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Introduction
• The goal of our research is to understand the functional organization of

Auditory Cortex by studying the cortical encoding of complex and
natural sounds in the awake, behaving, ferret.

• In previous studies, we characterized the response of cells in the
Ketamine-anesthetized ferret Primary Auditory Cortex (AI), using
dynamic, broadband sounds.

• We have developed techniques for neurophysiological recordings from
the awake restrained ferret to enable a comparison of cortical
responses in awake and anesthetized conditions.

• Pure tone and moving ripple stimuli were used to measure the
frequency tuning and rate level functions of the cells in AI and to
derive their Spectro-Temporal Response Fields (STRFs).

• We also compared the pure tone responses and STRFs from units
recorded simultaneously with a single electrode at the same cortical
location.
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Experimental Methods
• Standard extracellular techniques (with 5 MΩ tungsten electrodes)
were used to record single and multi-unit responses in the auditory
cortex of the awake and ketamine-anesthetized ferret.

• In order to restrain the ferret’s head movements in the awake
preparation, a metal post was surgically implanted on the skull so that
the head could be held in a stable position.

• Neurophysiological recording sessions in the awake animal lasted 3-6
hours per day. Acute experiments on the anesthetized preparation lasted
3-4 days. In each electrode penetration, recordings were made at
several cortical depths, and raw or filtered responses waveforms were
sampled and stored for off-line sorting and data analysis.

• Sound stimuli were delivered through small microphones (Etymotic
Research) inserted in the ear canal and calibrated in situ at the
beginning of each recording session. Each stimulus set was presented at
least ten times in a randomized order.
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Moving Ripples
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Ripples form our basis for the
Fourier-domain description of
dynamic spectra. At time t and
frequency x, their amplitude
S(t,x) is given by:
S(t,x)= sin[2πwt + 2πΩx]
x = log2[f / f0]

w = ripple velocity (mod rate)
Ω = ripple frequency (density)

Temporally Orthogonal Ripple Combinations (TORCs)
TORCs are made up
of ripples with
different
modulation rates.
The stimuli shown
here contain ripples
which cover the
same range of ripple
velocities, but at
different ripple
frequencies.
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STRF Pairs (Anesthetized)
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STRF Pairs (Awake)
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 Quantifying the Fine Structure
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Response Variability
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Identical stimuli do not yield identical responses. This inherent
variability results in STRF variability. The expected amount of
variability should be taken into account when analyzing the STRF.

One stimulus period (250 ms)
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The periodic nature of the stimuli allows
easy evaluation of the response variability.

The mean response is an estimate of the
spike rate, which has some variance. 

The variance is proportional to the mean,
inversely proportional to the number of
stimulus presentations, and is well
described by Poisson statistics.

The variance can be evaluated in the
time domain, or the frequency domain.
The total amount of variance is equal
across both domains.
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STRF Variability
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The response variability contributes a random, unstructured
component to the measured STRF.  The strength of this component,
relative to the strength of the STRF, is quantified by the signal-to-
noise ratio (SNR).

With TORC stimulation, the strength of the random component is
trivially obtained from the response variability, since the response
frequencies have a one-to-one correspondence with the STRF
components. 
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Variability: Awake vs. Anesthetized
The most obvious difference between the awake and the anesthetized
responses is that under the awake condition, neurons fire more spikes
on average.  However, taking this difference into account, it seems
that the same set of laws are governing the relations between the
STRF strength, the spike rate, and the response variability.
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The relations are well described by a Poisson process, plus an
independent source of variability which is the same under both
conditions, on average. 
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STRF Structure: Introduction
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The complexity of the STRF is evaluated using the singular value
decomposition (SVD), which describes the STRF as a sum of
separable functions, arranged in order of overall size.  The more
complex the STRF structure, the less the STRF will be able to be
described by a single separable function.  In the same way, the
complexity of the quadrants of the ripple transfer function can be
assessed. 
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The random, noisy component of the STRF increases the overall
complexity.  Thus, STRFs with a low SNR tend to have a high
degree of complexity.  The complexity is quantified by αsvd,
which is the fraction of STRF power which cannot be described
by a single separable function.   

Fortunately, this noise is
manifested primarily in a the
lower-power SVD components.
Since we know the total
amount of noise to expect, we
can discard those low-power
components that lie below the
noise threshold, effectively
removing a large amount of the
noise.  The complexity of the
noise-cleaned STRF is then
assessed.   

STRF Structure: Noise
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The complexity of the STRFs measured in the awake ferret is
higher than in the anesthetized ferret, on average.  However, the
transfer-function quadrants have a similar degree of complexity in
the two conditions; most STRFs are still well described by
quadrant-separable transfer functions.   

Therefore, the increased STRF complexity in the awake condition
must be due to different relationships between the quadrants of the
transfer function. 
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Transfer Function Structure
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If a ripple transfer function is quadrant separable, then an increase in
STRF complexity corresponds to increased differences between the
quadrants.  Each quadrant is described by a single spectral transfer
function, temporal transfer function, and overall power.   

Therefore, these differences are
fully described by the spectral
asymmetry αs, the temporal
asymmetry αt, and the
directionality (overall power
asymmetry) αd.
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 Fine Structure Responses 
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 Fine Structure Responses 
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 Explaining the Phenomenon  
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A schematic model of the
excitatory and inhibitory
dynamics in a cortical cell. 
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We compute the correlation between 2 PSTHs corresponding to 2 sets of randomly chosen stimuli

combinations.  These correlations (shown in the upper panel) can go from very strong correlation at 0-lag

(left), to zero correlation (right).  A ratio of the correlation peak at 0-lag (∆) to the baseline (H), normalized by

stimuli combination variability gives us an indicator (ρ) of the strength of the fine structure locking. 
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Conclusions
The responses of neurons in the awake ferret show many fundamental similarities
to the responses obtained from the Ketamine-anesthetized animal.  These similar-
ities include:

• The variety of basic STRF shapes observed

• The variability of STRF shapes measured at a given recording site

• The statistical laws governing the spiking behavior

• Quadrant separability of the ripple transfer function
However, the awake results show some average differences from the anesthetized
results which include:

• An increased spike rate

• More complex (less separable) STRF shapes

• More complex spectral processing

• Increased selectivity to the direction of frequency modulation

In addition, about 1/4 of all cells (in both awake and anesthetized conditions) dis-
play a locking to the stimulus fine structure.  These responses include higher fre-
quencies than the 4-24 Hz range that we use to define the STRFs.
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Abstract
We recently developed an awake preparation for chronic physiological recording in the fer-
ret (ARO Abstracts, Fritz et al, 2001) and described neural responses in auditory cortex in
the awake animal to a variety of acoustic stimuli including tones, noise, ripples and their
combinations. Previous neurophysiological studies of the ferret auditory cortex in our labo-
ratory (Depireux et al, 2001) have used an anesthetized preparation which has yielded valu-
able insight into auditory function but may have caused depression of neural activity and
inhibit cortico-cortical interactions. Hence we have continued to explore responses in audi-
tory cortex of the awake animal in order to understand the full range of dynamic informa-
tion flow, and have recorded from over 300 single units. We characterized and correlated
the activity of single units from neighboring cells in a cortical column in response to these
stimuli.
As we have shown in previous research, units in auditory cortex are well characterized by
their responses to the envelope of moving ripples. An important property of a spectro-
temporal receptive field (STRF) is its separability, i.e. whether it can be decomposed into
the product of two 1-dimensional functions (temporal and spectral). We have characterized
the STRFs from cortical neurons in the awake and the anesthetized preparation analyzing
separability in the two populations and found an overall similarity of the STRFs in both
conditions. However, we observed differences in the response pattern to pure tones in the
awake vs anesthetized ferret (increased sustained on-responses and vigorous off-responses
in the awake preparation) and so discuss the apparent disparity in the effects of anesthesia
on cortical responses to pure tone and dynamic ripples.


