Increased speech representation in older adults originates from early and late responses in auditory cortex

Christian Brodbeck, Alessandro Presacco, Stefanie Kuchinsky, Samira Anderson & Jonathan Z. Simon

Overview

Puzzle

- Compared to young adults, older adults exhibit:
 - Impaired auditory temporal processing
 - More difficulty comprehending speech, especially in challenging circumstances
- Yet, the speech envelope can be reconstructed more accurately from their cortical responses, recorded with MEG (Presacco et al., 2016)

Different possible explanations, for example...

- Increased cortical gain of bottom-up responses
- Recruitment of additional top-down resources
- Physiological changes, e.g. excitation-inhibition imbalance

This talk

- Localize cortical responses to speech of younger and older adults
 - Anatomy: localization in cortex
 - Time: latency at which information is represented

Brodbeck, C., Presacco, A., Anderson, S., & Simon, J. Z. (2018). Over-Representation of Speech in Older Adults Originates from Early Response in Higher Order Auditory Cortex. Acta Acustica United with Acustica, 104(5), 774–777.

MagnetoEncephaloGraphy (MEG)

Methods (Presacco et al.)

Design

- 60 s long audiobook excerpts, 3 repetitions each
- 2 excerpts were clean speech
- 8 excerpts with second speaker at different signal to noise ratios (SNRs; +3, 0, -3, -6 dB)

Participants

- 17 young adults (aged 18-27 years)
- 15 older adults (aged 61-73 years)
 - Cognitive screening
 - Clinically normal audiogram -

MEG data

- KIT MEG Lab at University of Maryland, 157 axial gradiometers
- Band pass filter **1-8 Hz**

Methods (Presacco et al.)

5

(Presacco, Simon, & Anderson, 2016)

Results (Presacco et al.)

Cortex: older > younger

(Presacco, Simon, & Anderson, 2016)

Midbrain (Presacco et al.)

Midbrain

- Older listeners have reduced frequency following response (FFR)
- Increased cortical responses not due to stronger input from midbrain

Midbrain: younger > older

Possible explanations

Increased cortical gain for bottom-up responses

Prediction: same origin, more current

Top-down/strategic processing

- Compensate for degraded input from the periphery
- Recruitment of additional frontal and temporal regions for complex sentences (Peelle et al., 2010)
- Prediction:
 - Response enhancement at longer latencies, e.g., 100-200 ms

Low level physiological change: excitation/inhibition imbalance

- Reduction in inhibitory neurons in A1 (de Villers-Sidani et al., 2010)
- Increased firing rates in A1 (Overton & Recanzone, 2016)
- Faster recruitment of higher order regions (Engle & Recanzone, 2013)
- Prediction:
 - Enhanced low latency responses, e.g., 30 ms
 - Potentially involving higher order regions

Methods

Participants

- 17 young adults (aged 18-27 years)
- > 23 older adults (aged 61-73 years)

MEG source localization

- Empty room noise covariance
- Minimum norm estimates with depth weighting
- Temporal response functions estimated with coordinate descent algorithm (David et al., 2007)
 - Minimizing $\ell 1$ error
 - Stopping based on cross-validation

Evaluate model predictions:

At each source element: Pearson correlation r(predicted response, measured response)

Bias-correction:

- Compute r of a temporally shuffled model
- Test for better *r* of the true model

Significance test:

- Mass-univariate t-test (Smith & Nichols, 2009)
 - Threshold-free cluster enhancement
 - Max statistic distribution with 10,000 permutations

Temporal response function

Encoding model

1 1 1 1 1 2 3 4

Ι

5

Time [seconds]

Clean speech: neural localization

Brain activity (MEG source estimate) predicted from acoustic envelope

 Maps of correlation (r) between actual and predicted neural time course

Older > Younger

- Ventral to core auditory cortex
- No significant difference between hemispheres

Temporal response function

Continuous MEG source estimates

I	I	I	I	Ι
1	2	3	4	5

Time [seconds]

Temporal response function

New results: influence of attention

Listening to two speakers (Puvvada & Simon, 2017)

- Early responses track the acoustic signal (~50 ms)
- Later responses track the attended speaker (~100 ms)

~30 ms

- Stimulus-driven
- Consistent with excitation-inhibition imbalance

~120 ms

- Increased attentional modulation
- Consistent with increased taskrelated processing

~180 - 250 ms

- Continued tracking of mix and attended speaker
- Responses practically absent in younger listeners

Summary

Cortical over-representation of speech in older adults:

Multiple sources of over-representation

~ 30 ms

- Bottom-up cortical gain
 - Main difference outside of core auditory cortex
- Strategic/top-down processing
 - Latency too short
- Low level physiological change; excitation/inhibition imbalance
 - Short latency
 - Fast spread to areas outside core auditory cortex

~ 120 ms

- Bottom-up cortical gain
 - Does not track bottom-up information
- Strategic/top-down processing
 - Increase in task related activity (attention to speech)
- ? Low level change
 - Effect on task-related activity?

Later responses

- Bottom-up cortical gain
- Enhanced attentional tracking compatible with cognitive effort/compensation
- Persistent stimulus-driven as well as task-related activity

Thank you!

Coauthors

- Alessandro Presacco
- Stefanie Kuchinsky
- Samira Anderson
- Jonathan Z. Simon

Funding: NIH

• Grant P01-AG055365