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* Identifying causal relationships between Goal: directly localize GC influences * For link (i — ), the debiased deviance is %Hi):maX{ij 19812)/]\7—(170} - Difficult listening experiment: -The measurement noise covariance:
different cortical areas for understanding without an intermediate source 2(&(55)_&(5?))_3@5 ,5f) “Task: 1-minute long speech segments empty room recordings

mechanisms behind sensory processing

» Connectivity characterized by the temporal
predictability of activity across brain regions

via Granger causality (GC)

* Challenges with Magnetoencephalography

(MEG) and Electroencephalography (EEG):

localization step

 Method: Network Localized Granger
Causality (NLGC)

* Source dynamics as latent multivariate
autoregressive model:

D(%r—m’) —

¢;(0;) log-likelihood of the i-th source

~F AR

0. full and reduced parameter estimates

1) ’L

B(.) bias term (see [3] for detalils)
* Two hypothesis

DE:’) ,is the n-th sample of the deviance

* False discovery rate (FDR) control:
- Reject null hypothesis at a confidence level o
- Control FDR via BY procedure [6]

* Test strength characterization:

from an audio book in two conditions:
1) Clean speech: male/ female
narration
2) Mixed speech: two talker speech,
male vs. female speaker

-Contribution of each ROl is summarized
by two eigenmodes

-155 MEG sensors
- ¢ = 6 is chosen (to fully capture the delta
band)

the data are low-dimensional, noisy, and e Eelba st S H- 8, —6F - there is no GC influence - Calculate Youden’s J-statistic for all links -Mixefj. speech task: attend to pre-
linearly-mixed versions of source activities i) - . . Ty = 1= = Fepg ) (Fg(l —a) specified speaker A no masker B 6d8masker
» Conventional methods (two-stage procedure): ! aperr Hiopnat 0i=0; - there is a GC influence - Jiy =1 (=0) implies high (low) statistical -We analyzed the data from the first trials
£ /MEG Dot Saurce o€ Inference @ WMMMWW — - Asymptotic distribution as 7' — oo [4]: confidence of these conditions
_ L d g - The GC map & : * Model specifications:
- Drawbacks: bias propagation, spatial gl'fgm; S?gggﬁggccgfsﬁfgt'on of connectivity tmradpd'e temporal Dy H iyl = Xx7(a) Sign<iam> Ty P47 -Band-pass between 0.1 — 4.5 Hz (Delta
leakage Dy Hiyiy 1] = X230, v60) ®hi = { = band) and downsample to 25 Hz

* Observation model:
:Cxt+nt, t = 1,2,"' ,T

y: € RYMEG observation,c ¢ RM*N |ead field matrix

« Source dynamic model (auto-regressive):

 Consider link (i — i) with following models:

Full: x{V = IPILIR e wi? wi ~ (0, 07)
J

» Granger Causality (GC) measure:

* How to find non-centrality parameter [5]?

-Head model: ‘ico-1’ source space (84 ROIs)

0, otherwise

- Sign: excitation(+), inhibition(-)

Ve _ Reduced: x(") — s ox D w0, 02 e Simulation setup: -{2.4.....20} active sources explaining 90% transversetemporal’ listening to clean speech, about half (48%) of the significant causal links
x; € RV source aC“V'ty, n, € RY measurement noise t g%é:%zlc: TSk ' . ( JZ\Z) MEG { } p g ansversetempora are frontal—»frontal and about a third (82%) are top- down
-155 Sensors of total power Frontal lobe frontal-temporal (out of 31 significant links). B. In contrast, while

-Two scenarios:

-Head model: morph ‘fsaverage’ source
space, Desican-Killiany atlas to identify
68 ROls [8]

-Analyzed ROls (in both hemispheres):

Temporal lobe
'superiortemporal’, 'middletemporal’,

'rostralmiddlefrontal’, 'caudalmiddlefrontal’,

Fig. 4. NLGC estimates of neural connectivity for sites in the frontal and
temporal lobes, during the last 40 s of each continuous speech listening
trial, for either clean or masked speech (only significant links shown;
arrows indicate direction of GC influence; N=4, FDR=1%). A. While

listening to masked speech, almost two thirds (65%) of the 17 significant
causal links are now top-down frontal-temporal, and only 12% are

X; = zq: Ay p+wy, t=1,2--- T ’F(E—m;) = log ( ;%z) Jae:?;:fepéis;g;\fd -Contribution Of ea?h ROI is SUIT-]m.arlzed # of eigenmodes Data generation Estimation 'parsopercularis’, 'parstriangularis’ frontal—frontal (out of 17 significant links).
k=1 _ . . by the leading eigenvectors within the Model mis-match 10 2
- " . . * Fisa > 0: GC link exists. : No model mis-match > >
A, € RV*N coefficient matrix, w, € RV noise process ROI (eigenmode)
Fig. 2. GC link (i = ) implies = -Measurement noise: empty room data -0 dB SNR References

* Distributional assumptions:
n,; ~ zero-mean Gaussian (known covariance)

w, ~ zero-mean Gaussian, independent sources

(unknown diagonal covariance Q))

temporal  predictability — of >
source ; by .

-3000 time samples (3 segments)

-10 trials are generated to measure
average hit rate and false alarm

-Exact vs. relaxed localization
localization to neighboring sources)

(mMis-

-Source dynamics: VAR(3) process
-FDR is controlled at 2%

-Comparison with two-stage procedures
(standard MNE and dSPM for the source

localization stage [7])
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