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MEG in speech: TRFs

• Linear filter model
• Predicts MEG 

response from 
continuous stimulus.
• “Best” Kernel : 

temporal response 
function 

M100
Attentional state Cortical origin???

(*adapted from Ding & Simon (2013). Robust cortical 
encoding of slow temporal modulations of speech. In Basic 
Aspects of Hearing Springer, New York, NY.)

(*)



Two stage operation
Problems:
• High bias
• Leakage
• Limited spatial resolution

Full neural source localization power of MEG

Introduction	and	motivation
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Existing methods:



Unified	Computational	Framework
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• N sensors over the scalp
• T time points
• MEG matrix, Y (N x T)

• M voxels
• Primary current ~ virtual current dipole
• Each dipole ~ 3 components, 
• Neural current matrix, J (3M x T)

Time

Sensor space

Distributed source model



Unified	Computational	Framework

Asilomar	2018 05

Distributed source model

• L: lead-field matrix (N x 3M)
Maxwell’s equations 

• W: measurement noise matrix

Typically N ~ 102 , M ~ 104



Unified	Computational	Framework
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TRF model
• Assumption: neural sources process the 

stimulus linearly

• dth component of 3D vector TRFs 
• et : Stimulus history
• In matrix form:

• : TRF matrix
• S : stimulus covariate matrix
• V:  background activity matrix



Unified	Computational	Framework
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Our Aim: directly estimate the TRF matrix,     given 
- MEG measurement matrix, Y 
- stimulus covariate matrix, S

Modelling Assumptions:

Distributed Source Model
TRF model



Unified	Computational	Framework
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Eliminate J by marginalization:

• Temporal smoothness: Gabor basis

• Sparsity: Add norm penalty

Joint distribution:



Unified	Computational	Framework
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2,1,1-Mixed norm

• Direction invariant
• Penalizes only the 

length of 3D TRF 
vector
• No prior assumptions 

on the source activity 
directions!!!



Proposed	algorithm
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• Easy to solve for 
• But requires knowledge of 
• Not available.
• Idea: Solve for both TRF matrix, and source 

variance



Proposed	algorithm
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• Non-convex in 
• Direct optimization hard
• Update    and    alternatingly 
• Co-ordinate descent algorithm



Algorithm

• Update

• non-convex problem 
• ‘Champagne’ (Wipf et 

al., 2010) 
• each pass is guaranteed 

to reduce cost function

• Update

• smooth + non-smooth
• forward-backward 

splitting
• ‘FASTA’ (Goldstein et 

al., 2014)

Proposed	algorithm
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Initialize 

12



Results
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Dataset

•MEG Data
– 17 participants.
– Two 60-second 
segments from ‘The 
Legend of
Sleepy Hollow’ by 
Washington Irving.
– 3 repetitions for each 
segment.

• Average “brain 
model”
– ‘fsaverage’, 
FreeSurfer.
– scaled and 
coregistered to each 
subject's head.
– volume source 
space.
– free orientation 
lead-field matrix.



Results
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Dataset (Continued…)

•Stimulus 
representation:
– acoustic envelope, 
average over frequency 
band of an auditory 
spectrogram 
representation

• Statistical Tests:
– spatial smoothing w/ 
Gaussian kernel (s.d.
10 mm).
– tested for consistent 
directionality vs. 
uniformity (Mardia, 
2009) using 
permutation test.



Results:	Simulation	study

Asilomar	2018 15

Simulation Results:

Ground Truth Estimates

– finer source space
– direction constrained



Results:	MEG	from	story	listening
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Only significant (p <.05) values are shown.

Auditory response functions 



Summary
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• a new framework for direct TRF 
localization

• integrates the TRF and distributed 
forward source models 

• alternatingly update the TRFs and Source 
variances to optimize the objective.

• Improves estimates + their location
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Follow on Github:



Unified	Computational	Framework
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Model Schematic


