## Auditory Cortex Tracks Acoustic Onsets of Ignored Speech: a Potential Mechanism in Stream Segregation Christian Brodbeck, Alex Jiao, L. Elliot Hong & Jonathan Z. Simon

University of Maryland





Computational Sensorimotor Systems Lab

christianbrodbeck@me.com



## The cocktail-party problem

Selectively listening to one of two talkers

## Active processing of ignored speech?

- Behavioral results suggest influence of higher order features
- Neural measures failed to find representations associated with lexical (Brodbeck et al., 2018) and semantic processing (Broderick et al., 2018)

## MEG response to competing speakers

- Participants listen to two competing audiobook segments.
- Continuous neural response model
- MEG responses modeled to determine whether features of the ignored speech are represented



2

# Cocktail party problem



### Acoustic scene

- Acoustic mixture (acoustic scene, representation in auditory nerve)
- Acoustic sources (speakers)

## **Cortical representations: Two-step model**

- (Ding & Simon, 2012; Puvvada & Simon, 2017; O'Sullivan et al., 2019)
- Early (~50 ms): spectra-temporal decomposition of acoustic mixture
- Later (~100 ms): preferential processing of the attended speech source

## Is ignored speech actively separated from the mixture in auditory cortex?





# Representation of ignored speech



#### Indirect evidence

- Your name may attract attention (Cherry, 1953)
- Background speech is more distracting than other noises (e.g. Brungart, 2001)
- But less so when you don't know the language in the background (Van Engen & Bradlow, 2007)
- Identity priming from unattended words (Rivenez et al., 2006)
- Explicit access mostly limited to one speaker (Kidd et al., 2005)
- Hard to distinguish consistent lexical processing from attention switches
- No time-locked lexical processing based on MEG (Brodbeck et al., 2018)

#### Paradigm

- Two speakers, equal loudness (female & male)
- Instructions: Attend to one, ignore the other
- Task: After each segment, answer a question about the content of the attended stimulus

# MagnetoEncephaloGraphy (MEG)



![](_page_4_Picture_5.jpeg)

# Temporal response function (TRF)

![](_page_5_Figure_1.jpeg)

## Mathematically

• We model the response (r) as convolution (\*) of the stimulus (s) with a response function (h):

$$r = s * h$$

I.e., each point in the response is a weighted sum of the stimulus preceding it:

$$h_t = \sum_{\tau} h_{\tau} \cdot s_{t-\tau}$$

 Stimulus and response are known, kernel is to be estimated

![](_page_5_Picture_8.jpeg)

![](_page_5_Figure_9.jpeg)

# Spectro-temporal response function (STRF)

![](_page_6_Figure_1.jpeg)

Amplitude in frequency bins Spectrogram

![](_page_6_Picture_3.jpeg)

- Neural sub-populations respond to different stimulus features
  - E.g. frequency tuning
- Electrical activity is locally additive

### Multiple predictor variables

The measured response is the sum of the individual responses

### **Spectro-temporal response** function (STRF)

- Brain response to acoustic stimulus
- TRF can differ depending on the acoustic frequency

![](_page_6_Picture_12.jpeg)

![](_page_6_Picture_13.jpeg)

# Single speaker

![](_page_7_Figure_1.jpeg)

### Spectrogram "envelope"

Acoustic energy by frequency over time

### Acoustic "onsets"

- Local increase in acoustic energy
- Prominent cortical responses (Daube et ) al., 2018)
- Relevant for auditory object perception (e.g. Bregman et al., 1994)
- More distinctive between mixture and sources

#### Implementation

 Acoustic edge detector model (Fishbach, et al., 2001)

![](_page_7_Picture_12.jpeg)

![](_page_7_Figure_13.jpeg)

![](_page_7_Figure_14.jpeg)

![](_page_7_Figure_15.jpeg)

![](_page_7_Figure_16.jpeg)

![](_page_7_Picture_17.jpeg)

![](_page_7_Picture_18.jpeg)

![](_page_7_Picture_19.jpeg)

# Single speaker

#### Significant prediction

![](_page_8_Figure_2.jpeg)

![](_page_8_Picture_3.jpeg)

![](_page_8_Picture_4.jpeg)

#### ROI for TRF analysis

![](_page_8_Picture_6.jpeg)

![](_page_8_Picture_7.jpeg)

### **Source localization**

Onsets

Envelope

![](_page_8_Picture_11.jpeg)

Consistent with auditory cortex (Heschl's gyrus, superior temporal Gyrus)

![](_page_8_Picture_14.jpeg)

![](_page_8_Picture_15.jpeg)

# Single speaker

![](_page_9_Figure_1.jpeg)

Time (ms)

## **Source localization**

Consistent with auditory cortex (Heschl's gyrus, superior temporal Gyrus)

# **Onsets**

- Typical response pattern
  - + peak
  - peak

# Envelope

Less defined 

Brodbeck et al., biorxiv 2019

![](_page_9_Picture_12.jpeg)

![](_page_9_Picture_13.jpeg)

# Two speakers

Acoustic mixture

![](_page_10_Figure_2.jpeg)

Attended source

![](_page_10_Figure_4.jpeg)

![](_page_10_Picture_5.jpeg)

Ignored source

![](_page_10_Figure_7.jpeg)

![](_page_10_Figure_8.jpeg)

![](_page_10_Picture_9.jpeg)

## **Potential representations**

- Acoustic input (mixture)
- Recovered acoustic source signals
  - Attended speaker
  - Ignored speaker?

## Significant responses

- Significant response to onsets in the ignored speaker
- After accounting for mixture and attended speaker

![](_page_10_Picture_21.jpeg)

# Masked onsets

#### **Masked onset**

![](_page_11_Figure_2.jpeg)

**Overt onset** 

#### Intuition

- Sources are represented in addition to mixture
- The auditory cortex has to recover features in the source that are masked in the mixture

#### New predictors

- **Overt onsets:** Onsets in a source that are visible in the mixture
- Masked onsets: Onsets in a source that are masked in the mixture

#### Distinguishing masked and overt onsets improves model fit

#### $\rightarrow$ New model

 Overtness (overt, masked) × Source (attended, ignored)

Brodbeck et al., biorxiv 2019

![](_page_11_Picture_14.jpeg)

![](_page_11_Figure_15.jpeg)

![](_page_11_Picture_16.jpeg)

# Masked onsets

![](_page_12_Figure_1.jpeg)

### + peak: Overt > masked

– peak: Attended > ignored

## **Delayed response to masked** onsets

- Delay of responses in noise not uniform as previously assumed (cf. Ding & Simon, 2013)
- Suggests active (costly) processing of masked features

![](_page_12_Picture_8.jpeg)

![](_page_12_Figure_9.jpeg)

# Summary

![](_page_13_Figure_1.jpeg)

#### Increasing abstraction

- ▶ 74 ms: Bottom-up, stimulus-driven
- ▶ 93 ms: Reconstructed onsets
- ► >120 ms: Reconstructed onsets same amplitude as overt onsets
- Increasing selectivity for attended source

#### Active processing of ignored speech

- Representations of masked onsets in background speech
- Akin to neural filling-in (e.g. Leonard et al., 2016)

#### Local auditory objects

Input for selective attention

#### Could explain behavioral effects

- Why speech is more distracting than stationary noise
- Intrusions from ignored speech (cf. Brungart, 2001)
- Detection of over-learned words such as one's name (cf. Woods) & McDermott, 2018)

![](_page_13_Picture_17.jpeg)

![](_page_13_Picture_19.jpeg)

# Thank You!

# Acknowledgements

# Advisor

Jonathan Z. Simon

# Experiment design

Krishna Puvvada

# **MEG** data collection

Natalia Lapinskaya

## **Undergraduate students**

- Alex Jiao
- Ross Baehr

## Collaborator

L. Elliot Hong

# Funding

- National Institutes of Health (R01-DC-014085 to J.Z.S.)
- University of Maryland Seed Grant (to L.E.H. and J.Z.S.)

![](_page_15_Picture_15.jpeg)