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Magnetoencephalography (MEG)
• Non-invasive, Passive, Silent 

Neural Recordings

• Simultaneous Whole-Head 
Recording (~200 sensors)

• Sensitivity
• high:  ~100 fT (10–13 Tesla)
• low:  ~104 – ~106 neurons

• Temporal Resolution: ~1 ms

• Spatial Resolution
• coarse: ~1 cm
• ambiguous      
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Imaging
= Non-invasive 
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human brain
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Neural Signals & MEG

tissue

CSF

skull

scalp
B

MEG

V
EEG

recording
surface

current
flow

orientation
of magnetic
field

Magnetic
Dipolar
Field

Projection

•Direct electrophysiological measurement
•not hemodynamic
•real-time

•No unique solution for distributed source

Photo by Fritz Goro 

•Measures spatially synchronized  
cortical activity

•Fine temporal resolution (~ 1 ms)
•Moderate spatial resolution (~ 1 cm)



MEG Auditory Field
Flattened Isofield Contour Map

Strongly 
Lateralized

Sink Source

40 fT/step t = 98 ms

Instantaneous Magnetic Field



MEG Auditory Field

Sagittal View Axial View

Chait, Poeppel and Simon, Cerebral Cortex (2006)

Strongly 
Lateralized



MEG Auditory Field

Chait et al., Cerebral Cortex (2006)



MEG Auditory Field

Chait et al., Cerebral Cortex (2006)



MEG & Auditory Cortex
• Non-invasive, Passive, Silent Neural 

Recordings

• MEG Response Patterns Time-Locked 
to Stimulus Events

• Robust

• Strongly Lateralized

• Cortical Origin Only

Pure Tone

Broadband Noise

time (ms)

time (ms)



MEG Responses 

Auditory
Model

to Speech Modulations



Ding & Simon, J Neurophysiol (2012) “Spectro-Temporal Response Function”

(up to ~10 Hz)

MEG Responses 
Predicted by STRF Model

Linear Kernel = STRF

Long duration speech: ~60 s
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MEG Responses 
Predicted by STRF Model

Linear Kernel = STRF

Long duration speech: ~60 s



Frequency Dependence 
of STRF Predictability

Ding & Simon, J Neurophysiol (2012)
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Stimulus Information 
Encoded in Response
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Correlation between 
stimulus envelope and 
reconstructed envelope 
(right hemisphere)

4 bit/s Fano bound
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Decoding Accuracy
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Decoding Accuracy
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Ding & Simon, J Neurophysiol (2012)
Zion-Golumbic et al., Neuron (2013)

Neural Reconstruction of 
Speech Envelope

2 s

stimulus speech envelope
reconstructed stimulus speech envelope

Reconstruction accuracy comparable to 
single unit & ECoG recordings

(up to ~ 10 Hz)

MEG Responses

...

Decoder
Speech Envelope
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Neural Representation 
of Speech: Temporal



Speech in Stationary Noise

Ding & Simon, J Neuroscience (2013)



Speech in Stationary Noise

Ding & Simon, J Neuroscience (2013)



Speech in Noise: Results
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Multiple Cortical Speech 
Representations?

Di Liberto, et al. (2015) Low-Frequency Cortical 
Entrainment to Speech Reflects Phoneme-Level 
Processing

Kayser et al. (2015) Irregular Speech Rate 
Dissociates Auditory Cortical Entrainment, Evoked 
Responses, and Frontal Alpha

Ding et al. (2015) Cortical tracking of hierarchical 
linguistic structures in connected speech



Cortical Speech 
Representations

• Neural Representations: Encoding & Decoding

• Linear models: Useful & Robust

• Speech Envelope only (as seen in MEG)

• Envelope Rates: ~ 1 - 10 Hz

• Intelligibility linked to lower range of 
frequencies (Delta) 



Alex Katz, 
The Cocktail Party

Listening to Speech at 
the Cocktail Party
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speech

competing speech

Competing Speech Streams



Selective Neural 
Encoding



Selective Neural 
Encoding



Unselective vs. Selective 
Neural Encoding



Selective Neural 
Encoding



Selective Encoding: Results
representative 

subject

Identical Stimuli!

reconstructed  
from MEG

attended speech 
envelopes

reconstructed  
from MEG

attending to
speaker 1

attending to
speaker 2

Ding & Simon, PNAS (2012)



Single Trial Speech 
Reconstruction

Ding & Simon, PNAS (2012)



Single Trial Speech 
Reconstruction

Ding & Simon, PNAS (2012)



Overall Speech 
Reconstruction

0.2

0

0.1

co
rre

la
tio

n

attended speech
reconstruction

background
reconstruction

attended speech background 

Distinct neural 
representations 
for different 
speech streams



Invariance under Relative 
Loudness Change

attended

backgroundco
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Speaker Relative Intensity  (dB)

Neural Results

• Neural representation invariant to relative loudness change

• Stream-based Gain Control, not stimulus-based



Forward STRF Model

Spectro-Temporal 
Response Function 
(STRF)
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STRF Results

•STRF separable (time, frequency)
•300 Hz - 2 kHz dominant carriers
•M50STRF positive peak
•M100STRF negative peak

TRF

•M100STRF strongly modulated 
by attention, but not M50STRF
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Neural Sources

RightLeft

an
te
rio
r

po
st
er
io
r

medial

M50STRF
M100STRF
M100

•M100STRF source near 
(same as?) M100 
source:  
Planum Temporale

•M50STRF source is 
anterior and medial 
to M100 (same as 
M50?):  
Heschl’s Gyrus

5 mm

•PT strongly modulated by 
attention, but not HG



Recent Results

• Attentional Dynamics

• Aging & Cortical Representations of Speech

• High Level Interference & Noise
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• Simple dynamical 
model of neural 
correlate of 
attentional direction

• Time resolution ~5 s 
(not, e.g., 60 s)

• Less conservative in 
assumptions regarding 
actual subject 
behavior

• Observable 
attentional (neural) 
dynamics
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TRF Dynamics
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• Dynamical model 
entire TRF, including 
attentional 
modulation

• Time resolution still 
~5 s



Recent Results

• Attentional Dynamics

• Aging & Cortical Representations of Speech

• High Level Interference & Noise
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Speech Over-Representation

Speech Reconstruction by SubjectPresacco et al., J Neurophysiol (2016a)

Re
co

ns
tru

ct
io

n 
Ac

cu
ra

cy



Speech Over-Representation

Speech Reconstruction by Subject

Speech Reconstruction by SNR

Quiet +3 dB 0 dB -3 dB -6 dB
0

0.1

0.2

0.3

0.4

r

Older Younger

500350500 500350150 500350150 500350150
0

0.1

0.2

0.3

0.4

r

Noise

***

***

*

N.S.
N.S.

**
** *** *

Quiet Integration
time (ms)

Re
co

ns
tru

ct
io

n 
Ac

cu
ra

cy

Presacco et al., J Neurophysiol (2016a)

Re
co

ns
tru

ct
io

n 
Ac

cu
ra

cy



Aging & Integration Time
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Neural vs Inhibitory Control
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Recent Results

• Attentional Dynamics

• Aging & Cortical Representations of Speech

• High Level Interference & Noise
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• Unfamiliarity of  
Background
- Boosts Intelligibility  

of Attended Speech
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Reconstruction  
of Attended Speech
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Summary
• Cortical representations of speech
- representation of envelope (up to ~10 Hz)
- robust against a variety of noise types
- neural representation of perceptual object 

• Object-based representation at 100 ms latency (PT), 
but not by 50 ms (HG)

• Robust Dynamical Foreground Monitoring

• Over-Representation with Aging
- Reconstruction depends on integration time
- Over-Representation tracks inhibitory control

• Background familiarity: neural tracks behavior
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