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Introduction

Model

Parameter Estimation

References 

•Observation model:

MEG observation,                lead field matrix
source activity,            measurement noise

•Source dynamic model (auto-regressive):

•Distributional assumptions:
coefficient matrix,            noise process

zero-mean Gaussian (known covariance)
zero-mean Gaussian, independent sources
(unknown diagonal covariance    )
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•Consider link         with following models:

•Granger Causality (GC) measure:

• : GC link exists.

•Objective: to estimate dynamic source
model parameters

•Challenge: source activities are unknown
•Solution: Expectation Maximization (EM)

•At the       iteration:

•E-step: Run fixed-interval smoother [1].
• -norm regularization is utilized at the M-
step to mitigate the ill-posedness resulting 
from the low-dimensional measurements
•M-step: Solve via IRLS [2].
•Regularization parameter  : two-fold 
cross-validation
•Reduced model: Perform the same EM-
based parameter estimation for every 
source pair (link).

•Continue until convergence
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Granger Causality

Statistical Inference Algorithm
•For link         , the debiased deviance is

log-likelihood of the        source
i,      full and reduced parameter estimates

bias term (see [3] for details)
•Two hypothesis 

: there is no GC influence
: there is a GC influence

•Asymptotic distribution as             [4]:

•How to find non-centrality parameter [5]? 

is the         sample of the deviance
•False discovery rate (FDR) control:

- Reject null hypothesis at a confidence level
- Control FDR via BY procedure [6]
•Test strength characterization:

- Calculate Youden’s J-statistic for all links 

- iimplies high (low) statistical 
iiiiiiiconfidence

- The GC map     :

- Sign: excitation(+), inhibition(-)

•Simulation setup:
-155 MEG sensors
-Head model: ‘ico-1’ source space (84 ROIs)

-Contribution of each ROI is summarized 
iiiiiby the leading eigenvectors within the 
iiiiiROI (eigenmode)
-Measurement noise: empty room data
-3000 time samples (3 segments)
-10 trials are generated to measure 

iiiiiaverage hit rate and false alarm
-Exact vs. relaxed localization (mis-

iiiilocalization to neighboring sources)

Results: Application to MEG Data
•Difficult listening experiment:
-Task: 1-minute long speech segments

iiiiifrom an audio book in two conditions:
1) Clean speech: male/ female   

iiiiiiiiiiiiiinarration
2) Mixed speech: two talker speech, 

iiiiiiiiiiiiiimale vs. female speaker
-Mixed speech task: attend to pre-

iiiispecified speaker
-We analyzed the data from the first trials 

iiiiof these conditions
•Model specifications:
-Band-pass between 0.1 – 4.5 Hz (Delta 

iiiiband) and downsample to 25 Hz
-Head model: morph ‘fsaverage’ source  

iiiispace,iDesican-Killiany atlas to identify 
iiii68 ROIs [8]
-Analyzed ROIs (in both hemispheres):

Temporal lobe
'superiortemporal’, 'middletemporal’, 

'transversetemporal’
Frontal lobe

'rostralmiddlefrontal’, 'caudalmiddlefrontal’, 
'parsopercularis’, 'parstriangularis’

Results: Synthetic Data

• Identifying causal relationships between
different cortical areas for understanding
mechanisms behind sensory processing
•Connectivity characterized by the temporal
predictability of activity across brain regions
via Granger causality (GC)
•Challenges with Magnetoencephalography
(MEG) and Electroencephalography (EEG):
the data are low-dimensional, noisy, and

iiiilinearly-mixed versions of source activities
•Conventional methods (two-stage procedure):

•Drawbacks: bias propagation, spatial
leakage

•Goal: directly localize GC influences 
without an intermediate source 
localization step
•Method: Network Localized Granger 
Causality (NLGC)
•Source dynamics as latent multivariate 
autoregressive model:

E/MEG Data Source 
Localization GC Inference

E/MEG Data (Sparse)Parameter 
Estimation GC Inference

Fig. 1. Schematic depiction of connectivity 
during speech processing. middle
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Fig. 2. GC link            implies
temporal predictability of 
source    by   .

Fig. 4. NLGC estimates of neural connectivity for sites in the frontal and 
temporal lobes, during the last 40 s of each continuous speech listening 
trial, for either clean or masked speech (only significant links shown; 
arrows indicate direction of GC influence; N=4, FDR=1%). A. While 
listening to clean speech, about half (48%) of the significant causal links 
are frontal→frontal and about a third (32%) are top- down 
frontal→temporal (out of 31 significant links). B. In contrast, while 
listening to masked speech, almost two thirds (65%) of the 17 significant 
causal links are now top-down frontal→temporal, and only 12% are 
frontal→frontal (out of 17 significant links).

-The measurement noise covariance:  
iiiiiempty room recordings
-Contribution of each ROI is summarized 

iiiiby two eigenmodes
-155 MEG sensors
- is chosen (to fully capture the delta 

iiiiiband)
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-{2,4,…,20} active sources explaining 90% 
iiiiof total power
-Two scenarios:

-0 dB SNR
-Source dynamics: VAR(3) process
-FDR is controlled at 2%
-Comparison with two-stage procedures 

iiii(standard MNE and dSPM for the source          
iiiiiilocalization stage [7])

# of eigenmodes Data generation Estimation
Model mis-match 10 2

No model mis-match 2 2

[8] R. S. Desikan et al., “An Automated Labeling 
System for Subdividing the Human Cerebral Cortex 
on MRI Scans into Gyral based Regions of 
Interest,” Neuroimage, vol. 31, no. 3, pp. 968–980, 
2006.
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Fig. 3. Comparison of NLGC with two-stage procedures (standard MNE and dSPM) in two scenarios: with/without model mis-match. Overall, NLGC 
results in significantly less false alarms. In particular, at the worst case where there is model mis-match, NLGC achieves 2% false alarm (MNE: 43%, 
dSPM: 27%) and 69% hit rate (MNE: 69%, dSPM: 68%) which is substantially better than the two-stage procedures.
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