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Introduction

Model Granger Causality
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Fig. 2. GC link            implies temporal.predictability of source    by    .

• MEG observation model

MEG sensor data,    
Lead field matrix,
Source activity,
Measurement noise.

• Source dynamics model

Coefficient matrix, 
Noise process.

• Consider link           
- Can source   improve temporal 
predictability of   ? 

full model

reduced model

• Granger Causality

• : GC link exists 
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• Cortical connectivity may change under difficult listening 
conditions

• Connectivity characterized by the temporal predictability of 
activity across brain regions via Granger causality (GC)

• Challenges with M/EEG: the data are low-dimensional, noisy, 
and linearly-mixed versions of the true source activity

• Conventional methods:

• Drawbacks: bias propagation, spatial leakage 

• Goal: directly localize GC influences without an intermediate 
source localization step

• Method: Network Localized Granger Causality (NLGC)
• Source dynamics as latent multivariate autoregressive model 

Fig. 1. Schematic depiction of connectivity during 
speech processing.

Source 
Localization
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Parameter Estimation
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Statistical Inference
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• Objective: to estimate dynamic source model parameters

• Challenge: source activities are unknown
• Solution: Expectation Maximization (EM)
• At the       iteration:

• Perform the EM parameter estimation for full/reduced model 
corresponding to every source pair 

source estimates,

• Test statistic, the debiased deviance for link            [3]

log-likelihood of the       source full and reduced model parameters

Null:                 (i.e., no GC influence);
Alternative:                 (i.e., GC influence);

• False discovery rate (FDR) control 
- Reject null hypothesis at a confidence level and control FDR via BY procedure [5]
• Test strength characterization
- Calculate Youden’s J-statistic for all links

• The GC map     :

- implies high (low) statistical confidence 
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E-step
Fixed-interval smoother [1]

M-step
IRLS (promote sparsity) [2]

bias term  

• Hypothesis test, distributional results [4] 

Simulation Results
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Fig. 3. A. The GC network 
corresponding to sources {5, 
6, . . . , 10}. B. Ground truth 
GC map corresponding to 
20 sources. C. Estimated 
GC map using the proposed 
method. D. Estimated GC 
map based on the two-stage 
procedure. 
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Difficult Listening Experiment
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Application to MEG Data
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• Task (see poster #71 [6]): 1-minute long speech segments 
from an audio book in two conditions:

-Clean: male/ female narration 
-Mixed speech: two talker speech, male vs. female speaker

• Mixed speech task: attend to pre-specified speaker
• We analyzed the data from the first trials of these conditions

• Band-passed between 0.1 – 4.5 Hz (delta band)
• Head model: morph ‘fsaverage’ source  space, Desican-

Killiany atlas to identify 68 ROIs [6]
• Analyzed ROIs (in both hemispheres)

Temporal lobe
'superiortemporal’, 'middletemporal’, 'transversetemporal

Frontal lobe
'rostralmiddlefrontal’, 'caudalmiddlefrontal’, 'parsopercularis’, 'parstriangularis’

jjjjjjjj

• We summarize the contribution of each ROI by the leading 
eigenvectors within the ROI

• The measurement noise covariance: empty room recordings
• 155 MEG sensors
• Model order          (to fully capture the delta band)
• Sampling frequency: 25 Hz
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• While listening to clean speech, 
about half (48%) of the significant 
causal links are frontal→frontal and 
about a third (32%) are top- down 
frontal→temporal (out of 31 
significant links). 

Fig. 4. NLGC estimates of neural connectivity for sites in the frontal 
and temporal lobes, during the last 40 s of each continuous speech 
listening trial, for either clean or masked speech (only significant links 
shown; arrows indicate direction of GC influence; N=4, FDR=1%). 

• In contrast, while listening to masked 
speech, almost two thirds (65%) of 
the 17 significant causal links are 
now top-down frontal→temporal, and 
only 12% are frontal→frontal (out of 
17 significant links).

Model Specifications


