Real-Time Tracking of the Selective Auditory Attention from M/EEG via Bayesian Filtering
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EEG Analysis (Decoding Model) MEG Analysis (Encoding Model)

e 6 subjects, two speakers, constant-attention (6 trials) and attention-switch (3 trials)
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Shortcomings for Real-Time Attention Decoding:

e attention decoding accuracy drops significantly at high temporal resolutions, s in a fixed-lag sliding window fashion for
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average classification accuracy in a trial for each subject:
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