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Time course analysis of 
single response 
component is

• useful
• simplifying
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Background
Previous research using magnetoencephalography (MEG) has found that older
adults’ cortical responses to speech track the envelope of the acoustic signal
more robustly than younger adults’ responses (Presacco et al., 2016a&b). This
could have different reasons:

• Low level age-related change, e.g., excitation/inhibition imbalance

▪ Decrease in cortical inhibition could lead to stronger evoked responses (e.g.
Overton & Recanzone, 2016)

• Top-down/strategic processing

▪ Higher level processes recruited to compensate for lower level deficits (e.g.,
degraded input from the periphery) lead to activation in additional brain
regions (e.g., Peelle et al., 2010)

• Attention:

▪ Increased sensory attention due to increased task demands is associated
with stronger sensory responses (Woldorff et al., 1993)

Here we used MEG source localization to determine

• Which parts of the temporal lobe show increased phase-locked activity

• At what latency increased responses occur

Methods
Participants
• 17 younger (18-27 years) and 23 older (60+) adults

Procedure
• 157 axial gradiometer whole head MEG (KIT, Kanazawa, Japan)

• For source space analysis, MEG responses to 2 one-minute long segments of clean speech (The Legend of
Sleepy Hollow); each segment repeated 3 times for a total of 6 minutes of data per subject

• For Decoding analysis, additional segments with two speakers at different signal to noise ratios, task to attend
to one and ignore the other

Stimulus reconstruction (Presacco et al., 2016b)
• Speech stimulus represented as envelope of the analytic signal (1-8 Hz)

• Linear 500 ms kernel trained to predict stimulus from all MEG data (1-8 Hz)

• Coordinate descent algorithm (David et al., 2007)

• Early stopping based on cross-validation

Source localization
• Temporal signal space separation

• Zero-phase FIR filter (1-8 Hz)

• Average brain model, scaled to match each participant’s head (FreeSurfer fsaverage)

• Minimum norm estimates at virtual source dipoles equally spaced across the white matter surface, oriented
perpendicularly to the cortical surface

• Speech stimulus represented as envelope of the analytic signal

• Linear 500 ms kernel trained for each source dipole to predict estimated current time course from the stimulus

• Basis of 50 ms Hamming windows

• Coordinate descent algorithm (David et al., 2007)

• Early stopping based on cross-validation

Statistical evaluation
• Overall model fit:

• Correlation coefficient between predicted and actual source time course (Fisher z-transformed to correct
distribution for fixed end-points at -1 and 1)

• Bias corrected using model in which the predictor variable was temporally misaligned with the response

• Age difference with repeated-measures t-test at each source dipole,

• Threshold-free cluster enhancement (Smith and Nichols, 2009)

• Estimation of the null distribution by permuting group membership 10.000 times

• TRF:

• All values transformed to their absolute value, to prevent negative and positive currents from cancelling out

• Weighted average in the region of significant difference in z-values

• TRF amplitude time course analyzed with repeated-measures t-test, TFCE and permutation distribution as
above

• TRF peaks

• Peak windows determined based on inspection of TRF time course

• Average of the absolute TRF in window for each participant

• Smoothed with Gaussian kernel (STD = 5 mm)

• Tested as above

Brain responses
Distributed minimum norm estimates (MNE) used to estimate electrical activity
at virtual current source dipoles across the temporal lobes. Activity at these
source dipoles was modeled as a response to the acoustic envelope of speech
using a linear convolution model (David et al., 2007; Brodbeck et al., 2018).

Method: Temporal response functions

Stimulus reconstruction
MEG responses to one minute long segments of continuous speech, under
natural listening conditions (excerpts from audiobook)

Method: Stimulus reconstruction

TRF amplitudes, averaged in time windows around prominent peaks,
suggest different anatomical origins

• ~30 ms: older adults’ response significantly enlarged; region of significant
group difference consistent with main difference outside core auditory cortex

• ~100 ms: group difference not significant

• ~150 ms: non-significantly enhanced response peak in younger adults

• ~200 ms: additional peak in older adults’ TRFs with wide-spread distribution

Conclusions
Compared to younger adults, older adults’ cortical responses track the acoustic
envelope of speech more robustly.

• Older adults’ responses to clean speech differ from younger adults’ responses
at different TRF peaks with different latencies, suggesting multiple reasons for
increased tracking

• An early ~30 ms difference is consistent with a low-level processing change

• Localization difference suggests non-primary auditory cortex involvement

• Consistent with excitatory-inhibitory imbalance, leading to rapid activation in
a larger area

• A late ~200 ms difference is consistent with recruitment of additional
processing resources
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The signal from the MEG sensors is used jointly to reconstruct the acoustic
envelope of the speech stimulus

• The reconstructed stimulus is the convolution of the kernel (“decoder”) with
the MEG signal

• Reconstruction accuracy is an estimate of how much information the
responses contain about the stimulus

▪ Measured as correlation between actual and reconstructed stimulus

• The convolution model used for reconstruction is primarily sensitive to phase-
locked brain activity

Older adults: higher stimulus reconstruction
accuracy

Older adults’ cortical responses allow more accurate reconstruction of the
speech envelope than younger adults’ (from Presacco et al., 2016b)

• Holds across different listening conditions (clean speech and speech with
background speaker at difference SNRs)

• Suggests that older adults’ cortical responses carry more information about
the speech envelope

• Where in the cortex and at which latencies are older adults’ responses
amplified?

The signal at each virtual source dipole (illustrated as red/green/blue lines)
is modeled as linear convolution of the speech envelope with a temporal
response function (TRF)

• Model fit is evaluated by how well the signal at each dipole can be modeled
(correlation coefficient)

Localized response prediction accuracy

Older adults exhibit stronger responses to clean speech in non-primary
auditory cortex

• Older adults’ MEG responses reflected the acoustic envelope more strongly in
a region of the left temporal lobe

• Localization consistent with a region outside of core auditory cortex

• Lateralization was not significant (p = .285)

• The amplitude of the temporal response functions (TRFs) in the significant
region was analyzed for a better understanding of the timing of the effects

Increased TRF amplitude at multiple peaks

Response function peaks

TRF amplitude (averaged in significant region shown above) is significantly
larger in older adults at early (~30 ms) and late (~200 ms) peaks

• Younger adults seem to have similar but weaker peaks at ~30 and ~100 ms

• A third peak occurs in younger adults at ~150 ms already; older adults’ ~200
ms peak could be an enlarged and delayed version
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Brain responses
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at virtual current source dipoles across the temporal lobes. Activity at these
source dipoles was modeled as a response to the acoustic envelope of speech
using a linear convolution model (David et al., 2007; Brodbeck et al., 2018).
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TRF amplitudes, averaged in time windows around prominent peaks,
suggest different anatomical origins

• ~30 ms: older adults’ response significantly enlarged; region of significant
group difference consistent with main difference outside core auditory cortex

• ~100 ms: group difference not significant
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Conclusions
Compared to younger adults, older adults’ cortical responses track the acoustic
envelope of speech more robustly.

• Older adults’ responses to clean speech differ from younger adults’ responses
at different TRF peaks with different latencies, suggesting multiple reasons for
increased tracking

• An early ~30 ms difference is consistent with a low-level processing change

• Localization difference suggests non-primary auditory cortex involvement

• Consistent with excitatory-inhibitory imbalance, leading to rapid activation in
a larger area

• A late ~200 ms difference is consistent with recruitment of additional
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The signal from the MEG sensors is used jointly to reconstruct the acoustic
envelope of the speech stimulus

• The reconstructed stimulus is the convolution of the kernel (“decoder”) with
the MEG signal

• Reconstruction accuracy is an estimate of how much information the
responses contain about the stimulus
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accuracy

Older adults’ cortical responses allow more accurate reconstruction of the
speech envelope than younger adults’ (from Presacco et al., 2016b)

• Holds across different listening conditions (clean speech and speech with
background speaker at difference SNRs)

• Suggests that older adults’ cortical responses carry more information about
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• Where in the cortex and at which latencies are older adults’ responses
amplified?

The signal at each virtual source dipole (illustrated as red/green/blue lines)
is modeled as linear convolution of the speech envelope with a temporal
response function (TRF)

• Model fit is evaluated by how well the signal at each dipole can be modeled
(correlation coefficient)

Localized response prediction accuracy

Older adults exhibit stronger responses to clean speech in non-primary
auditory cortex

• Older adults’ MEG responses reflected the acoustic envelope more strongly in
a region of the left temporal lobe

• Localization consistent with a region outside of core auditory cortex

• Lateralization was not significant (p = .285)

• The amplitude of the temporal response functions (TRFs) in the significant
region was analyzed for a better understanding of the timing of the effects

Increased TRF amplitude at multiple peaks

Response function peaks

TRF amplitude (averaged in significant region shown above) is significantly
larger in older adults at early (~30 ms) and late (~200 ms) peaks

• Younger adults seem to have similar but weaker peaks at ~30 and ~100 ms

• A third peak occurs in younger adults at ~150 ms already; older adults’ ~200
ms peak could be an enlarged and delayed version
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dissimilarity TRF is sensitive to variations in the intelligibility of
acoustically identical speech. Moreover, in the audiovisual
speech condition, there was a significant negative correlation
across subjects between the self-reported intelligibility ratings
(which varied broadly) and the amplitude of the TRF negativity
averaged over the interval 250–500 ms (Figure 3D; the more
intelligible, the larger the negativity; r = !0.5, p < 0.02).

No Evidence of Contextual Semantic Processing for
Unattended Speech
Over 60 years ago, it was first noted that, when attending to one
of two dichotically presented speech streams, people have a
very limited ability to report on the content of the speech in the
unattended ear [28], a phenomenon known as the cocktail party
effect. Ever since then, researchers have sought to explain this

Figure 3. Assessing the Effect of Comprehension on the Electrophysiological Index of Semantic Dissimilarity
(A) Topographic maps of the semantic dissimilarity TRF averaged over all trials and all subjects for audiovisual speech in !9 dB of acoustic background noise

display a centro-parietal negativity between"400 and 600 ms. This negativity is significantly reduced in the average TRF for audio-only speech in the same level

of background noise, which was much less intelligible.

(B) Grand-average TRFwaveforms for audiovisual and audio-only speech over two selectedmidline electrodes. Thick lines indicate a response that is statistically

less than zero across subjects (p < 0.05, running t test, FDR corrected). Black lines below the waveforms indicate that the TRFs for audiovisual speech are

statistically more negative than those for audio-only speech across subjects (p < 0.05, running t test, FDR corrected).

(C) A cross-validation procedure was used to predict EEG responses to natural speech using a semantic dissimilarity TRF trained on other data. EEG prediction

accuracy for audiovisual speech was significantly greater than that for audio-only speech (p < 0.01, t test).

(D) Across subjects, the amplitude of the semantic dissimilarity TRF overmidline parietal scalp was significantly correlatedwith self-reported intelligibility rating of

audiovisual speech (p < 0.02, Pearson’s correlation).

(E) Topographicmaps of the semantic dissimilarity TRF averaged over all trials and all subjects for attended speech in a dichotic cocktail party paradigm display a

centro-parietal negativity between "300 and 600 ms. This negativity is not apparent in the average TRF for unattended speech.

(F) Grand average TRF waveforms for attended and unattended speech over two selected midline electrodes. Thick lines indicate a response that is statistically

less than zero across subjects (p < 0.05, running t test, FDR corrected). Black lines below the waveforms indicate that the TRFs for attended speech are sta-

tistically more negative than those for unattended speech across subjects (p < 0.05, running t test, FDR corrected).

(G) A cross-validation procedure was used to predict EEG responses to natural speech using a semantic dissimilarity TRF trained on other data. EEG prediction

accuracy for attended speech was significantly greater than that for unattended speech (p < 1 3 10!6, t test).

(H) Across subjects, the latency of the peak in the global field power (GFP) [24] of the semantic dissimilarity TRF was significantly negatively correlated with the

number of questions answered correctly on the attended speech (p < 5 3 10!5, Pearson’s correlation).
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between different representations of the speech and the low-
frequency (1–15 Hz) EEG (Figure 1). Specifically, we did this by
using linear regression to model the relationship between each
speech representation and the data from each EEG channel
(Figure 1). This approach has been used previously to describe
the relationship between the speech envelope and EEG [12],
MEG [23], and ECoG [9] data. The resulting models are
commonly referred to as temporal response functions (TRFs).
Here, as we will be representing speech using multiple variables,
we refer to our models as multivariate temporal response func-
tions (mTRFs).

Neural Evidence for Phonetic Processing
We employed a cross-validation approach to quantify how well
each speech representation related to the neural data. Specif-
ically, we fit our mTRF models using a subset of the speech seg-
ments for each subject and used these models to predict the
data corresponding to the remaining segments. The quality of
the prediction was assessed using correlation (Pearson’s r).
The overarching rationale was to use variations in these EEGpre-
diction scores across speech representations as a dependent
measure for assessing how well the EEG reflects the processing
of lower- and higher-level speech features. We focused our anal-
ysis on the EEG data from six bilateral pairs of frontotemporal
electrodes in order to investigate auditory cortical activity bilater-
ally (see Supplemental Experimental Procedures and Figure S1).

We tested five speech representations (Figure 1; see Supple-
mental Experimental Procedures): (1) broadband amplitude en-
velope, Env; (2) spectrogram, Sgram; (3) time-aligned sequence
of phonemes, Ph; (4) time-aligned sequence of phonetic
features, Fea; and (5) a combination of time-aligned phonetic
features and spectrogram, FS. Neural entrainment to speech en-
velopes is well established and, as such, performance of the Env
model acted as a baseline with which to compare the perfor-
mance of the other models. Robust mappings between speech
spectrograms and high-gamma-frequency ECoG have been
previously shown [24]. However it is unknown whether this richer
representation can be accurately indexed using low-frequency
EEG, something we address with the Sgram model. Similarly,
the relationship between high-frequency ECoG and a categorical
phoneme representation of speech has been examined before
[8]. However, no such relationship has been investigated for
EEG (or MEG), hence the Ph model. Transforming phonemes
into a lower-dimensional phonetic-feature representation [25]
frames our results in terms of the articulatory and acoustic prop-
erties of each phoneme and has advantages for the efficiency of
this type of modeling. This motivated our Fea model.
An important issue when considering the spectrogram repre-

sentation and the phonemic/phonetic-feature representations
is that they are mutually highly redundant. This is because, on
average, each phoneme will have a particular characteristic
spectrotemporal profile. So if each phoneme were always

Figure 1. Assessing the Encoding of Speech Features in EEG
128-channel EEG data were recordedwhile subjects listened to continuous, natural speech consisting of amale speaker reading from a novel or its time-reversed

complement. Linear regression was used to fit multivariate temporal response functions (mTRFs) between the low-frequency (1–15 Hz) EEG data and five

different representations of the speech stimulus. Each mTRF model was then tested for its ability to predict EEG using leave-one-out cross-validation.
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average, each phoneme will have a particular characteristic
spectrotemporal profile. So if each phoneme were always

Figure 1. Assessing the Encoding of Speech Features in EEG
128-channel EEG data were recordedwhile subjects listened to continuous, natural speech consisting of amale speaker reading from a novel or its time-reversed

complement. Linear regression was used to fit multivariate temporal response functions (mTRFs) between the low-frequency (1–15 Hz) EEG data and five

different representations of the speech stimulus. Each mTRF model was then tested for its ability to predict EEG using leave-one-out cross-validation.

2458 Current Biology 25, 2457–2465, October 5, 2015 ª2015 Elsevier Ltd All rights reserved



Outline
• Background & motivation

‣ Neural responses in time & space 

‣ Transformation from Acoustic speech 
processing to Linguistic speech processing

• Spatiotemporal representation transformation 
from Acoustic to Lexical

Brodbeck et al., Curr Biol (in press)
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Methods Details
26 adults, mean age 45 (range 22 - 61) 
One-minute-long segments (8 solo, 16 mix) from A Child’s History of England by 

Dickens

Acoustic time-frequency representation: 8-band auditory spectrogram

Word frequencies: movie subtitle database SUBTLEX (stress info stripped)

Distributed MNE source estimates, restricted to temporal lobe (314 L, 313 R)

Sources in fsaverage brain (individual anatomical MRI not used) 
Multivariable TRF at each source element via boosting (10 ms resolution; 50 ms 

Hamming window basis)

Significance of each representation with respect to shuffled stimulus x 3

Localization uses threshold-free cluster enhancement, 10,000 permutation null 

distribution 

Model reduction: iteratively remove largest p-value (non-significant) variable
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cf. Hamilton et al., 2018
See also Daube et al., bioRxiv 448134
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• Onset explains more variance
• Latency(ies) as expected
• Strongly bilateral
• Onset stronger in right hemisphere 
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• Rapid transformation to lexical
• Surprisal = local measure of 

phoneme prediction error 
(predictive coding?)

• Cohort entropy = global measure of 
lexical competition across cohort

• Strongly left hemisphere dominant
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Brodbeck et al., Curr Biol (in press)

Acoustic
envelope

Acoustic
onset

Phoneme
onset

Word onset

Phoneme
surprisal

Cohort
entropy

Attended acoustic model

Attended lexical model

Acoustic stimulus model Unattended acoustic model

Unattended lexical model

Current
estimate
[normalized]

*

***

∆z

0 100 200 300 400 500 0 100 200 300 400 500
Time [ms]

Acoustic
envelope

Acoustic
onset

Phoneme
onset

Word onset

Phoneme
surprisal

Cohort
entropy

Attended acoustic model

Attended lexical model

Acoustic stimulus model Unattended acoustic model

Unattended lexical model

130 ms

110 ms

1

0

1

Current
estimate
[normalized]

Right hemisphere
Left hemisphere

p ≤
.05
no
t si
g.

*

***

∆z

Phoneme
Surprisal

Cohort
Entropy

Phoneme
Onset
Word
Onset



Lexical Attention

Brodbeck et al., Curr Biol (in press)

Acoustic
envelope

Acoustic
onset

Phoneme
onset

Word onset

Phoneme
surprisal

Cohort
entropy

Attended acoustic model

Attended lexical model

Acoustic stimulus model Unattended acoustic model

Unattended lexical model

Current
estimate
[normalized]

*

***

∆z

0 100 200 300 400 500 0 100 200 300 400 500
Time [ms]

Acoustic
envelope

Acoustic
onset

Phoneme
onset

Word onset

Phoneme
surprisal

Cohort
entropy

Attended acoustic model

Attended lexical model

Acoustic stimulus model Unattended acoustic model

Unattended lexical model

130 ms

110 ms

1

0

1

Current
estimate
[normalized]

Right hemisphere
Left hemisphere

p ≤
.05
no
t si
g.

*

***

∆z

Phoneme
Surprisal

Cohort
Entropy

Phoneme
Onset
Word
Onset

• Only attended speech processed lexically 
• Lexical processing slowed by ~15 ms
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“Current Directions” in 
Spatiotemporal Distributions

Das et al., SfN Poster (2018)



Summary I
• Acoustic processing—Envelope vs. Onset
- Allowed to compete against each other

- Onset explains more response variance

- Strongly bilateral with right-bias for onset

- Similar latencies, but possibly different neural 
populations

• Evidence for rapid transformation from acoustic 
to lexical representations



Summary II
• Fast Lexical Phoneme-based processing
- Surprisal (114 ms), local measure of phoneme 

prediction error (predictive coding?)

- Cohort entropy (125 ms), global measure of 
lexical competition across cohort

- Left hemisphere dominant

- Strongly attention-dependent (bottleneck?)

• Low latencies
- Coarticulation; prediction using context

- ~15 ms extra delay from interfering speech

• Word Onset
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