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➢ Quantified AAD limits using channel capacity and Fano's lower bound.

➢ Established algorithm-agnostic error bound for AAD performance 
evaluation.

➢ Emphasized limited decision window impact on AAD accuracy in real-
time scenarios.

➢ Future research extends to complex auditory environments, more 
speech features, multi-channel EEG/MEG data, and theoretical bounds 
used to benchmark a broader range of AAD algorithms.

1. Estimating the covariance presents a challenge due to the high dimensionality of the 
problem and limited data, which is addressed through shrinkage covariance estimation.

2. Mutual information does not admit a closed-form expression. This is addressed through 
Monte Carlo sampling.

3. Monte Carlo sampling requires drawing samples from high-dimensional distributions over 
a large number of iterations.  This is mitigated by utilizing a reparameterization technique.
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Goal

To provide an information-theoretic framework for AAD, offering a fundamental 
understanding of its capabilities and limitations.

What is AAD?

The goal of AAD is to decode the attentional state of a listener to a target speech 
stream in a multi-speaker environment, and thereby use it as a feedback to the hearing 
aid device to enhance the attended speech.
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Why a theoretical bound?

Establishing the capabilities and limitations of AAD algorithms is important in practice, 
especially for manufacturers of hearing devices. Is it possible to achieve a near 100% 
decoding accuracy in practice?

Key contribution :  AAD as a noisy communication channel
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Lower Error Bound

➢ Utilizing Fano's inequality, the lower bound for the probability of error is 𝑃𝑒  ≥  𝐻𝑏
−1 𝐻 𝑋 𝑌

where, 𝑃𝑒 = 𝑃 ෠𝑋  ≠  𝑋 , 𝐻 ⋅  is the binary entropy function, and 𝐻𝑏
−1(⋅) is the inverse binary 

entropy function over the domain [0,1]. 
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➢ The neural response observed by MEG  is a linear convolution of a kernel, known as TRF, with the 
envelope of the speech. 

Ding & Simon, 2012

➢ With two equally-loud speakers, the neural response, 𝑚𝑡 =
𝜏𝑎 ∗ 𝑒𝑡
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(𝑎)

, 𝑒𝑡
(𝑢)

, 𝜏𝑎, 𝜏𝑢, and 𝜂𝑡 denote attended speech, unattended speech, attended TRF, 
unattended TRF, and noise term representing un-modeled neural processes and measurement 
noise, respectively. 

Real Data Application

➢ 10 subjects, 6 trials, 60 s 
long experiment; TRFs 
estimated via boosting 
(500 ms long).

➢ The two decoders 
perform better than 
chance level (single-trial 
decoding) at  > 20 s.

➢ Some room for 
improvement, but not 
too much!

➢ Capacity reaches ~1 bit 
at ~30 s!

➢ Implication:  30 s of 
neural response 
information for reliable 
attention recovery.

Simulation Results

➢ 100 trials, 60 s long 
experiment, attended 
TRF with deeper M100 
peak.

➢ Error bound reaches 
~0% at ~30 s.

➢ Decoders used: 
Correlation-based and 
Bayes' with Gaussian 
assumption; Both 
decoders perform 
better than chance level 
at >20 s.
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Estimating TRF model parameters

➢ TRFs are computed using ridge regression or boosting. Then, the two predicted MEG responses 
would be:

Attended to speaker    1: ෞ𝑚𝑡
(1) = 𝜏𝑎∗ 𝑒𝑡

1
+ 𝜏𝑢 ∗ 𝑒𝑡

2

Unttended to speaker 2: ෞ𝑚𝑡
(2) = 𝜏𝑎 ∗ 𝑒𝑡

2
+ 𝜏𝑢 ∗ 𝑒𝑡

1

➢ The noise covariance for each model is estimated via covariance shrinkage.

➢ In conventional AAD, the Pearson correlation between the two predictions and the observed 
signal determine the attended speaker, and the AAD's error rate is evaluated empirically.
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inf
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max
𝑝𝜖 0,1  𝑰(𝑿; 𝒀)

𝑓1 𝑦 ~𝒩 𝑦; 𝜇1, Σ1  with 𝜇1 = ෞ𝑚𝑡
(1)

𝑓2 𝑦 ~𝒩 𝑦; 𝜇2, Σ2  with 𝜇2 = ෞ𝑚𝑡
(2)
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