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The underlyingmechanism of how thehuman brain solves the cocktail party problem is largely unknown. Recent
neuroimaging studies, however, suggest salient temporal correlations between the auditory neural response and
the attended auditory object. Using magnetoencephalography (MEG) recordings of the neural responses of
human subjects, we propose a decoding approach for tracking the attentional state while subjects are selectively
listening to one of the two speech streams embedded in a competing-speaker environment. We develop a
biophysically-inspired state-space model to account for the modulation of the neural response with respect to
the attentional state of the listener. The constructed decoder is based on amaximum a posteriori (MAP) estimate
of the state parameters via the Expectation Maximization (EM) algorithm. Using only the envelope of the two
speech streams as covariates, the proposed decoder enables us to track the attentional state of the listener
with a temporal resolution of the order of seconds, together with statistical confidence intervals. We evaluate
the performance of the proposed model using numerical simulations and experimentally measured evoked
MEG responses from the human brain. Our analysis reveals considerable performance gains provided by the
state-space model in terms of temporal resolution, computational complexity and decoding accuracy.

© 2015 Elsevier Inc. All rights reserved.
Introduction

One of the hallmarks of brain function is the ability to segregate and
focus on an auditory object in a complex auditory scene. From amathe-
matical perspective, this is a highly ill-posed problem; however, our
brain is able to solve this problem in a remarkably fast and accurate
fashion. It has been hypothesized that after entering the auditory sys-
tem, the complex auditory signal resulting from sound sources in a
crowded environment is decomposed into acoustic features at different
stages of the auditory pathway. Then, a rich representation of
spectrotemporal features reaches the auditory cortex, where an appro-
priate binding of the relevant features and discounting of others leads to
the perception of an auditory object (Bergman, 1994; Griffiths and
Warren, 2004; Fishman and Steinschneider, 2010; Shamma et al.,
2011). A compelling example is the Cocktail Party effect (Cherry,
1953; Brungart, 2001; McDermott, 2009), in which a listener is able to
attend to an individual speaker in the presence of other competing
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speakers and to segregate the attended speech from all other sound
sources in the environment.

The neural representation of speech as a distinct auditory object has
been extensively studied using auditory scenes consisting of pairs of
concurrent speech streams mixed into a single acoustic channel with
no spatial cues provided. Any neural representation of a single stream
of speech (considered as an auditory object) involves complex segrega-
tion and grouping processes (Ding and Simon, 2012a,b; Mesgarani and
Chang, 2012; O'Sullivan et al., 2014), given the substantial overlaps in
spectral and temporal domains. As reported by these studies, con-
current auditory objects — even those with highly overlapping
spectrotemporal features — are neurally encoded as a distinct object
in the auditory cortex and emerge as fundamental representational
units for high-level cognitive processing. In the case of listening to
speech, it has recently been demonstrated that the auditory response
manifested in magnetoencephalographic recordings is strongly modu-
lated by the spectrotemporal features of the speech (Ding and Simon,
2012b; Pasley et al., 2012). In the presence of two speakers, this modu-
lation appears to be strongly phase-locked to the spectrotemporal fea-
tures of the attended speaker as opposed to the unattended speaker
(See Fig. 1) (Ding and Simon, 2012a; Mesgarani and Chang, 2012).

A widely-used mathematical approach for decoding these cortical
modulations is reverse correlation, which can be used to reconstruct
the stimulus from the response of the neural population, which then
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Fig. 1. Schematic depiction of auditory object encoding in the auditory cortex. Here, the auditory scene consists of themixture of two concurrent speech streams. Recent studies show that
cortical activity (black traces) is selectively phased-locked to the temporal envelope of the attended speaker as opposed to the unattended speaker's envelope.

907S. Akram et al. / NeuroImage 124 (2016) 906–917
can be compared with the original stimulus to reveal preserved or
dismissed features in the population response (Bialek et al., 1991;
Gielen et al., 1988;Hesselmans and Johannesma, 1989). Althoughuseful
for evaluating data from neural populations using electrocorticography
(ECoG) (Mesgarani et al., 2009; Mesgarani and Chang, 2012), MEG
(Ding and Simon, 2012a,b) and EEG (O'Sullivan et al., 2014; Mirkovic
et al., 2015), this method has a number of limitations. The achievable
temporal resolution of the current techniques is of the order of minutes.
In a real-world scenario, attention of the listener can switchdynamically
from one speaker to another; therefore, an appropriate decoder needs
to have a dynamic estimation frameworkwith high temporal resolution
in order to capture attention switches in real-time, especially in light of
the emergence and rapid growth of brain–computer interface systems.
Moreover, these decoders often rely on ad-hoc assumptions and simpli-
fications, which in turn overshadow a reliable statistical interpretation
of the data.

In this paper, we overcome the aforementioned limitations by intro-
ducing a biophysically-inspired state-space model that accounts for the
dynamicity of the attentional state as well as its correlation with MEG
observations in a competing-speaker scenario. State-space models are
widely used in control engineering for describing the dynamics of the
systems under study (Hinrichsen and Pritchard, 2005). These models
consist of two components: one relating the observations from a sto-
chastic dynamical system to a set of unobserved state variables (forward
model), and the other describing the time evolution of the unobserved
states (state dynamics). By combining the forward model and state dy-
namics in a probabilistic framework, it is possible to obtain accurate es-
timates of the system parameters, perform prediction, and design
control mechanisms. Here, we first utilize a forward model relating the
auditory neural response activity to the envelopes of the two speech
streams by employing the sparse structure of the auditory response.
We then model the attentional state of the listener using a non-
stationary Bernoulli process. Finally, we employ vonMises–Fisher circu-
lar statistics to form a robust inverse model that accounts for the corre-
lation of the observed neural response activity with respect to the two
speech streams. We use the Maximum a posteriori (MAP) estimation
framework to infer the state-space parameters from the observed data.
In particular, we devise a novel application of two nested Expectation–
Maximization (EM) algorithms to efficiently solve the MAP problem.

Our proposed model has several advantages over existing methods.
First, theoretically speaking, our state-space model is able to preserve
dynamics as fast as the sampling resolution. Simulation studies as well
as application to experimental data reveal that our model is indeed ca-
pable of predicting the attentional state of the listener with a temporal
resolution of seconds, which is a significant improvement over the
state-of-the-art temporal resolution ofminutes. Second, we only require
the envelopes of the two speech streams as covariates, which is a
substantial reduction in the dimension of the spectrotemporal feature
set used for decoding auditory attention. Finally, our state-space frame-
work provides confidence bounds on the state parameters, which can in
turn be used for precise statistical inference procedures such as hypoth-
esis testing. We further provide simulation studies as well as applica-
tions of our method on experimentally acquired neural response data.
Our analyses reveal the superior performance of the proposed decoder
in tracking the attentional state of a listener in a competing-speaker
environment, as compared to existing techniques.

Methods

Modeling

We divide our modeling framework into three stages: the forward
problem of relating the neural response observations to the temporal
features of the attended and unattended speech streams; the attention
model which takes into account the dynamics of selective attention;
and the inverse problem of decoding the attentional state of the listener
given the neural response observations and the temporal features of the
two speech streams.

The forward problem: Estimating the temporal response function
Consider a task where the subject is passively listening to a speech

stream. Let the discrete-time neural response observation at time t,
sensor j, and trial r be denoted by xt,j,r, for t = 1, 2, ..., T, j = 1, 2, ..., M
and r = 1, 2, ..., R. Let the time series y1,r, y2,r, ..., yT,r denote an auditory
component of the MEG observations. This component can be obtained
through source localization techniques or sensor-space source separa-
tion algorithms, and will be referred to hereafter as the neural response
(See SectionMEG processing and neural source localization). Also, let Et
be the speech envelope of the speaker at time t in dB scale. In a linear
model, the neural response is linearly related to the envelope of speech
as:

yt;r ¼ τt � Et þ vt;r ; ð1Þ

where τt is a linear filter of length L denoted by the temporal response
function (TRF), ∗ denotes the convolution operator, and vt,r is a nuisance
component accounting for trial-dependent and stimulus-independent
components manifested in the neural response. It is known that the
TRF is a sparse filter, with significant components analogous to the
M50 and M100 auditory responses (Ding and Simon, 2012a,b). A
commonly-used technique for estimating the TRF is known as Boosting
(David et al., 2007; Ding and Simon, 2012b), where the components of
the TRF are greedily selected to decrease the mean square error (MSE)
of the fit to the neural response. We employ an alternative estimation
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framework based on ‘1-regularization. Let τ := [τL, τL − 1, ..., τ1] ' be the
time-reversed version of the TRF filter in vector form, and let Et :=
[Et, Et − 1, ..., Et − L + 1] '. In order to obtain a sparse estimate of the
TRF, we seek the ‘1-regularized estimate:

τ̂ ¼ argmin
τ

XR;T
r;t¼1

yt;r−τ0Et
�� ��2

2 þ γ τk k1; ð2Þ

where γ is the regularization parameter. The above problem can be
solved using standard optimization software. We use a fast solver
based on iteratively re-weighted least squares (Ba et al., 2014). The
parameter γ is chosen by two-fold cross-validation, where the first
half of the data is used for estimating τ and the second half is used to
evaluate the goodness-of-fit in the MSE sense. In a competing-speaker
environment, where the subjects are only attending to one of the two
speakers, the linear model takes the form:

yt;r ¼ τat � Eat þ τut � Eut þ vt;r; ð3Þ

with τta, Eta, τtu, and Et
u, denoting the TRF and envelope of the attended

and unattended speakers, respectively. The above estimation frame-
work can be generalized to the two-speaker case by replacing the re-
gressor τ′Et with τa′Eta + τu′Etu, where τa, Eta, τu, and Etu are defined in
a fashion similar to the single-speaker case. Similarly, the regularization
γ‖τ‖1 is replaced by γa‖τa‖1 + γu‖τu‖1.
Selective attention: A non-stationary Bernoulli process

Suppose that at eachwindow of observation, the subject is attending
to either of the two speakers. Let nk,r be a binary variable denoting the
attention state of the subject at window k and trial r:

nk;r ¼ 1 attending to speaker 1
0 attending to speaker 2

�
ð4Þ

The subjective experience of attending to a specific speech stream
among a number of competing speeches reveals that the attention
may switch to a competing speaker, although not intended so by the lis-
tener. Therefore, we model the statistics of nk,r by a Bernoulli process
with a success probability of pk:

P nk;r jpk
� � ¼ pnk;r

k 1−pkð Þ1−nk;r : ð5Þ

A value of pk close to 1 (respectively 0) implies attention to speaker 1
(respectively 2). The process {pk}k = 1

K is assumed to be common among
different trials. In order to model the dynamics of pk, we perform a
change of variables by defining zk such that

pk ¼ logit−1 zkð Þ :¼ exp zkð Þ
1þ exp zkð Þ : ð6Þ

Note that zk and pk have a one-to-one monotonic relation, i.e., when
zk varies from −∞ to ∞, pk monotonically varies from 0 to 1. Hence, in-
stead of working with pk with a restricted range, we impose dynamics
on zkwhich admits a larger class of widely-used linear dynamicmodels.
To this end, we employ a first-order autoregressive model of the form:

zk ¼ zk−1 þwk; ð7Þ

where wk is an uncertainty parameter. The autoregressive model in
Eq. (7) implies that the parameter zk at time k is equal to zk − 1 at time
k − 1 up to some uncertainty which is modeled by a random variable
wk. Since the range of zk is symmetric around zero, we assume that
the uncertainty parameters {wk}k = 1, 2,⋯ follow centered independent
Gaussian distributions with unknown variances {ηk}k = 1, 2,⋯. If need
be, higher order autoregressive processes can be used to model the dy-
namics of zk as well as non-Gaussian distributions to capture the
uncertainty wk. However, our simulation studies as well as the analysis
of real data suggest that it is not necessary to go beyond the first-order
model and Gaussian uncertainty parameters for the problem at hand.
We further assume that ηk are distributed according to the conjugate
prior given by the inverse-Gamma distribution with hyper-parameters
α (shape) and β (scale).

The inverse problem: Decoding attentional modulation
Let y1,r, y2,r, ..., yT,r denote the neural response time series at trial r, for

r = 1, 2, ..., R during an observation period of length T. For a window
lengthW, let

yk;r :¼ y k−1ð ÞWþ1;r; y k−1ð ÞWþ2;r; :::; ykW ;r

h i
; ð8Þ

for k=1, 2, ..., K := ⌊T/W⌋. Also, let Ei,t be the speech envelope of speaker
i at time t in dB scale, i = 1, 2. We extract the envelope of the speech
signal by taking the absolute value of its analytic extension (Hilbert
Transform) and low-pass filter with a cut-off frequency of 20 Hz to ob-
tain a smoothed envelope. Let τta and τtu denote the TRFs of the attended
and unattended speakers, respectively. The neural response predictors
in the linear model are given by:

e1;t :¼ τat � E1;t þ τut � E2;t ; attending to speaker 1
e2;t :¼ τat � E2;t þ τut � E1;t ; attending to speaker 2

�
; t ¼ 1;2;⋯; T:

ð9Þ

Let

ei;k :¼ ei; k−1ð ÞWþ1; ei; k−1ð ÞWþ2; :::; ei;kW
� �

; ð10Þ

for i=1, 2 and k=1, 2,⋯, K. Recent work by (Ding and Simon, 2012a)
suggests that the neural response yk is more correlated with the predic-
tor ei,k when the subject is attending to the ith speaker at window k. Let

θi;k;r :¼ arccos
yk;r
yk;r
�� ��

2

;
ei;k
ei;k
�� ��

2

* + !
ð11Þ

denote the empirical correlation between the observed neural response
and the model prediction when attending to speaker i at window k and
trial r. When θi,k,r is close to 0 (respectively π), the neural response and
its predicted value are highly (respectively poorly) correlated. Inspired
by the findings of (Ding and Simon, 2012a), we model the statistics of
θi,k,r by the von Mises–Fisher distribution (Fisher, 1993) with density:

p θi;k;r
� � ¼ 2κW=2−1

i

2πð ÞW=2IW=2−1 κ ið Þ
exp κ i cos θi;k;r

� �� �
; θi;k;r∈ 0;π½ �; i ¼ 1;2

ð12Þ

where IW(⋅) is the Wth order modified Bessel function of the first kind,
and κi denotes the spread parameter of the von Mises–Fisher distribu-
tion for i = 1, 2. Note that the extra normalization factor of 2 in the
numerator is due to the restriction of θi,k,r to [0, π]. The vonMises–Fisher
distribution givesmore (respectively less)weight to higher (respective-
ly lower) values of correlation between the neural response and its pre-
dictor. The spread parameter κi accounts for the concentration of θi,k,r
around 0. Fig. 2 shows a schematic depiction of the von Mises–Fisher
statistics inmodeling the correlation of the neural responsewith its pre-
dictors based on speech envelopes. We assume a conjugate prior of the

form pðκ iÞ∝κ i
dðW=2−1Þ expðc0dκ iÞ

IW=2−1ðκ iÞd
over κi, for some hyper-parameters c0

and d.
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Parameter estimation: A novel em-based decoder
Let

Ω :¼ κ1; κ2; zkf gKk¼1; ηk
� 	K

k¼1

n o
ð13Þ

be the set of state-space parameters. In principle, these parameters can
be estimated throughmaximum a posteriori (MAP) estimation. Howev-
er, due to the involved functional form of the log-likelihood and partic-
ularly temporal coupling of the state parameters, directmaximization of
the log-posterior requires solving a high dimensional convex optimiza-
tion problem. Instead, we use a novel form of the Expectation–Maximi-
zation (EM) algorithm to efficiently estimate the state parameters
(Dempster et al., 1977). Taking {nk,r}k = 1,r = 1

K,R as the unobserved data,
the complete data log-posterior can lead to a feasible MAP estimate of
the parameters, due to its tractable functional form for optimization
purposes.

The overall estimation procedure consists of two nested EM
algorithms and is outlined in Algorithm 1. At the ‘th iteration of the

outer EM, the E-step involves computing Efnð‘þ1Þ
k;r jΩð‘Þ; fθi;k;rg2;K;Ri;k;r¼1g ,

using Bayes' rule, and the M-step updates κ1
(‘ + 1), κ 2

(‘ + 1),
{ηk(‘ + 1)}k = 1

K and {zk(‘ + 1)}k = 1
K . As for the last two sets of parameters,

the maximization in the M-step itself is computed using the inner EM
algorithm. In the inner EM algorithm, the E-step corresponds to a
Bernoulli smoothing algorithm (Smith and Brown, 2003; Smith et al.,
2004) and the M-step updates the state variance sequence (Shumway
and Stoffer, 1982). The detailed derivations of the estimation procedure
are provided in Appendices A and B. Confidence intervals for the esti-
mated values of pk can be obtained bymapping the confidence intervals
of the posterior estimates of the Gaussian variables zk via the inverse
logitmapping (See the output of Algorithm1). In summary, the decoder
inputs the neural response observations and the envelopes of the two
speech streams, and outputs the Bernoulli success probability sequence
corresponding to attending to speaker 1. The choice of the hyper-
parameters will be discussed in Section Decoding auditory attention
from MEG: a simulation study. We will refer to the estimator outlined
in Algorithm 1 as the attention decoder in the remainder of the paper.

Subjects, stimuli, and procedures

Eleven normal-hearing, right-handed young adults (ages between
20 and 31) participated in this study, consisting of two experiments:
constant-attention experiment (eight subjects, three female) and
attention-switch (seven subjects, four female). Four subjects (three
female) participated in both experiments. All subjects were compen-
sated for their participation. The experimental procedures were ap-
proved by the University of Maryland Institutional Review Board.
Written, informed consent was obtained from each subject before
the experiment.

The stimuli consist of segments from the book A Child's History of
England by Charles Dickens, narrated by two different readers (of
opposite genders). Four speech segments (one target and one mask-
er segment for each speaker) were used to generate three speech
mixtures. Each speech mixture was constructed by mixing two
speech segments digitally in a single channel with duration of
1 min, as described next. The first mixture was generated using the
male target segment and the female masker segment, whereas the
second mixture was generated using the female target segment
and the male masker segment. The third mixture was generated
using male and female target segments. Periods of silence longer
than 300 ms were shortened to 300 ms to keep the speech streams
flowing continuously. All stimuli were low-pass-filtered below
4 kHz and delivered diotically at both ears using tube phones
plugged into the ear canals. In all trials, the stimuli were mixtures
with equal root-mean-square values of sound amplitude, presented
roughly at a 65 dB sound pressure level (SPL).

In the constant-attention experiment, subjects were asked to focus
on one speaker (speaker 1, male; speaker 2, female) through the entire
trial. In the attention-switch experiment, subjects were instructed to
focus on one speaker in the first 28 s of the trial, switch their attention
to the other speaker after hearing a 2 second pause (28th to 30th sec-
onds), and maintain their focus on the latter speaker through the end
of that trial. Consequently, there were four conditions: 1) attending to
speaker 1 for the entire trial duration, 2) attending to speaker 2 for
the entire trial duration, 3) attending to speaker 1 and switching to
speaker 2 halfway through the trial, and 4) attending to speaker 2 and
switching to speaker 1 halfway through the trial. The first mixture
was used as the stimulus for condition 1, second mixture for condition
2 and third mixture for conditions 3 and 4. Each mixture was repeated
three times during each experimental condition. The first second of
each sectionwas replaced by the clean recording from the target speak-
er to help the listener attend to the target speaker. After each condition
was presented, subjects answered comprehensive questions related to
the passage on which they focused, as a way to keep them motivated
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in attending to the target speaker. Eighty percent of the questions were
correctly answered on average. The order of presentation for the
constant-attention experiment (conditions 1 and 2), and the attention
switch (conditions 3 and 4)was counterbalanced across subjects partic-
ipating in that experiment.

Algorithm 1. Estimation of the state-space parameters
A pilot study from subjects listening to single speakers was
performed prior to the main study. In this experiment, 6 trials (3 repe-
titions each of speaker 1 and speaker 2 target segments)were presented
to the subjects and recordings were used for estimating the Temporal
Response Functions (TRFs) in the forward model.
Data recording

MEG signalswere recorded in a dimly litmagnetically shielded room
(Yokogawa Electric Corporation) using a 160-channel whole-head sys-
tem (Kanazawa Institute of Technology, Kanazawa, Japan), and with a
sampling rate of 1 kHz. Detection coils were arranged in a uniform
array on a helmet-shaped surface on the bottom of the dewar, with
25 mm between the centers of two adjacent 15.5-mm-diameter coils.
Sensors are configured as first-order axial gradiometers with a baseline
of 50 mm; their field sensitivities are 5 fT/

ffiffiffiffiffiffi
Hz

p
or better in the white

noise region.
Stimuli were presented using the software package Presentation

(Neurobehavioral Systems, Inc., Berkeley, CA, USA). The sounds (ap-
proximately 65 dB SPL) were delivered to the participants Õ ears with
50 Ω sound tubing (E-A-RTONE 3A; Etymotic Research), attached to
E-A-RLINK foam plugs inserted into the ear canal. The entire acoustic
delivery system was equalized to give an approximately flat transfer
function from 40 to 3000 Hz, thereby encompassing the range of the
presently delivered stimuli.

A 200 Hz low-pass filter and a notch filter at 60 Hz were applied to
the magnetic signal online. Three of the 160 channels were magnetom-
eters separated from the others and used as reference channels in mea-
suring and canceling environmental noise (de Cheveigné and Simon,
2007). Five electromagnetic coils were used to measure each subject's
head position inside the MEG machine. The head position was
measured twice during the experiment, once before and once after to
quantify the head movement.
MEG processing and neural source localization

Recorded MEG signals contained both stimulus-driven responses
and stimulus-irrelevant background neural activity. In order to ex-
tract components that were phase-locked to the stimulus and con-
sistent over trials, as opposed to the random irrelevant activities,
we employed the Denoising Source Separation (DSS) algorithm
(Särelä and Valpola, 2005; de Cheveigné and Simon, 2008). This al-
gorithm is a blind source separation method that decomposes the
data into temporally uncorrelated components by removing incon-
sistent temporal components not phased-locked to the stimulus. In
other words, DSS suppresses the components of the data that are
noise-like and enhances those that are consistent across trials, with
no knowledge of the stimulus or the timing of the task. The recorded
neural response during each 60 s was band-pass filtered between
1–8 Hz and down sampled to 200 Hz before submission to the DSS
analysis. We found that the first DSS component alone was sufficient,
so analysis was restricted to this component, whichwe denote by the
auditory neural response throughout this paper. The spatial magnet-
ic field distribution pattern of the auditory neural response was used
for neural source localization. In all subjects, the magnetic field cor-
responding to the auditory neural response showed a stereotypical
bilateral dipolar pattern (See Fig. 3-A).

Results

In order to evaluate the performance of the state-space model in
decoding the attentional state of listeners and to illustrate the effective-
ness of this model in various stimulus conditions, a number of realistic
simulations and experimental data sets were employed. We first pres-
ent our results on the robust estimation of the TRF, which forms the
basis of the forward models used in both simulations and experimental
data analysis. We will then present simulation results which highlight
the capability of our proposed estimation framework in tracking the at-
tentional state under awide range of SNR values aswell as dynamics. Fi-
nally, we will apply the proposed attentional decoding framework to
experimental MEG data from several subjects which chimes in accor-
dance to our simulation studies.

TRF estimation

TRFs corresponding to the attended speaker were estimated from
the pilot conditions, where only single speech streams were present-
ed to the subjects. Separate TRFs were obtained for speakers one and
two, using 3 repeated trials for each and the TRF with smaller nor-
malized least square error was chosen and used throughout the
rest of our analysis. The TRF corresponding to the unattended speak-
er was approximated by truncating the attended TRF beyond a lag of
90 ms, on the grounds of the recent findings of Ding and Simon
(2012a), which show that the components of the unattended TRF
are significantly suppressed beyond the M50 evoked field. An exam-
ple of an estimated TRF using the auditory neural response for a
sample subject is shown in Fig. 3-B. The spatial magnetic field distri-
bution pattern of the auditory neural response (Fig. 3-A) demon-
strates a stereotypical bilateral dipolar pattern, as expected for
auditory evoked field.

Decoding auditory attention from MEG: A simulation Study

In order to simulate neural response modulated by attention, first a
binary sequence {nk,r}k = 1,r = 1

240,3 was generated as realizations of a
Bernoulli process with success probability pk = 0.95 or 0.05, corre-
sponding to attention to the first or second speakers, respectively. The
total observation time was 60 s with a sampling rate of Fs = 200 Hz
(T = 12,000 samples) and the processing window length was chosen
to be 250 ms (W = 50 samples). Using a TRF template of length 0.5 s
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the figure.
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estimated from experimental data (See Section TRF estimation), we
generated 3 trials for various SNR values and with multiple attention
switches throughout each trial.

Figs. 4-A and -B show the simulated neural signal (black traces) and
predictors of attending to speaker one and two (red traces) at an SNR of
10 dB. Regions indicated by arrows in panels A and B demonstrate the
time intervals, in which listeners are supposed to attend to either of
the two speakers.

The hyper-parameters for the von Mises–Fisher distribution were
chosen as d= 100KR/2 and c0 = 0.01, consistent with the observed cor-
relation values between the simulated neural response and the model
prediction. The choice of d = 100KR/2 gives more weight to the prior
than the empirical estimate of κi. The hyper-parameters α and β for the
inverse-Gamma prior on the state variance were chosen as α = 2.01
and β = 0.5. This choice of α close to 2 results in a non-informative
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estimated attentional state follows the target speaker (the opposite speaker) as a function of d
prior, as the variance of the prior is given by β2/[(α − 1)2(α −
2)] ≈ 245, while the mean is given by β/(α− 1)≈ 0.5.

Estimated values of {pk}k = 1
240 (green trace) and the corresponding

confidence intervals (green hull) are shown in Fig. 4-C. The estimated
pk values reliably track the attentional state, and the transitions are
capturedwith high accuracy. MEG data recorded from the brain is usual-
ly contaminatedwith environmental noise aswell as nuisance sources of
neural activity, which can considerably decrease the SNR of the mea-
sured signal. In order to test the robustness of the decoder with respect
to observation noise, we repeated the above simulation with SNR values
ranging from−20 to 10 dB. As demonstrated in Fig. 4-D, the confidence
intervals and the estimated transitionwidthwiden gracefully as the SNR
decreases. The dynamic denoising feature of the proposed state-space
model results in a desirable decoding performance for SNR values
above−15 dB (Fig. 4-E).
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Decoding auditory attention from MEG: Application to experimental MEG
data

We assessed our proposed state-space model and decoder on exper-
imentalMEG data recorded from 11 human subjects who listened to one
of the two competing speakers in constant-attention and attention-
switch experiments (see Methods). All hyper-parameters in the model
were chosen similar to those of the simulation studies in the previous
section, except for the prior parameter c0 for the vonMises–Fisher distri-
bution which was conservatively chosen as c0 = 0.01, consistent with
the observed correlation values between the simulated neural response
and the model prediction.

The predicted pk values resulted from single and multi-trial analysis
are shown in Fig. 5 for three sample subjects. For multi-trial analysis
(3rd panel of each plot) 90% confidence intervals are shown by the
shaded hulls around the estimated values. In the first and second condi-
tions subjects were instructed to maintain their attention through the
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For the third and fourth conditions, subjects were instructed to switch
their attention after hearing a 2 s pause, in the middle of each trial,
from the speaker one to the speaker two (Fig. 5–C) and from the speaker
two to the speaker one (Fig. 5-D). Using multiple-trial analysis, the de-
coderwas able to capture the attentional switch occurring roughly half-
way through the trial. The decoding of individual trials in the fourth
panel of Fig. 5-C & -D suggest that the exact switching times were not
consistent across different trials, as the attentional switch might have
occurred slightly earlier or later than the presented cue.
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90% formulti-trial and 70% for single-trial analysis. An illustrative exam-
ple of the time intervals in which a sample subject is in target, alterna-
tive target (Alt-target) or unfollowed attentional sate is shown in
Fig. 6-A, for a sample trial in speaker one-speaker two attention-
switch condition (condition 3). The evaluated target and Alt-target at-
tentional time fractions for single trials are plotted in Figs. 6-B1 and
-B2, for the constant-attention and the attention-switch experiments,
respectively. As shown in these figures, most of the data points fall
above the identity line, indicating larger time fractions in which the tar-
get speakers were attended vs. the alternative targets. The behavioral
results from multi-trial analysis were significantly improved compared
to the single-trial estimations (onewayANOVA, P b 0.01). This is indeed
expected from the state-space formulation, as the variance of the state
variable zk is inversely proportional to the number of trials R (See
Eq. (A.5)). The results of multi-trial estimations are shown in Figs. 6-
C1 & -C2 for each individual subject and two experimental conditions.
The median, 25% and 75% quartile values are shown in separate box
plots for target and Alt-target attended time fractions and for each indi-
vidual experiment. In addition, individual subject performances aver-
aged over condition pairs within constant-attention experiment
(conditions one & two) and attention-switch experiment (conditions
three & four) are plotted in blue on top of the corresponding box
plots. Evaluated performances for the decoded attentional states show
that time fractions in which the target speakers were attended to,
were significantly larger than the Alt-target attended time fractions
(one way ANOVA, P b 0.001), highlighting the successful decoding of
the attentional states via the state-space model.

Discussion

In this study, we developed a biophysically-inspired state-space
model that provides an estimation framework for decoding the
attentional state of a listener in a competing-speaker environment.
The proposed algorithm takes advantage of the temporal continuity
in the attentional state, resulting in a decoding performance, which
is highly accurate and resolved in time. Parameter estimation of
this model is carried out using the EM algorithm, which is tied to
the efficient computation of the Bernoulli process smoothing,
resulting in a very low overall computational complexity. The output
of the state-space model at each EM iteration is plotted in Fig. 7 for a
sample subject and all four experimental conditions. These plots il-
lustrate the convergence path of the EM iterations in estimating
the attention probability values pk, starting from values at chance
level (0.5) and converging to values near 0 or 1 depending on the
targeted speaker.

The novel state space model proposed in this study is supported by
performance evaluation of themodel on realistic simulated data, aswell
as evoked neural activity from the auditory cortex of humans, recorded
via MEG. These studies divulge two main advantages in the current
model over the state of the art methods such as the reverse correlation
technique (Bialek et al., 1991; Gielen et al., 1988; Hesselmans and
Johannesma, 1989).

First, in this proposed model, temporal resolution of the estimat-
ed state of attention is in the order of a few seconds rather than a
minute. This resolution is comparable to empirically estimated
speed of attention switching in humans; therefore the proposed
model provides a dynamic framework for tracking the attentional
state of a listener in real world scenarios. This is a considerable im-
provement over the commonly used methods based on reverse cor-
relation, in which the recovery of the stimulus paradigm from the
corresponding neural response results is a poor reconstruction of
the stimulus using short processing time windows, and therefore
fails in tracking the attentional state in a precise fashion (Ding and
Simon, 2012a; Mesgarani and Chang, 2012).
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Second, the principled statistical framework used in constructing the
decoder allows us to obtain confidence bounds on the estimated atten-
tional state. This feature is crucial to obtaining a statistically principled
framework for assessing the validity of the algorithm output. Moreover,
the proposed approach benefits from the inherentmodel-baseddynam-
ic denoising of the underlying state-space model, and is able to reliably
decode the attentional state under very low SNR conditions. A compar-
ison of our method with a correlation-based classifier (without the
state-space mechanism) was presented in our earlier work (Akram
et al., 2014), which confirmed the latter observation and revealed a sig-
nificant performance gap.

A potential application of this analysis framework is to be used as a
real-time cocktail party analyzer, tracking the attentional state of a lis-
tener in a complex auditory environment. The state-space model pro-
vides estimation of the probability of attending to either one of the
speakers at each time point t based on the recorded neural data at all
other time points before (via non-linear filtering) and after (via
backward smoothing) t. Assuming that the cognitive state of attention
is a continuous process in time, this continuity is appropriately
accounted for in the proposed model; however, for real-time Brain–
Computer Interface (BCI) applications, the smoothing step can be omit-
ted and estimation of the attentional state can be causally carried out via
the proposed non-linear filter.

Future work includes generalization of the proposed model to
more realistic and complex auditory environments with more di-
verse sources such as mixtures of speech, music and structured back-
ground noise. Nevertheless, the promising performance of the
proposed algorithm for MEG recordings makes it an appealing candi-
date for EEG applications.

Acknowledgment

This work was supported by the National Institutes of Health (NIH),
1R01AG036424.
Appendix A. Parameter estimation of the inverse problem

Let

Ω :¼ κ1; κ2; zkf gKk¼1; ηk
� 	K

k¼1

n o
ðA:1Þ

be the set of parameters.
The log-posterior of the parameter set Ω given the observed data {θi,k,r}i,k,r = 1

2,T,R is given by:

log p Ω θi;k;r
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where cst. denotes terms that are not functions ofΩ. The MAP estimate of the parameters is difficult to obtain given the involved functional form of
the log-posterior. However, the complete data log-posterior, where the unobservable sequence {nk,r}k = 1,r = 1

K,R is given, takes the form:

log p Ω θi;k;r ;nk;r
� 	2;K;R

i;k;r¼1

���� 
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� �
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The log-posterior of the parameters given the complete data has a tractable functional form for optimization purposes. Therefore, by taking
{nk,r}k = 1,r = 1

K,R as the unobserved data, we can estimate Ω via the EM algorithm (Dempster et al., 1977). Using Bayes' rule, the expectation of nk,r,
given {θi,k,r}i,k,r = 1

2,K,R and current estimates of the parameters Ω(‘) := {κ1
(‘), κ2

(‘), {zk
(‘)}k = 1

K , {ηk
(‘)}k = 1

K } is given by:
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Denoting the above expectation by the shorthand Eð‘Þfnk;rg, the M-step of the EM algorithm for κ1
(‘ + 1) and κ2

(‘ + 1) gives:
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where AðxÞ :¼ −W=2−1
x þ 0:5ðIW=2−2ðxÞþIW=2ðxÞÞ

IW=2−1ðxÞ , with IW(⋅) denoting the Wth order modified Bessel function of the first kind. Inversion of A(⋅) can be

carried out numerically in order tofind κ1
(‘ + 1) and κ2

(‘ + 1). TheM-step for {ηk}k=1
K and {zk}k=1

K corresponds to the followingmaximization problem:
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An efficient approximate solution to this maximization problem is given by another EM algorithm,where the E-step is the point process smooth-
ing algorithm (Smith and Brown, 2003; Smith et al., 2004) and the M-step updates the state variance sequence (Shumway and Stoffer, 1982). At
iteration m, given an estimate of ηk(‘ + 1), denoted by ηk(‘ + 1,m), the forward pass of the E-step for k = 1, 2, ..., K is given by:
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Note that the third equation in the forward filter is non-linear in zð‘þ1;mÞ
kjk , and can be solved using standard techniques (e.g., Newton's method).

More details on derivation of the non-linear forward filter can be found in Appendix B. For k= K− 1, K− 2, ..., 1, the backward pass of the E-step is
given by:
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The M-step gives the updated value of ηk
(‘ + 1,m + 1) as:

η ‘þ1;mþ1ð Þ
k ¼

E z2k Ω ‘ð Þ; θi;k;r
� 	2;K;R

i;k;r¼1

���� 
þ E z2k−1 Ω ‘ð Þ; θi;k;r

� 	2;K;R
i;k;r¼1

���� 
−2E zk; zk−1 Ω ‘ð Þ; θi;k;r

� 	2;K;R
i;k;r¼1

���� 
þ 2β

1þ 2 α þ 1ð Þ

¼
z ‘þ1;mð Þ
kjK −z ‘þ1;mð Þ

k−1jK
� 2

þ σ ‘þ1;mð Þ
kjK þ σ ‘þ1;mð Þ

k−1jK −2σ ‘þ1;mð Þ
kjK s ‘þ1;mð Þ

k−1 þ 2β

1þ 2 α þ 1ð Þ :

ðA:7Þ
Appendix B. Derivation of the recursive nonlinear filtering algorithm

Assume that at time (k− 1), zk − 1|k − 1 and σ k|k − 1
2 are given. The distribution of zk given all the data up to time k isNðzk−1jk−1;σ2

kjk−1Þ, where

σ k|k − 1
2 = ηk + σ k − 1|k − 1

2 . To derive the non-linear recursive filter, we keep track of the parameters of the posterior distribution p(zk|Ω):
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logηk
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To find themode of p(zk|Ω), we apply Gaussian approximation to the posterior density. The approximation is based on recursively computing the
posterior mode zk|k and computing its variance σ k|k

2 as the negative inverse Hessian of the log-posterior probability density (Tanner, 1993). Differen-
tiating Eq. (A.1) w.r.t. zk gives

−
zk−zk−1jk−1
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and solving for z yields
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This equation is non-linear w.r.t. zk and can be solved using the Newton's method. The Hessian of Eq. (B.1) is given by

−1
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and hence the variance of zk, under the Gaussian approximation is given by:

σ2
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Appendix C. Covariance smoothing

The lagged covarianceσ k,l|K
2 can be computed from the state-space covariance smoothing algorithm (De Jong andMackinnon, 1988) given by the

following equation:

σ2
k;ljK ¼ σ2

kjk σ2
kþ1jk

� −1
σ2

kþ1;ljK ðC:1Þ

for 1 ≤ k ≤ l ≤ K. Hence, the lagged covariance term appearing in our E-step is given by:

Cov zkþ1; zk Ω ‘ð Þ; θi;k;r
� 	2;K;R

i;k;r¼1

���n o
¼ σ2

k;kþ1jK ¼ σ2
kjk σ2

kþ1jk
� −1

σ2
kþ1jK ðC:2Þ

which is easily computable using the smoothed state variances.
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