Cortical Connectivity Changes Under Difficult Listening Conditions Revealed by Network Localized Granger Causality

Behrad Soleimani*, Proloy Das1, I.M. Dushyanthi Karunathilake1, Stefanie E. Kuchinsky4, Behtash Babadi1,2, Jonathan Z. Simon1,2,3.
1Department of Electrical and Computer Engineering. 2Institute for Systems Research. 3Department of Biology, University of Maryland, College Park, Maryland. 4Audiology and Speech Pathology Center at Water Reed National Military Medical Center, Bethesda, Maryland

Introduction

- Cortical connectivity may change under difficult listening conditions
- Connectivity characterized by the temporal predictability of activity across brain regions via Granger causality (GC)
- Challenges with M/EEG: the data are low-dimensional, noisy, and linearly-mixed versions of the true source activity
- Conventional methods:

 E/MEG Data → Source Localization → GC Inference

 Drawbacks: bias propagation, spatial leakage

- Goal: directly localize GC influences without an intermediate source localization step
- Method: Network Localized Granger Causality (NLGC)
- Source dynamics as latent multivariate autoregressive model

 E/MEG Data → (Sparse) Parameter Estimation → GC Statistical Inference

Model

- MEG observation model
 \[y_t = Cx_t + n_t, \quad t = 1, 2, \cdots, T \]
 \(y_t \in \mathbb{R}^M \)
 MEG sensor data,
 \(C \in \mathbb{R}^{M \times N} \)
 Lead field matrix,
 \(x_t \in \mathbb{R}^N \)
 Source activity,
 \(n_t \in \mathbb{R}^M \)
 Measurement noise.

- Source dynamics model
 \[x_t = \sum_{k=1}^{n} A_k x_{t-k} + w_t, \quad t = 1, 2, \cdots, T \]
 \(A_k \in \mathbb{R}^{N \times N} \)
 Coefficient matrix,
 \(w_t \in \mathbb{R}^N \)
 Noise process.

Granger Causality

- Consider link (\(\tilde{i} \rightarrow i \))
 - Can source \(\tilde{i} \) improve temporal predictability of \(i \) ?

 \[\mathcal{F}(\tilde{i} \rightarrow i) = \log \left(\frac{\sigma_{\tilde{x}_i}}{\sigma_x} \right) \]

 relative predictive variance explained

 \[\mathcal{F}(\tilde{i} \rightarrow i) \gg 0 \] : GC link exists

Fig. 1. Schematic depiction of connectivity during speech processing.

Fig. 2. GC link (\(\tilde{i} \rightarrow i \)) implies temporal predictability of source \(i \) by \(\tilde{i} \).

*behrad@umd.edu

The views expressed in this presentation are those of the author and do not reflect the official policy of the Department of Army/Navy/Air Force, Department of Defense, or U.S. Government.

APAN 2020, Oct. 22nd and 23rd
Cortical Connectivity Changes Under Difficult Listening Conditions
Revealed by Network Localized Granger Causality

Behrad Soleimani*, et al.

Parameter Estimation

- Objective: to estimate dynamic source model parameters
 \[\theta = (A_k, k = 1, \ldots, q; \text{diag}(Q)) \]
- Challenge: source activities are unknown
- Solution: Expectation Maximization (EM)
- At the \(t \)-th iteration:
 - Perform the EM parameter estimation for full/reduced model corresponding to every source pair

Statistical Inference

- Test statistic, the debiased deviance for link \((\hat{i} \rightarrow i) \) [3]
 \[D_{(i \rightarrow \hat{i})} = 2 \left(\ell_i(\hat{\theta}_i^F) - \ell_i(\hat{\theta}_i^R) \right) - B(\hat{\theta}_i^F, \hat{\theta}_i^R) \]
- Hypothesis test, distributional results [4]
 - Null: \(\theta_i = \theta_i^R \) (i.e., no GC influence);
 - Alternative: \(\theta_i = \theta_i^F \) (i.e., GC influence);

Simulation Results

- False discovery rate (FDR) control
 - Reject null hypothesis at a confidence level and control FDR via BY procedure [5]
- Test strength characterization
 - Calculate Youden’s J-statistic for all links
 \[J_{(i \rightarrow \hat{i})} = 1 - \alpha - F\chi^2(q, \nu_{(i \rightarrow \hat{i})}) (F^{-1}_\chi^2(q)(1 - \alpha)) \]
 \[J_{(i \rightarrow \hat{i})} \approx 1 \ (\approx 0) \] implies high (low) statistical confidence
- The GC map \(\Phi : [\Phi]_{i,\hat{i}} = \begin{cases} 1, & i \neq \hat{i} \\ 0, & \text{otherwise} \end{cases} \)

Difficult Listening Experiment

- Task (see poster #71 [6]): 1-minute long speech segments from an audio book in two conditions:
 - Clean: male/ female narration
 - Mixed speech: two talker speech, male vs. female speaker
- Mixed speech task: attend to pre-specified speaker
- We analyzed the data from the first trials of these conditions

Model Specifications

- Band-passed between 0.1 – 4.5 Hz (delta band)
- Head model: morph ‘fsaverage’ source space, Desikan-Killiany atlas to identify 68 ROIs [6]
- Analyzed ROIs (in both hemispheres)
 - **Temporal** lobe
 - 'superiortemporal', 'middletemporal', 'transversetemporal'
 - **Frontal** lobe
 - 'rostralmiddlefrontal', 'caudalmiddlefrontal', 'parsopercularis', 'parstriangularis'
- We summarize the contribution of each ROI by the leading eigenvectors within the ROI
- The measurement noise covariance: empty room recordings
- Model order $q = 6$ (to fully capture the delta band)
- Sampling frequency: 25 Hz

Application to MEG Data

Fig. 4. NLGC estimates of neural connectivity for sites in the frontal and temporal lobes, during the last 40 s of each continuous speech listening trial, for either clean or masked speech (only significant links shown; arrows indicate direction of GC influence; N=4, FDR=1%).

- While listening to clean speech, about half (48%) of the significant causal links are frontal→frontal and about a third (32%) are top-down frontal→temporal (out of 31 significant links).
- In contrast, while listening to masked speech, almost two thirds (65%) of the 17 significant causal links are now top-down frontal→temporal, and only 12% are frontal→frontal (out of 17 significant links).
