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Beyond acoustic processing:
‣ Phoneme level processing
‣ Lexical processing
‣ semantic processing

Di Liberto et. al., 2015
Brodbeck et. al., 2018
Boderick et. al., 2018
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Measurement noise: Gaussian

Background activity: Gaussian

Joint density of measurements and current dipoles:

Marginal density of the measurements given NCRFs:

Maximum likelihood estimate:

not observed
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MEG Data:
‣ 17 young-adult participants. 
‣ Two 60-second segments from ‘The Legend of Sleepy Hollow’ by W. Irving. 
‣ 3 repetitions for each segment.

Brodbeck & Simon, 2018

‣ No MRI was available:
‣ ‘fsaverage’ morphed in individual head shape
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https://www.sciencedirect.com/science/article/pii/S105381192030015X#mmc3
https://www.sciencedirect.com/science/article/pii/S105381192030015X#mmc2
https://www.sciencedirect.com/science/article/pii/S105381192030015X#mmc1
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Acoustic envelope:

‣ M50 at ~ 30-35 ms, M100 at ~ 110 ms (reversed polarity, stronger in r.h.)

‣ Bi-lateral motor activity at ~ 50 ms



Application to MEG
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Word frequency:

‣ Strong auditory component in the l.h. at ~ 150 ms.

‣ Weak frontal and inferior temporal components in l.h.
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Semantic composition:

‣ Bilateral auditory component at ~ 155 ms, late auditory component at ~ 475 ms.

‣ Auditory-frontal dynamics at ~ 175-210 ms (                                                     ).



Summary

‣ A tool for directly extracting the cortical dynamics that underlie 
continuous stimuli processing from MEG.

NCRFs as a powerful source localization 
tool for continuous stimuli experiments.

‣ Novel spatiotemporal prior that not only combats overfitting and 
spatio-temporal dispersion but also handles lack of MR scans.

‣ The NCRFs are readily interpretable in a meaningful fashion 
without any recourse to post-hoc processing.
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