (1 — )
» Challenge: source activities are unknown - JiiLs) ~ 1 (= 0) implies high (low) statistical confidence
» Solution: Expectation Maximization (EM) Jin, 141
« At the I-th iteration: + The GCmap &: [#];={ " ’
e lteration: source estimates,ﬁt Oa otherwise
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* Perform the EM parameter estimation for full/reduced model

H H A. Causal Network B. Ground Truth
corresponding to every source pair 1100 sources, 50 sensors o 1 20

-FDR controlled at 2%
numerous spuriously detect-

ed links

+ Test statistic, the debiased deviance for link (i — i) [3]

F R “F R Fig. 3. A. The GC network
Dy :AZ/(&-(Oi ) — ¢;(0; )) — B(#6, ,0,) corresponding to sources {5,
6, ..., 10} B. Ground truth
GC map corresponding to
20 sources. C. Estimated
GC map using the proposed
method. D. Estimated GC
map based on the two-stage
procedure.

log-likelihood of the i-th source bias term full and reduced model parameters

* Hypothesis test, distributional results [4]

Null: 6, = 6% (i.e., no GC influence); Dy 4, x*(q)

Alternative: 6; =67 (i.e., GC influence); D; ;% x*(¢.v

iai))
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» Task (see poster #71 [6]): 1-minute long speech segments Fig. 4. NLGC estimates of neural connectivity for sites in the frontal
from an audio book in two conditions: and temporal lobes, during the last 40 s of each continuous speech
-Clean: male/ female narration listening trial, for either clean or masked speech (only significant links
-Mixed speech: two talker speech, male vs. female speaker shown; arrows indicate direction of GC influence; N=4, FDR=1%).
* Mixed speech task: attend to pre-specified speaker A e imasker
+ We analyzed the data from the first trials of these conditions o .
R * While listening to clean speech,

about half (48%) of the significant
about a third (32%) are top- down
* Band-passed between 0.1 — 4.5 Hz (delta band) frontal-temporal (out of 31
+ Head model: morph ‘fsaverage’ source space, Desican- significant links).
Killiany atlas to identify 68 ROls [6]
* Analyzed ROls (in both hemispheres)

Temporal lobe
'superiortemporal’, 'middletemporal’, 'transversetemporal « In contrast, while listening to masked
speech, almost two thirds (65%) of
the 17 significant causal links are

. - . now top-down frontal—-temporal, and
* We summarize the contribution of each ROI by the leading only 122/0 are frontal—;‘)rontgl (out of

eigenvectors within the ROI 17 significant links).
* The measurement noise covariance: empty room recordings
+ 155 MEG sensors
* Model order ¢ = 6 (to fully capture the delta band)
+ Sampling frequency: 25 Hz

Frontal lobe
'rostralmiddlefrontal’, 'caudalmiddlefrontal’, 'parsopercularis’, 'parstriangularis’
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