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— Aim: characterizing how information from Responses to single speaker stimuli were — Extended responses to acoustic features Responses to two speakers modeled using — Significant respones to phoneme information
phonemes is integrated for word perception modeled by iteratively excluding the least — Monophasic early responses to phonemes variables significant in single speaker model: in attended but not unattended speech
in continuous speech comprehension significant predictor until all remaining | — Responses reflect acoustic information from — Attended response peaks similar to single

predictors were significant:

— Phonemes represent the continuous acoustic attended and unattended speech speaker case

speech signal with discrete linguistic his  noble mind forgot the cakes — Bilateral acoustic responses
categories. However, brain responses to — Responses to phoneme information more
phoneme identity (/a/, /e/, /0/, ...) are hard to dominant in the left hemisphere M‘L‘.‘ g. - M’W
dissociate from acoustic responses because
eaCh phoneme iS aSSOCiated Wlth ) Acoustic power (8 bands) A) Attended acoustic model Unattended acoustic model Acoustic stimulus model
characteristic acoustic pattern — Responses to phonemes can
— Phonemes incrementally provide information be disentangled from
abOUt SpOken WordS (eg NorriS and /\ A_/\ ]\ [\ /\ ~ Attended phoneme model Unattended phoneme model responlses tO Underlylng
MCQueen, 2008), Information theoretic Acoustic power "onset" (8 bands) _ _ _ l:- acoustic features
] ] ] Left hemisphere Right hemisphere
measures like phoneme surprisal and lexical h 1z nov bsl m ar ndf 3 ga t 8i k et Kk s | 0.00 0.01 — Responses to phoneme sur-
. . B) Acoustic power Phonememe onset 5 Improvement in z(r) . .
cohort entropy influence behavioral and MEG BT prisal and entropy suggest in-

responses to isolated word stimuli (e.g.
Gaston and Marantz, 2017)

— Here we analyze MEG responses to phoneme All phoneme onsets
information properties in continuous,
uninterrupted speech to determine how
phonemes are processed as linguistically

~ Q & : :
0 —-6—-—————-——-— ! Loft hemisphere | formation from phonemes is

1 Right hemisphere 2 Acoustic power ) .
used to constrain the lexical
cohort within ~110-120 ms of

phoneme onset

— Response to word onset sug-
gests fast real-time lexical

Word onset phoneme surprisal

_Acoustic power increase

-

relevant stimuli Word omeats . NS o segmehntatlon of continuous
: : | R speec
Predictor variables improvementin z(r) Phoneme surprisal - SR @ ' K ————— L1 ngrnomeshor — In two-speaker stimuli, only
— Acoustic spectrogram: acoustic power in 8 ‘ 110 ms 260 ms 400 ms 7 First phoneme surprisal attended speech is prc,>cesse q
logarithmically spaced bands | il | [ ‘I ‘ | = | : . .
i~ . il : Lexical cohort size > ' 1_—-—’_——_# leXICa”y (Cf BrOde”Ck et a|'5
— Acoustic "onset": rising slope of acoustic Phoneme 2: surprisal 110 ms - 2017)

power in the same bands

— Cohort size: number of word forms o
compatible with the current prefix | 1 T A A) Linearfiltermodel _/\/

Method: kernel estimation

— Source localization suggests
that lexical processing of
phonetic information takes
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Phoneme 2: entropy

] Phoneme surprisal 5 .
— Cohort reduction: number of words that the E I g | 1 place in the lateral temporal
current phoneme excludes ? i | : | 0 100 200 300 400 5000 100 200 300 400 500 lobe in or near auditory cortex
- : i 'r/\/ L\/.\ Time [ms] -1 0 1 Time [ms] Current estimate [normalized]
— Phoneme surprisal: inverse of the | AT | | 3 | | : Current estimate [normalized]
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conditional probability of the phoneme Fr—— g
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space with a distributed minimum norm inverse
solution. Source dipoles were constrained to be

one while ignoring the other (Brodbeck et al., 2018)

\ Modeled response (Stimulus = kernel)





