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Abstract-Magnetoencephalography (MEG) measures magnetic fields generated by electric currents in the brain, non-invasively and 
with millisecond temporal resolution. Typical signals are 10–13 T, so noise contamination due to external magnetic fields is a serious 
concern. Digital signal processing is typically required in addition to magnetic shielding. Using three reference channels, displaced from 
the head, to measure the noise, we apply adaptive filtering to subtract out estimates of the noise, via the Block Least-Mean-Square 
(“Fast LMS”) method. The algorithm is tested by its effects on the number and distribution of channels which have statistically 
significant signals (distinguishable from background noise at a specified false-positive rate). We show that Fast LMS both increases the 
number significant channels and reduces the variance of false positives. 
 

I. INTRODUCTION 
Magnetoencephalography (MEG) is a noninvasive tool that 

measures the magnetic activity of the brain, using extremely 
sensitive magnetometers based on Superconducting Quantum 
Interference Devices (SQUIDs). MEG has moderate spatial 
resolution (~ 1 cm) and extremely high temporal resolution 
(≤ 1 ms), thus complementing other techniques such as 
electroencephalography (EEG) and functional Magnetic 
Resonance Imaging (fMRI). Because the magnetic signals 
emitted by the brain are on the order of 10–13 T, shielding from 
external magnetic signals, including the Earth's magnetic field 
(~ 5x10-5 T), is necessary. Even with shielding, though, poor 
signal to noise ratio (SNR) is still a challenge.  

To remove such noise, which is typically non stationary, we 
resort to adaptive filtering. Three reference channels, 
separated from the head, measure the noise alone, while 157 
neuronal channels, arranged above the head surface, record 
brain activity. The filter coefficients that linearly map the 
noise in the reference channels to the noise in the observed 
signal are calculated using Least Mean Square method (LMS) 
[13], then the estimated noise in the observed neuronal signal 
is subtracted. A fast version of LMS is adopted for speed [7]. 

To test its validity and usefulness, we use significance tests 
devised in [12] that combine Rayleigh’s phase coherence test 
and the F-test [10, 8, 11]. Comparison of the raw data with the 
filtered data shows substantial improvement in number of 
significant channels and a drop (and more consistency) in the 
false positives. Finally, we compare this method to the 
Continuously Adjusted Least-Squares Method (CALM) [5]. 

II. METHODS 

A. Stimuli and Data 
Sinusoidally amplitude-modulated sounds of 2 s duration 

were presented 50 times each in a random order with inter-
stimulus intervals uniformly distributed between 700 and 900 
ms as described in [4]. A total of 20 stimuli were generated 
with five modulation frequencies (1.5 Hz, 3.5 Hz, 7.5 Hz 15.5 
Hz and 31.5 Hz) and four different carriers (pure tone, 1/3 

octave, 1 octave, and 5 octave pink noise all centered at 707 
Hz). All stimuli were presented binaurally at approximately 70 
dB SPL. 8 right handed subjects (5 female) were used and 
gave their written informed consent for the MEG study. 

The magnetic signals were recorded using a 160-channel, 
whole-head axial gradiometer system (KIT, Kanazawa, Japan) 
housed in a magnetically shielded room. Its detection coils are 
in a uniform array on a helmet-shaped surface of the bottom of 
the dewar, with ~25 mm between the centers of two adjacent 
15.5 mm diameter coils. Sensors are first order axial 
gradiometers with 50 mm baseline; their field sensitivities are 
5 fT/√Hz or better in the white noise region. 3 of the 160 
channels are magnetometers (25 cm apart from neuronal data 
sensors), used as reference channels. The magnetic signals 
were band-passed between 1 Hz and 200 Hz, notch filtered at 
60 Hz, and sampled at the rate of 500 Hz.  

Responses to each stimulus from 300 to 2300 ms post-
stimulus were concatenated, resulting in 20 responses (2 ms 
resolution, 100 s duration) for each channel. Each response 
was discrete Fourier Transformed (DFT), resulting in 20 
complex frequency responses (0.01 Hz resolution, 250 Hz 
bandwidth) for each channel. See Fig. 1 for the magnitude 
squared of the DFT of the response (periodogram) of a single 
channel to the 31.5 Hz amplitude modulated sinusoid tone. 
The SSR peak at 31.5 Hz is stereotypically narrow with a 
width of 0.01 Hz. Also as seen in Fig.1, the background 
responses became noisier with decreasing frequency. 

B. Adaptive filter model 
Background brain activity is always changing even if the 

area of interest responds to stimuli in a stationary fashion. 
External noise is also non-stationary since many of its sources 
are of random characteristics in space and time. We use an 
adaptive process, which automatically adjusts the filter 
parameters to minimize estimation error.  

We implement a normalized LMS method for the 3 refer-
ence channels (Fig. 2), where the adaptation of tap weight is 
based on error estimation. We compute the filter coefficients 
that when convolved with the noise signal, capture the noise in  



the observed signal in a least mean square sense. With a block 
size of user-defined length (M), the improvement in execution 
time is the order of the Complexity ratio =

  
5log2 M +13( ) M  

[7]. For example, block size M = 1024, fast LMS is 16 times 
faster than standard LMS algorithm in computational terms. 

A summary of the implementation of Block LMS algorithm 
described in [6, 7], but modified for use with multi-reference 
channels is outlined in Table 1.  

 
Fig. 1. (top panel) Periodogram of the Fourier transform of magnetic 
field response from one channel to a sinusoidal amplitude modulated 
tone with modulation frequency 31.5 Hz and carrier frequency 707 Hz.  

Dimensions: 
r=0,…,R ; reference channels, e.g. R = 3. 
M; block size (e.g. 1024 samples) 
i=0,…,2M-1 
 

Initialization: 
ˆ (0) (2 , )rW zeros M R= ; Filter coefficients initialized to zero 

Pi,r (0) = δ i ; average signal power per Reference channel,  

    initialized to small positive constant δ . 
 

Computation: For each block of M input samples: 
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Signal-power estimation: 

Pi,r (k) = γ Pi,r (k −1) + (1− γ ) Ui,r (k)
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FFT : Fast Fourier Transform, IFFT: Inverse Fourier Transform, 
α : adaptation constant <1/2 

 
Table 1. Multi-reference Fast LMS 

 
Fig.2. Three reference adaptive filter noise cancellation 

 
Fig. 3 Periodogram of raw data (gray) and filtered data (black) of 1 channel using Fast LMS, Block Size M = 128 , adaptation constant α = 0.01 . 
Magnified spectrum (0-10Hz) shows the response at the stimulus frequency (3.5Hz) with suppressed noise in the vicinity. 
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C. Significance tests 
In order to evaluate the performance of the adaptive noise 

suppression, we resort to a significance test developed in [12]. 
The test is a mixture of F-test and Phase coherence test [2], 
that uses both amplitude and phase information from both tests 
equally, while measuring the average false positive rate 
iteratively and explicitly.  

III. RESULTS 
The comparative spectra for one neural channel, before and 

after adaptive filtering, in shown in Fig. 3. The SNR dropped 
substantially after applying the Block LMS (especially at the 
line noise frequency 180 Hz). 

Fig. 4 shows the spectrum of a neural channel versus that of 
the reference channels. Fast LMS exploits the high correlation 
between the noise in the reference and neuronal channels. As 
well as suppressing noise near 180 Hz, it removed much of the 
noise in the vicinity of the (driven) frequency 3.5Hz. 
Additionally, Fast LMS excels at removing narrow band noise. 

A. Fast LMS and Significance 
Fig. 5a shows the complex field distribution at 3.5 Hz for a 

stimulus modulated at 3.5 Hz. Arrows represent the magnetic 
field response, at each of 157 channels, as phasors: the length 
of the arrow denotes amplitude and the orientation denotes 
phase. Circles mark those channels identified as significant by 
the joint balanced test (p < 1/157) [12]. Note that many of the 
channels strong in magnitude are not found to be significant. 
Fig. 5b, on the other hand shows the response at the same 
frequency (3.5 Hz) but after applying the noise suppression. It 
is clear how the number of significant channels is boosted, the 
structure of the background of the head map is established, 

and most of the strong signals over the temporal lobes (where 
robust signals are expected in response to auditory stimuli) are 
de-noised. 

Fig. 6 illustrates the effect of Fast LMS on false positives by 
looking at responses at 15.5Hz, for a 31.5Hz modulated 
stimulus. In Fig. 6a, total of 13 False positives are identified, 
and after applying the de-noising algorithm, False positives 
drop to a total of 3 in Fig. 6b. Note that the test is designed so 
that there is, on average, one false positive for all responses in 
which there is no signal expected. Even so, the variance of the 
false positives among different response frequencies per each 
stimulus frequency is always reduced after applying Fast LMS, 
more evidence of the value of the noise suppression. 

B. Quantitative Measure 
We measured the ratio of power between observed neural 

responses and noise responses captured by reference channels, 
for both raw and filtered data (details in Table 2). Fast LMS 
preserved the signal at the stimulus frequency. In addition, it 
removed 1.4 dB of noise for frequencies below 10Hz, ~19 dB 
around 180Hz, and 1.8 dB for the whole spectrum. 

C. Fast LMS vs. CALM 
Continuously Adjusted Least Square Method (CALM), is a 

noise reduction procedure that eliminates correlations between 
the data and any of the 3 unfiltered reference magnetometers, 
by removing the detected covariance from the data MEG 
sensors [5]. This is performed, with a moving window of user-
defined length. 

Fig. 4 (top) Periodogram of raw data. (bottom) Summed periodograms 
for the 3 reference noise channels. 

a  

b  
Fig. 5. (a) Response at 3.5 Hz for a 3.5 Hz modulated stimulus for raw 
data. Arrows represent amplitude and phase of signals at the stimulus 
frequency. The circles denote significant channels. (b) Same but for filtered 
data. Note the de-noising of strong channels on both head sides. 



a  

b  
Fig. 6. (a) Response at 15.5 Hz for a 31.5 Hz modulated stimulus for 
raw data, as in Fig. 5. Total of 13 false positives (b) Same as above for 
filtered data. Number of False positives is reduced to 3.  
 

CALM is not efficient at removing multiple sources of 
narrow band noise, and it is less effective at frequencies above 
10Hz (see Fig. 7). On the other hand, it is much faster than 
Block LMS (which is slowed by the time intensive DFT 
computations, and takes on the order of data acquisition time). 
But Block LMS is a whole spectrum de-noising algorithm. It 
does an excellent job for narrow band noise suppression. 
Table 2 compares quantitative measures for both methods.  
 

IV. CONCLUSION 
Adaptive noise suppression is critical in noise suppression 

for MEG responses. It improved SNR, increased number of 
significant neuronal channels, and suppressed and regularized 

false positives. Although the algorithm exploits a block 
structure, the method is slower than other non adaptive 
filtering methods because of DFT computations. 
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Fig. 7. Periodogram  of raw data (gray) and data filtered with CALM 
(black). One channel. Stimulus frequency is 3.5 Hz.  

 Raw 
data 

F-LMS 
Filter 

CALM Filter 

3.5Hz 11.8 db 11.5 db 10.0 db 
1-10Hz 5.9 db 4.5 db 3.9 db 
175-185Hz 6.3 db -13.6 db 2.0 db 
1-500Hz 6.7 db 4.9 db 4.9db 
Table 2. SNR measurements for raw and filtered data. 
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