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Dynamic Estimation of the Auditory Temporal
Response Function From MEG in
Competing-Speaker Environments

Sahar Akram, Jonathan Z. Simon, and Behtash Babadi∗, Member, IEEE

Abstract—Objective: A central problem in computational
neuroscience is to characterize brain function using
neural activity recorded from the brain in response to
sensory inputs with statistical confidence. Most of existing
estimation techniques, such as those based on reverse
correlation, exhibit two main limitations: first, they are
unable to produce dynamic estimates of the neural activity
at a resolution comparable with that of the recorded data,
and second, they often require heavy averaging across time
as well as multiple trials in order to construct statistical
confidence intervals for a precise interpretation of data.
In this paper, we address the above-mentioned issues for
estimating auditory temporal response function (TRF) as
a parametric computational model for selective auditory
attention in competing-speaker environments. Methods:
The TRF is a sparse kernel which regresses auditory MEG
data with respect to the envelopes of the speech streams.
We develop an efficient estimation technique by exploiting
the sparsity of the TRF and adopting an ℓ1 -regularized least
squares estimator which is capable of producing dynamic
TRF estimates as well as confidence intervals at sampling
resolution from single-trial MEG data. Results: We evaluate
the performance of our proposed estimator using evoked
MEG responses from the human brain in an auditory atten-
tion experiment with two competing speakers. The TRFs
are estimated dynamically over time using the proposed
technique with multisecond resolution, which is a signif-
icant improvement over previous results with a temporal
resolution of the order of a minute. Conclusion: Application
of our method to MEG data reveals a precise characteriza-
tion of the modulation of M50 and M100 evoked responses
with respect to the attentional state of the subject at multi-
second resolution. Significance: Our proposed estimation
technique provides a high resolution real-time attention
decoding framework in multispeaker environments with
potential application in smart hearing aid technology.
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I. INTRODUCTION

D ECODING the dynamics of brain activity underlying con-
scious behavior is one of the key questions in systems

neuroscience. In order to quantify human’s conscious experi-
ence, neuroimaging techniques such as electroencephalography
(EEG) and magnetoencephalography (MEG) are widely used
to record the neural activity from the brain with millisecond
temporal resolution. From an estimation-theoretic perspective,
a decoding framework must be able to reliably estimate the
brain activity at a temporal resolution comparable with that of
the EEG/MEG acquisition.

A large body of literature in neuroscience has revealed that
sensory neurons, such as those in the auditory system, can
undergo rapid and task-dependent changes in their response
characteristics during attentive behavior, and thereby result in
functional changes in the system over time [1]–[5]. In fact,
task-based behavioral and neural plasiticy in the auditory
cortex can occur within a time-frame of less than a second
[6]. Therefore, a dynamic decoding framework on par with the
sampling resolution of EEG/MEG is not only important from
an estimation-theoretic view point, but is also crucial in order to
better understand the neural correlates underlying sophisticated
cognitive functions such as attention.

Most of the commonly used estimation methods for character-
izing the neural response functions, however, provide static es-
timates of the spectrotemporal features over significantly longer
periods of time compared to the sampling resolution of the neu-
ral data. Reverse correlation [7]–[9] and boosting [10]–[13] are
two such widely-used techniques for characterizing the spec-
trotemporal receptive fields (STRFs) in the auditory system. In
order to achieve a reliable estimate of the STRF, these meth-
ods require performing heavy averaging (i.e., integrating) over
time, and in some cases over many trials. Hence these methods
cannot measure changes in the STRF occurring on time scales
faster than the order of the integration time, typically a minute
[14]–[17]. As a result, they are not able to systematically track
the aforementioned neural plasticity at a resolution of the order
of a second. Moreover, in order to obtain a precise statistical
interpretation of the data, it is crucial to compute statistical
confidence intervals for the estimates. Confidence intervals are
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Fig. 1. Schematic depiction of dynamic TRF estimation using evoked
MEG response and speech envelopes of the speakers. Here, the audi-
tory scene consists of the mixture of two concurrent speech streams, in
which the subject is attending to the first speaker. Earlier studies demon-
strated that the significant TRF component corresponding to the M100
response is significantly larger for attended versus unattended speaker.

a key ingredient in assessing changes across different conditions
as well as performing hypothesis testing. Current methods use
bootstrap resampling over multiple trials [18] in order to com-
pute statistical confidence intervals for the estimated parameters
[15], [19]. Although the latter issue is not critical for batch-mode
data analysis with multiple trials at hand, when combined with
the low-temporal resolution of the estimates, forms a serious
bottleneck in emerging real-time applications such as Brain–
Computer Interfacing and neural prosthetics, in which only a
single trial is available and statistically reliable decoding of
neural activity at high temporal resolution is desired.

In this paper, we address these issues for the problem of es-
timating the auditory temporal response function (TRF) from
MEG as a parametric statistical model for the auditory neural
response in competing-speaker environments. The TRF can be
described as a sparse kernel, relating the auditory neural re-
sponse recorded via EEG/MEG to the envelopes of the speech
streams in the auditory scene (see Fig. 1). The TRF provides
an encoding model which generalizes the concept of event-
related evoked responses: instead of averaging over multiple
trials with the same stimulus to obtain the evoked response, the
TRF kernel is obtained by averaging the effect of a diverse set of
stimuli, presented as a continuous time-series, and hence results
in a generalizable encoding model. It has been shown that in
a competing-speaker environment, the slow modulations of the
recorded neural response exhibit a higher correlation with the
envelope of the attended speaker as opposed to the unattended
speaker [6], [16]. Moreover, It has been shown that the amplitude
of the well-known M100 auditory evoked response, a prominent
robust peak appearing ∼100 ms following the stimulus presen-
tation, is significantly modulated by the attentional state of the
listener in experiments with pure tones [20], [21], wide-band
noise [19], and speech [15] as the stimuli. In contrast, the am-
plitude of the M50 evoked response, the earliest auditory evoked
response appearing∼50 ms following the stimulus onset, seems
to be task-independent and not modulated by attentional state
of the listener [15], [19], [21]. Therefore, in this application

obtaining a dynamic estimate of the TRF is equivalent to track-
ing a robust neural marker of selective auditory attention and
thereby characterizing the attentional state of the listener at high
temporal resolution.

To this end, we model the TRF over a Gaussian dictionary
with time-varying coefficients, where the coefficients are as-
sumed to be sparse. We then adopt an efficient real-time es-
timation technique, namely the ℓ1-regularized least squares
(SPARLS) estimator [22], enabling us to compute a dynamic
estimate of the TRF over time while enforcing the sparsity of the
coefficients. In addition, we develop a novel filter for the recur-
sive computation of the statistical confidence intervals based on
recent results in high-dimensional sparse model estimation [23].
Both the estimator and the filter for computing the confidence
intervals operate at the sampling resolution from single-trial
MEG data. We evaluate the performance of our proposed esti-
mator using evoked MEG responses from the human brain in
an auditory attention experiment with two competing speakers.
We examine TRF modulations as a function of attentional state
and show that the attentional state can be reliably inferred via
the estimated TRFs. Our results suggest that tracking the M100
component of the TRF (i.e., its response peak with ∼100 ms
latency) in a dynamic fashion can be used as a robust marker of
auditory attention in real-time applications.

II. METHODS

A. Preliminaries and Motivation
Consider a task where the subject is listening to an acoustic

stimulus consisting of two superimposed speech streams. Let the
time series y1 , y2 , . . . , yT denote the auditory component of the
MEG observations (hereafter, it will be referred to as the neural
response (see Section II-F). Let e(j )

n be the speech envelope of
speaker j, for j = 1, 2 at time index n in the dB scale. We take
the absolute value of the analytic extension (Hilbert Transform)
followed by a low-pass filter with a cutoff frequency of 20 Hz as
smoothed estimate of the envelope. In a linear model, the neural
response at time index n is related to the envelope of speech as

yn =
(
τ (1)

n

)T
e(1)

n +
(
τ (2)

n

)T
e(2)

n + vn (1)

where τ (j )
n is a linear filter of length M denoted by the TRF

of speaker j, e(j )
n := [e(j )

n , e(j )
n−1 , . . . , e

(j )
n−M +1]

T is the covari-
ate vector formed from the speech envelope of speaker j,
for j = 1, 2, and vn is a nuisance component accounting for
stimulus-independent components manifested in the neural re-
sponse. It is known that the auditory TRF is a sparse filter, with
significant components corresponding to the M50 and M100
auditory responses [15], [16]. One of the commonly-used non-
linear techniques for estimating the TRF is known as Boosting
[16], [24], where the components of the TRF are greedily se-
lected to decrease the mean square error (MSE) of the fit to
the neural response. The ℓ1-regularized least squares method
(LASSO) has also been recently used to estimate TRF with
sparse components [25], [26]. A common shortcoming of these
estimation techniques is their inability to track the parameters
adaptively. Neural responses in the auditory system are known
to be nonstationary (e.g., [1]–[5]), and hence adaptive estima-
tion of their model parameters are crucial in many applications
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of interest. In what follows, we will employ an adaptive algo-
rithm for recursive estimation and tracking of the time-varying
and sparse TRF based on MEG observations.

B. Adaptive TRF Estimation via the SPARLS Algorithm

Let

τ i :=
[(

τ (1)
i

)T
,
(
τ (2)

i

)T
]T

,and ei :=
[(

e(1)
i

)T
,
(
e(2)

i

)T
]T

be the concatenated TRF and envelope vector of the two
speakers, respectively. Let τ̂ i be an estimate of τ i . The in-
stantaneous error of the corresponding filter at time i is
defined as

εi := yi − τ̂ T
i ei . (2)

The adaptive filtering operation at time n can then be stated as
the following optimization problem:

min
τ̂ n

f(ε1 , ε2 , . . . , εn ) (3)

where f ≥ 0 is a cost function. Suppose that noise in the linear
model above is i.i.d. Gaussian, i.e., vn ∼ N (0,σ2). We define
the cost function to be

f(ε1 , ε2 , . . . , εn ) :=
1

2σ2

n∑

i=1

λn−i |εi |2 (4)

where 0 < λ ≤ 1 is a parameter often referred to as the for-
getting factor. The forgetting factor λ gives more weight to the
more recent filter errors in order to enforce adaptivity. In order
to enforce smoothness, we consider a representation for τ n over
a basis spanned by G:

τ n = Gθn .

Examples of G are the Gabor or Haar bases [27], [28]. In order to
enforce sparsity, we estimate θ̂n by the following ℓ1-regularized
optimization [22]:

θ̂n = argmin
θn

1
2σ2

∥∥∥Λ1/2
n yn − Λ1/2

n EnGθn

∥∥∥
2

2
+ η∥θn∥1

(5)
where Λn := diag (λn−1 , λn−2 , . . . , 1), yn = [y1 , y2 , . . . ,
yn ]T , En = [e1 , e2 , . . . , en ]T , and η is a regularization
parameter, representing a tradeoff between estimation error and
sparsity of the TRF parameters. Note that the quadratic term is
the same as f(ε1 , ε2 , . . . , εn ) expressed in vector form.

The SPARLS algorithm introduced in [22] provides a recur-
sive solution to convex programs of the form in (5). Here, we
briefly give an overview of the SPARLS algorithm (please refer
to [22] for details). The idea of the SPARLS algorithm is to use
the Expectation–Maximization (EM) algorithm to facilitate the
optimization of the cost function. At the ℓth iteration of the EM
algorithm, we have
⎧
⎪⎪⎨

⎪⎪⎩

E-step: r(ℓ)
n :=

(
I−α2

σ2G
TET

nΛnEnG
)

θ̂
(ℓ)
n +

α2

σ2 GT ET
n Λnyn

M-step: θ̂
(ℓ+1)
n =argmax

θ

{
− 1

2α2

∥∥∥r(ℓ)
n − θ

∥∥∥
2

2
− η∥θ∥1

}

(6)

where α2 < σ2 is a step-size parameter. The M-step has a closed

form solution θ̂
(ℓ+1)
n = Sηα2 (r(ℓ)

n ), where the element-wise op-
erator Sτ (.) : RM → RM is known as soft thresholding and
whose ith component is defines as

(Sτ (x))i := sgn(xi)max (|xi |− τ, 0) (7)

for i = 1, 2, . . . ,M . By defining

Bn := I − α2

σ2 GT ET
n ΛnEnG, and un :=

α2

σ2 GT ET
n Λnyn

(8)

it is easy to see that r(ℓ)
n = Bn θ̂

(ℓ)
n + un . In turn, Bn and un

can be recursively updated by

⎧
⎨

⎩
Bn = λBn−1 − α2

σ 2 GT eneT
n G + (1 − λ)I

un = λun−1 + α2

σ 2 ynenG
(9)

which results in simple recursive rules to adaptively carry out
the EM algorithm. Algorithm 1 summarizes the SPARLS al-
gorithm. Finally, given the estimate θ̂n , the TRF estimate is
defined as τ̂ n := Gθ̂n , for all n.

C. Adaptive Estimation of Confidence Intervals

Obtaining statistical confidence intervals for the estimated
TRF values is of utmost importance for inference purposes.
Most of the commonly used estimation methods require averag-
ing over multiple trials or bootstrap resampling from a limited
number of observations to produce confidence regions [18]. In
real-time applications, however, statistical confidence intervals
must be computed from a single observation stream. In our
setting, where a listener is attending to a speaker in a com-
peting speaker environment, it is also desired to compute the
confidence intervals for the estimated TRF in real time, in or-
der to test for the reliability and precision of the inferred TRF
dynamics.
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To this end, we need to overcome two main challenges: first,
the ℓ1-regularized least squares estimate is biased, and hence
the commonly-used asymptotic normality assumptions cannot
be used for obtaining confidence intervals. Second, the confi-
dence intervals need to be computed recursively in accordance
with the real time requirements. In order to address these issues,
we take advantage of recent results in high-dimensional statis-
tics for characterizing the confidence bounds for ℓ1-regularized
maximum likelihood (ML) problems [23]. In [23], a procedure
called “de-sparsifying” is introduced to account for the bias in
ℓ1-regularized ML estimates, by inverting the Karush–Kuhn–
Tucker (KKT) conditions. In our setting, the de-sparsified esti-
mate of θn can be expressed as

θ̂
u

n := θ̂n + ΘnGT ET
n Λn

(
yn − EnGθ̂n

)
(10)

where Θn is a relaxed approximation to the inverse of Σn :=
GT ET

n ΛnEnG, obtained through a procedure known as node-
wise regression [29]. Then, an asymptotic point-wise confidence
interval for the TRF estimate (τ̂ n )i = (Gθ̂n )i at a significance
level ν can be computed as

CIi,n := ±Φ−1(1 − ν/2)σ
√(

GΘnΣ̃nΘT
n GT

)

i,i
(11)

for i = 1, . . . , M , where Σ̃n := GT ET
n Λ2

nEnG and Φ(.) de-
notes the CDF of the normal distribution. A similar treatment to
that used for obtaining the SPARLS recursions, results in a fully
recursive algorithm to adaptively estimate the confidence interv-
als. The corresponding algorithm is summarized in Algorithm 2.
In short, the estimation procedure outlined in Algorithm 2, con-
sists of M + 1 runs of the SPARLS algorithm per time index n.
In the first run, θ̂ is estimated at each time point n. Then, the es-
timate θ̂n is de-sparsified and confidence intervals are computed
via an adaptive version of the node-wise regression procedure in
the remaining M runs of the SPARLS algorithm. The details of
the derivation of this adaptive algorithm are given in Appendix
A, and the choices of the parameters are discussed in Section
II-G. A MATLAB implementation of our algorithm applied to
a simulated example is archived on the GitHub repository [30].

D. Subjects, Stimuli, and Procedures

Seven normal-hearing, right-handed young adults (ages be-
tween 20 and 31) participated in this study, consisting of two
experiments: constant-attention experiment (five subjects, three
female) and attention-switch experiment (five subjects, two fe-
male). Three subjects (two female) participated in both exper-
iments. Subjects were all compensated for their participation.
The experimental procedures were approved by the University
of Maryland Institutional Review Board. Written, informed con-
sent was obtained from each subject before the experiment. This
data were used in an earlier study by the authors [26].

The stimuli consist of segments from the book A Child’s His-
tory of England by Charles Dickens, narrated by two different
readers (of opposite genders). Four speech segments (one target
and one masker segment for each speaker) were used to generate
three speech mixtures. Each speech mixture was constructed by

mixing two speech segments digitally in a single channel with
duration of 1 min, as described next. The first mixture was
generated using the male target segment and the female masker
segment, whereas the second mixture was generated using the
female target segment and the male masker segment. The third
mixture was generated using male and female target segments.
Periods of silence longer than 300 ms were shortened to 300 ms
to keep the speech streams flowing continuously. All stimuli
were low-pass-filtered below 4 kHz and delivered dichotically
at both ears using tube phones plugged into the ear canals. In all
trials, the stimuli were mixtures with equal root-mean-square
values of sound amplitude, presented roughly at a 65 dB sound
pressure level (SPL).

In the constant-attention experiment, subjects were asked
to focus on one speaker (speaker 1, male; speaker 2, female)
through the entire trial. In the attention-switch experiment, sub-
jects were instructed to focus on one speaker in the first 28 s
of the trial, switch their attention to the other speaker after hear-
ing a 2 s pause (28th to 30th s), and maintain their focus on the
latter speaker through the end of that trial. Consequently, there
were four conditions: 1) attending to speaker 1 for the entire trial
duration, 2) attending to speaker 2 for the entire trial duration,
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3) attending to speaker 1 and switching to speaker 2 halfway
through the trial, and 4) attending to speaker 2 and switching to
speaker 1 halfway through the trial. The first mixture was used
as the stimulus for condition 1, second mixture for condition
2 and third mixture for conditions 3 and 4. Each mixture was
repeated three times during each experimental condition. The
first second of each section was replaced by the clean record-
ing from the target speaker to help the listener attend to the
target speaker. Overall, subjects were presented with 12 trials
(2 constant-attention/attention-switch × 2 male/female target
speakers× 3 repetitions) each 1 min long. The time intervals be-
tween the trials were randomly chosen between 3 and 5 s. After
each condition was presented, subjects answered comprehen-
sive questions related to the passage on which they focused, as
a way to keep them motivated on attending to the target speaker.
Ninety percent of the questions were correctly answered on av-
erage. The order of presentation for the constant-attention exper-
iment (conditions 1 and 2), and the attention switch (conditions
3 and 4) was counterbalanced across subjects participating in
that experiment.

E. Data Recording

MEG signals were recorded in a dimly lit magnetically
shielded room (Yokogawa Electric Corporation, Tokyo, Japan)
using a 160-channel whole-head system (Kanazawa Institute
of Technology, Kanazawa, Japan), and with a sampling rate of
1 kHz. Detection coils were arranged in a uniform array on a
helmet-shaped surface on the bottom of the dewar, with∼25 mm
between the centers of two adjacent 15.5 mm-diameter coils.
Sensors are configured as first-order axial gradiometers with a
baseline of 50 mm; their field sensitivities are 5 fT/Hz or better
in the white noise region.

The presentation software package from Neurobehavioral
Systems was used to present stimuli to the subjects. The sounds
(approximately 65 dB SPL) were delivered to the participants
ears with 50 Ω sound tubing (E-A-RTONE 3A; Etymotic Re-
search), attached to E-A-RLINK foam plugs inserted into the ear
canal. The entire acoustic delivery system was equalized to give
an approximately flat transfer function from 40 to 4000 Hz,
thereby encompassing the range of the presently delivered
stimuli.

A 200 Hz low-pass filter and a notch filter at 60 Hz were
applied to the magnetic signal online. Three of the 160 chan-
nels were magnetometers separated from the others and used
as reference channels in measuring and canceling environmen-
tal noise [31]. Five electromagnetic coils were used to measure
each subject’s head position inside the MEG machine. The head
position was measured twice during the experiment, once before
and once after to quantify the head movement.

F. MEG Processing

Recorded MEG signals contained both stimulus-driven re-
sponses and stimulus-irrelevant background neural activity. In
order to extract components that were phase-locked to the stimu-
lus and consistent over trials, as opposed to the random irrelevant
activities, we employed the Denoising Source Separation (DSS)
algorithm [32]. DSS is a blind source separation technique that

suppresses the components of the data that are noise-like and
enhances those that are consistent across trials, with no knowl-
edge of the stimulus or the timing of the task. In other words,
this algorithm decomposes the data into temporally uncorre-
lated components by removing inconsistent temporal compo-
nents that are not phased-locked to the stimulus. The recorded
neural response during each trial was band-pass filtered between
1 and 8 Hz and down sampled to 200 Hz before submission to
the DSS analysis. We found that only the first DSS component
contains a significant amount of stimulus information, so anal-
ysis was restricted to this component, which we denote by the
auditory MEG component.

G. Parameter Selection

We consider a length of 500 ms for the TRFs at a temporal res-
olution of 5 ms, resulting in a TRF vector of length M = 100.
In order to enforce smoothness, we use a dictionary G con-
sisting of overlapping Gaussian kernels sampled at ∆ = 5 ms
intervals with means covering 0–500 ms, with 5 ms spacing
across TRF length. The standard deviation of the kernels is
chosen to be 20 ms, consistent with the average full width at
half maximum (FWHM) of an auditory MEG evoked responses
(M50 and M100), empirically obtained from MEG studies. The
FWHM is given by 2

√
2 ln(2)ν ≈ 2.355ν, where ν is the stan-

dard deviation of the gaussian kernel, so choosing ν ≈ 8.5,
results in a FWHM of order ≈20 ms. The corresponding ma-
trix G is an M × M matrix of the form [gT

1 ,gT
2 , . . . ,gT

M ]T ,
where gk := [gν (−k∆), gν (∆ − k∆), . . . , gν (M∆ − k∆)]T
and gν (t) is the pdf of a zero-mean Gaussian distribution with
variance ν2 .

The speech envelopes for speaker 1 and 2 are normalized to
have zero mean and variances of 1/M . To estimate the variance
of the observation noise in the linear model, we used the mean
squared error from the LASSO estimate of the TRF using the
MEG signal and the speech envelope of either speakers. In
SPARLS routines used for the node-wise regression, σ̃ is set
to 1/

√
2 to make 1

2σ̃ 2 equal to 1, resulting in the ℓ1-regularized
ML optimization problem in A.10.

The parameter α in SPARLS should be chosen such
that α2 ≤ σ2/s, where s is the largest eigenvalue of
Λ1/2

n EnGGT ET
n Λ1/2

n [22]. Therefore, through an offline tun-
ing, α in the first instance of the SPARLS is chosen to be
equal to σ/80, and α̃ for the rest of M instances is set to σ̃/85.
A choice of K = 3 EM iterations is used for all instances of
SPARLS algorithm. The forgetting factor parameter, λ, can be
fine-tuned according to the time-variation rate of the true TRF
in the range of (0, 1). Note that λ = 1 is used for RLS algo-
rithm, when the true estimate is expected to be constant over
time. On the other hand, for smaller values of λ the contribution
of the earlier data points in the current estimate of the parame-
ters diminishes and results in wider confidence regions for the
estimate. It can be proven that

⌈ 1
1−λ

⌉
samples is the effective

data length required for stable estimation of the parameters in
LASSO problems with exponentially weighted log-likelihood
[33]. We chose λ = 0.999 throughout the analysis, which
corresponds to a data length of 1

(1−λ)fs
= 5 s. Therefore, in

order to eliminate the transient effects in estimating the TRFs,
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the first and last 5 s of the estimates are discarded. The param-
eter η, which controls the tradeoff between the sparsity of the
estimate and the MSE, was chosen by two-fold cross validation
for each subject individually.

III. RESULTS

A. Application to Experimental MEG Data

In order to evaluate the performance of the proposed TRF
tracking algorithm, we collected MEG data from multiple sub-
jects, while they were listening to a competing speaker environ-
ment. Subjects were required to attend to either of the speakers
according to the experimental conditions. We denote by τ̂ att

n and
τ̂ unatt

n the TRFs corresponding to the attended and unattended
speakers at time index n, respectively. The TRFs are estimated
dynamically for each trial individually, using the first DSS com-
ponent of the recorded MEG data and the speech envelope of
the attended and unattended speakers as the covariates. The field
map of the first DSS component is shown in Fig. 2(a) for a sam-
ple subject, which shows a dominantly auditory localization.
The estimated TRFs have significant peaks at approximately
40–80 ms latency, corresponding to the M50 auditory evoked
response. We denote the magnitude of this peak at time n by
τ̂M50,n . This is the earliest response in the auditory cortex that is
known to play an important role in the investigation of primary
auditory cortex [34], and early auditory system maturation in
humans [35], [36]. The M50 response is usually followed by
a deflection at about 100 ms latency with respect to the onset
of the trial, known as the M100 evoked response. The M100
responses are also detected saliently in the estimated TRFs
using the proposed estimation algorithm, and are denoted by
τ̂M100,n .

We investigated the effect of attention on the τ̂M50,n and
τ̂M100,n components in multiple experimental conditions. Ac-
cording to the previous studies, the M100 evoked response
is known to be modulated by attention, whereas the M50
evoked response is not attention modulated [19]–[21]. These re-
sults were obtained by analyzing grand averaged evoked fields
over hundreds of trials and multiple subjects [19], [21], with
confidence intervals computed through bootstrap resampling.
In these studies, the TRF and the corresponding τ̂M50,n and
τ̂M100,n components were estimated using a boosting algorithm
[15], [16], from which an averaged TRF is obtained for a trial
of 1 min duration.

In order to validate our proposed TRF estimation technique,
we will first confirm the previously obtained results on the
effect of attention on M50 and M100 TRF components, and
then use attention-modulated component of the TRF as a proxy
for decoding the attentional state of the listener in real-time.
In the constant-attention experiments (conditions 1 & 2), the
τ̂M50,n and τ̂M100,n responses are extracted from the estimated
TRFs, over the time period of 5 to 55 s of each trial. In order
to evaluate the effect of attention on these two auditory compo-
nents at the subject level, the amplitude differences between the
attended and unattended conditions, respectively, are computed
across time per subject and per trial and are shown in Fig. 2(b1)
and (b2). On average over the trial duration and at a confidence
level of 95%, the τ̂M50,n component of the attended TRF shows

a significant difference compared to that of the unattended TRF
in only 4 out of the 10 trials (3 decreases and 1 increase),
whereas the |τ̂M100,n | component is significantly increased in
the attended condition in 8 out of the 10 trials.

Fig. 2(c1) and (c2) shows the time course of the M50 and
M100 differences, respectively, for all the trials. In order to as-
sess the statistical changes of the M50 and M100 components
at the population level across trials, for each trial the time frac-
tions in which the differences are significantly larger, smaller or
no different from 0 are computed based on the 95% confidence
bounds obtained by our algorithm. Trials are then labeled ac-
cording to the maximum time fraction computed for each. The
amplitude difference of the τ̂ att

M50,n and τ̂unatt
M50,n component, cor-

responding to the attended and unattended TRFs, respectively,
is not significantly different from zero in 81% of the trials. In
9% of the trials

∣∣τ̂ att
M50,n

∣∣ is larger than
∣∣τ̂unatt

M50,n

∣∣, and for the re-
maining 10%,

∣∣τ̂unatt
M50,n

∣∣ is larger than
∣∣τ̂ att

M50,n

∣∣. For the τ̂M100,n

component, the difference between the attended and unattended
conditions are significantly positive in 76% of the trials. In 24%
of the trials the differences are not significantly different from 0.

Moreover, the average time fractions in which the τ̂ att
M100,n

amplitude is significantly larger than τ̂unatt
M100,n is computed in

percentage for each trial and for all subjects in both constant-
attention and attention-switch experiments. The results are
shown in Fig. 3(a1) and (a2). For the τ̂M100,n component, the
amplitude differences are above the 45◦ line for 86% of the
trials, demonstrating a saliently strong attention modulation in
τ̂M100,n amplitudes; however, for the τ̂M50,n response, the re-
sults are more symmetrically scattered above (42%) and below
(58%) the 45◦ line, indicating no significant selectivity to atten-
tion. In order to assess the performance gain of our proposed
algorithm, we have computed τ̂M50,n and τ̂M100,n response am-
plitudes via cross correlation using sliding time windows of
length 5 s (the same as the effective time window for our pro-
posed method) with 4.5 s overlaps. The corresponding results
are shown in Fig. 3(b1) and (b2). The results obtained by cross
correlation show no modulation pattern with respect to the at-
tentional state of the listeners for either the τ̂M100,n or τ̂M50,n

responses. This analysis confirms the performance gain obtained
by our sparse adaptive algorithm which in accurately isolating
the contributions of the M50 and M100 responses in time and
capturing the attentional modulation in the τ̂M100,n component.

In order to further highlight the performance gain of our
sparse adaptive algorithm, we will next make a performance
comparison with the widely used linear least squares estimate of
the TRF. To this end, we have estimated the TRFs from the first
30 s of each trial and computed the correlation values between
the MEG signal and the model predictions based on speakers
1 and 2 using the remaining 30 s of each trial, via sliding time
windows of length 5 s with 4.5 s overlap. The scatter plot of
the resulting correlation differences between the models with
attended and unattended speakers are shown in Fig. 4. As it
can be observed from Fig. 4, the correlation differences are not
indicative of the attentional state of the listeners in either the
constant-attention or the attention-switch experiments, whereas
in Fig. 3(a2), the difference of the τ̂M100,n components strongly
encodes the attentional modulation. This analysis highlights the
advantage of the adaptive estimation of the TRF, as opposed
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Fig. 2. (a) MEG magnetic field map for the first DSS component of a sample subject. A stereotypical pattern of neural activity, originating separately
in the left and right auditory cortices is observed. Black arrows schematically represent the locations of the equivalent dipole currents, generating
the measured magnetic field. The τ̂M50 ,n (b1) and τ̂M100 ,n (b2) response amplitude differences for the attended (with superscript att) versus
unattended (with superscript unatt) conditions are computed for each of the two trials from five participants. Each box plot indicates the statistics of
τ̂M50 ,n and τ̂M100 ,n response differences in the constant-attention trials, for all the time points which significantly differ from zero at a confidence
level of 95%. On average over the trial duration and at a confidence level of 95%, the τ̂M50 ,n component of the attended TRF shows a significant
change compared to its unattended counterpart in only 4 out of 10 trials (3 decreases and 1 increase), whereas

∣∣τ̂M100 ,n

∣∣ is significantly increased
in 8 out of 10 trials. The upward (respectively downward) arrows indicate the trials for which a significant increase (resprectively decrease) in the TRF
component differences is observed. Response differences for τ̂M50 ,n (c1) and τ̂M100 ,n (c2) are also plotted over time to demonstrate trackability
of response differences with high temporal resolution, along with confidence intervals around each estimation point, using the proposed algorithm.
Different colors indicate results from different subjects, where each trace is the averaged response difference over all three trials of each attended
condition (speaker 1 or 2), in the constant-attention experiment. The τ̂ att

M50 ,n and τ̂ unatt
M50 ,n amplitude differences are not significantly different from

zero over 81% of the trials; for the remaining 19% they were split almost equally between
∣∣τ̂ unatt

M50 ,n

∣∣ <
∣∣τ̂ att

M50 ,n

∣∣ (9%) and
∣∣τ̂ unatt

M50 ,n

∣∣ >
∣∣τ̂ att

M50 ,n

∣∣
(10%). The τ̂M100 ,n amplitude differences are significantly positive in 76% of the trials. For the remaining 24%, the τ̂ att

M100 ,n and τ̂ unatt
M100 ,n amplitude

differences are not significantly different from 0. In summary, the amplitude differences of the τ̂M50 responses for both the attended and unattended
TRFs are not significantly different from zero, whereas for the τ̂M100 responses, there are significantly positive amplitude differences between the
attended and unattended TRFs. The vertical double-headed arrows indicate the extent of the average amplitude differences between the attended
and unattended TRF components at the end of the trial. Error hulls indicate 95% confidence intervals around the estimated parameters.

to the commonly-used static TRF estimation, in capturing the
nonstationarity of the underlying neural processes modulated
by attention.

The above results confirm that our proposed method improves
the earlier approaches in multiple ways: first, the estimated
TRF is recursively updated in time, resulting in a multisec-
ond temporal resolution as opposed to an averaged static esti-
mate from minutes of neural data. Second, all the analysis is
done on a single trial from a single subject with no averaging
over multiple trials or subjects. Last, in the proposed algorithm,
confidence intervals are systematically calculated for the esti-
mated parameters and on par with the sampling resolution of the
recorded neural data in a single trial, as opposed to the bootstrap
resampling technique which requires multiple realizations of the
parameters for computing the confidence bounds.

B. Decoding Auditory Attention From TRF Dynamics

We are further interested in employing the attention-
modulation characteristic of the τ̂M100,n response as an indicator

of the attentional state of the listener. Consider the
attention-switch experiment in which subjects were asked to at-
tend to one of the speakers for the first half of the trial and then
switch their attention to the opposite speaker for the remaining
time of that trial. We first use the proposed algorithm to com-
pute the TRFs for both speaker 1 and speaker 2, as outlined in
Section III-A. We can then monitor the relative amplitude of the
τ̂M100,n component in the estimated TRFs and decode which
speaker the listener was attending to. This is specifically impor-
tant for real-time applications, such as the next generation of
intelligent hearing aids, in which a real-time and reliable decod-
ing framework for the attentional state of listeners is required,
as the neural data recorded via a commercialized EEG device is
streaming to the processor of the hearing aid device to improve
amplification selectivity.

To better illustrate the dynamic tracking of the τ̂M100,n re-
sponse, two videos from two different subjects consisting of the
estimated TRFs for speakers 1 and 2 from a single trial are pro-
vided in an attention-switching condition (TRFVideo1.mov,
and TRFVideo2.mov, respectively). In these videos, the
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Fig. 3. Amplitude comparison for (a1) τ̂M50 ,n and (a2) τ̂M100 ,n com-
ponents during attended and unattended conditions. Each circle corre-
sponds to a single trial, and the constant-attention and attention-switch
conditions are color coded by red and blue circles, respectively. For each
trial, the time fractions in which the amplitude of the auditory component
is significantly larger (y-axis) or smaller (x-axis) in attended versus unat-
tended TRFs are computed in percentage. The dashed line (45◦ line)
corresponds to the condition that the TRF component is not modulated
by selective attention. For the τ̂M100 ,n component, the amplitude dif-
ferences are above the 45◦ line for 86% of the trials, demonstrating a
saliently strong attention modulation in τ̂M100 ,n amplitudes; however, for
the τ̂M50 ,n response, the results are more symmetrically scattered above
(42%) and below (58%) the 45◦ line, implying no significant selectivity
to attention. Scatter plots showing the corresponding results obtained
via the cross-correlation method are presented for the τ̂M50 ,n (b1) and
τ̂M100 ,n (b2) components. Cross correlation was performed on each
trial using a sliding time window of length 5 with 4.5 s overlap between
the successive windows. No attention modulation pattern is detected in
either the τ̂M50 ,n or the τ̂M100 ,n responses.

Fig. 4. Scatter plot of the correlations between the MEG signal and
the model predictions of the attended and unattended speakers using
the commonly-used static TRF estimates obtained by the least squares
technique. Each circle corresponds to a single trial, and the constant-
attention and attention-switch conditions are color coded by red and blue
circles, respectively. For each trial, the time fractions in which the cor-
relation values are significantly larger (y-axis) or smaller (x-axis) for the
attended versus unattended speakers are computed in percentage. The
dashed line (45◦ line) corresponds to the condition that the correlations
are not modulated by selective attention.

Fig. 5. Tracking the attentional state through the estimated τ̂M100 ,n
amplitudes. Results are shown for a sample subject. Bottom panel: the
amplitude of the τ̂M100 ,n response for the estimated TRFs from speaker
1 and speaker 2 are plotted as a function of time (5 to 55 ms) in red and
green, respectively. According to the τ̂M100 ,n amplitude comparisons,
the attention switch occurs at around 15 s after the onset of the trial.
Top panel: The TRF estimates for both speakers at times 21 and 42 s
are shown in the insets A and B, respectively. The putative temporal
location of the τ̂M100 ,n components are indicated via the dash lines in
each subplot. Error hulls indicate 95% confidence intervals around the
estimated parameters.

output of the algorithm for each of the estimated TRFs is plotted
as a function of time. Subjects are required to stay attended to
the speaker 1 for the first 28 s of the trial and switch to the sec-
ond speaker for the second half (the target speaker is specified
with “Instructed to Attend” in green). The τ̂M100,n responses for
each of the TRFs are circled in blue as they appear significantly
different from the base line. The middle panel shows the instan-
taneous τ̂M100,n responses, corresponding to the attended and
unattended speakers and reveals the abrupt change of the relative
τ̂M100,n amplitudes occurring around the switching time.

Fig. 5 shows the time course of the estimated τ̂M100,n

components corresponding to the two speakers, as well as
the snapshots of the TRFs at t = 21 s and t = 42 s for one
of the two subjects (corresponding to TRFVideo1.mov). In
this sample trial, the estimated τ̂M100,n for speaker 1 appears
to be significantly larger compared to the estimated τ̂M100,n

component for speaker 2 in the time range of t = 13 to 27 s,
whereas the opposite is true for the time range of t = 33 to 55 s.
Note that there is no objective behavioral measure to capture
the true switching moment for each trial. Therefore, subjects
might perform the switching a little earlier or later than the
presentation of the cue (a 2 s pause at 28 s).

IV. CONCLUSION

The goal of this study is to develop a dynamic estimation
framework for computing auditory TRF from noninvasive neural
recordings, with the capability of tracking the ongoing changes
in the brain activity in an attention-modulated auditory task,
which is shown to be correlated with cognitive behavioral and
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perceptual changes in human listeners. In a competing speaker
environment with a male and female speaker, subjects were
instructed to attend to one of the speakers while ignoring the
other in multiple experimental conditions. The TRFs estimated
from the MEG data revealed a strong attentional modulation in
the component with∼100 ms lag. This component is considered
to be analogous to the M100 evoked auditory response that is
known to be modulated by attention [15], [16], [19].

The main achievement of this study is developing an adaptive
TRF estimation technique which outperforms commonly used
batch-mode estimators—such as those based on reverse correla-
tion, boosting and LASSO—in its ability to track the attentional
modulation of the estimated TRF, on par with the sampling
resolution of the recorded neural data. To this end, we have
used a recursive ℓ1-regularized least squares (SPARLS) ap-
proach, based on an EM-type algorithm that provides a consid-
erable performance gain over the conventional linear estimation
techniques.

Our TRF estimation technique is complemented with a novel
adaptive filter for computing statistical confidence intervals of
the estimated parameters that are recursively updated as the data
are incoming. In contrast, for commonly-used estimation tech-
niques, the confidence intervals are computed through heavy
averaging of the neural data over time and multiple trials. There-
fore, these techniques are not suitable for real-time applications
in which statistically reliable estimates of the response with high
temporal resolution are required from a single trial. Our pro-
posed filter builds up on recent advances in theoretical statistics
on constructing confidence intervals for regularized estimates of
high-dimensional linear models. A MATLAB implementation
of our algorithm is archived on the GitHub repository [30].

Application of the proposed estimation technique on exper-
imentally acquired MEG data suggests that this technique is a
strong candidate for an attention decoder in multispeaker en-
vironments and can reliably identify the attended speaker with
multisecond resolution in time. The promising performance of
the proposed algorithm on MEG recordings makes it an ap-
pealing candidate for EEG applications, which forms the future
direction of this research.

APPENDIX A
RECURSIVE ESTIMATION OF CONFIDENCE INTERVALS USING

NODE-WISE REGRESSION

Recall the optimization problem from the linear model

θ̂n = argmin
θn

1
2σ2

∥∥∥Λ1/2
n yn − Λ1/2

n EnGθn

∥∥∥
2

2
+ η∥θn∥1 .

(A.1)
The minimizer θ̂n satisfies the KKT conditions given by

−GT ET
n Λ1/2

n

(
Λ1/2

n yn − Λ1/2
n EnGθ̂n

)
+ σ2ηgn = 0

(A.2)
where gn is a subgradiant of the ℓ1-norm at θ̂n . Substituting (1)
in the above equation, we get

Σn (θ̂n − θn ) + σ2ηgn = ET
n Λnvn (A.3)

where τ n indicates the true TRF and Σn := GT ET
n ΛnEnG.

Let Θn be an approximation to the inverse of Σn , then,

θ̂n − θn + σ2ηΘngn = ΘnET
n Λnvn − ∆n (A.4)

where

∆n := Λ1/2
n (ΘnΣn − I)(θ̂n − θn ). (A.5)

In [23], it is shown that ∆n is asymptotically negligible under
suitable sparsity assumptions. So, we can have the following
unbiased estimator:

θ̂
u

n = θ̂n + ΘnGT ET
n Λn (yn − EnGθ̂n ). (A.6)

Therefore, asymptotically we have

θ̂
u

n − θn = ΘnGT ET
n Λnvn (A.7)

which implies that θ̂
u

n − θn converges to a Gaussian distribution

with mean zero and covariance σ2
(
Θn Σ̃nΘT

n

)
, where Σ̃n :=

GT ET
n Λ2

nEnG. Noting that τ̂ n = Gθ̂n , the asymptotic point-
wise confidence interval for (τ̂ u

n )i is given by

±Φ−1(1 − ν/2) σ

√(
GΘn Σ̃nΘT

n GT
)

i,i
(A.8)

where Φ(.) denotes the CDF of N (0, 1).
Next, we will derive a recursive formulation for computing the

approximate inverse Θn . Let (GEn )j versus (GEn )\j , denote
to the jth column and the submatrix of GEn with the jth
column removed, respectively. The node-wise regression for
the jth column of GEn corresponds to computing [29]:

γ̂j,n :=argmin
γ∈RM −1

{
∥Λ1/2

n (GEn )j −(GEn )\jΛ1/2
n γ∥2

2 + η∥γ∥1

}

(A.9)
where γ̂j,n is a vector of coefficients for a sparse representation
of the jth column of GEn in terms of the rest of the columns.
Note that the computation of γ̂j,n can be carried out recursively
using the SPARLS algorithm, for all j = 1, 2, . . . ,M in paral-
lel. The coefficients γ̂j,n are then used to form the following
matrix:

Cn :=

⎡

⎢⎢⎢⎢⎢⎣

1 −(γ̂2,n )1 . . . −(γ̂M,n )1

−(γ̂1,n )2 1 . . . −(γ̂M,n )2

...
...

. . .
...

−(γ̂1,n )M −(γ̂M,n )M . . . 1

⎤

⎥⎥⎥⎥⎥⎦
. (A.10)

For j = 1, 2, . . . , M , letting

ω2
j,n :=

(
Λ1/2

n (GEn )j − Λ1/2
n (GEn )\j γ̂j,n

)T
Λ1/2

n (GEn )j ,

(A.11)
and

T2
n := diag(ω2

1,n ,ω2
2,n , . . . ,ω2

M,n ) (A.12)

the approximate inverse matrix Θn is defined as

Θn := T−2
n Cn . (A.13)
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Finally, using the recursions

Σn = λΣn−1 + GT eneT
n G

Σ̃n = λ2Σ̃n−1 + GT eneT
n G

σi,n = λσi,n−1 + (GT en )\i(GT en )i

and noting that ωi,n = (Σn )i,i − σT
i,nγi,n , the recursive steps

given in Algorithm 2 follow. Please refer to [23] for the technical
details regarding the above-mentioned asymptotic result.
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[31] A. de Cheveigné and J. Z. Simon, “Denoising based on time-shift PCA,”
J. Neurosci. Methods, vol. 165, no. 2, pp. 297–305, 2007.
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