Integrating Temporal Response Function Estimation with Sparse Source Localization

Proloy Das¹, Christian Brodbeck², Jonathan Z Simon³, Behtash Babadi³
¹Massachusetts General Hospital
²University of Connecticut
³University of Maryland

Funding:
• National Science Foundation (Award No: 1552946 and 1734892)
• Defense Advanced Research Projects Agency (Award: N6600118240224)
• National Institutes of Health (Award No: R01-DC014085)
Encoding Model of Speech Processing

Linear filter model:
- Predict the M/EEG response from continuous stimulus

Functional Role:
- Different peaks are associated with different modes of processing
- M50 (c.f. EEG P1): encoding of acoustic-level features
- M100 (c.f. EEG N1): encoding modulated by attention

Beyond acoustic processing:
- Phoneme level processing
- Lexical processing
- Semantic processing

Cortical Origins?
Cortical Origins of TRFs?

Insight from intracranial recordings
› Electrophysiology, electrocorticography
› Limited spatial range

Existing M/EEG approaches work in two-stage:
› Estimate the TRFs for each sensor → localize them within cortex
› Decompose MEG signals to source time courses → estimate TRF for each source

Challenges:
Bias propagation, spatio-temporal leakage, sensitivity to forward model mismatch

Mesgarani et. al., 2008, 2014
Lalor et. al., 2009
Brodbeck et. al., 2018
Cortical Origins of TRFs?

Insight from intracranial recordings
- Electrophysiology, electrocorticography
- Limited spatial range

Existing M/EEG approaches works in two-stage:
- Estimate the TRFs for each sensor → localize them on cortical mantle
- Decompose MEG signals to source time courses → estimate TRF for each source

Challenges:
Bias propagation, spatio-temporal leakage, sensitivity to forward model

Mesgarani et. al., 2008, 2014
Lalor et. al., 2009
Brodbeck et. al., 2018

\[Y_{N \times T} = L_{N \times 3M} J_{3M \times T} + W_{N \times T} \]
\[J_{3M \times T} = \Phi_{3M \times L} S_{L \times T} + V_{3M \times T} \]

Quasi-static solution to Maxwell’s equations
Neuro-current response function “NCRF”
Auditory covariates

\(N \): sensors \hspace{2cm} \(T \): time points \hspace{2cm} \(M \): sources \hspace{2cm} \(L \): lags
Cortical Origins of TRFs?

Insight from intracranial recordings
- Electrophysiology, electrocorticography
- Limited spatial range

Existing M/EEG approaches work in two-stage:
- Estimate the TRFs for each sensor → localize them on cortical mantle
- Decompose MEG signals to source time courses → estimate TRF for each source

Challenges:
Bias propagation, spatio-temporal leakage, sensitivity to forward model

Mesgarani et. al., 2008, 2014
Lalor et. al., 2009
Brodbeck et. al., 2018

MEG observations

\[\mathbf{Y}_{N \times T} = \mathbf{L}_{N \times 3M} \mathbf{J}_{3M \times T} + \mathbf{W}_{N \times T} \]

Measurement noise \(\mathcal{N}(0, \Sigma_w) \)

Source time courses

Quasi-static solution to Maxwell’s equations

\[\mathbf{J}_{3M \times T} = \Phi_{3M \times L} \mathbf{S}_{L \times T} + \mathbf{V}_{3M \times T} \]

Background nuisance \(\mathcal{N}(0, \Gamma) \)

Neuro-current response function “NCRF”

Auditory covariates

\(N \): sensors \quad \mathbf{T} \): time points \quad \mathbf{M} \): sources \quad \mathbf{L} \): lags
Measurement noise: Gaussian $\mathcal{N}(0, \Sigma_w)$

$$p(Y|J) = |(2\pi)\Sigma_w|^{-T/2} \exp \left(-\frac{1}{2} \|Y - LJ\|_{\Sigma_w^{-1}}^2 \right)$$

Background activity: Gaussian $\mathcal{N}(0, \Gamma)$

$$p(V|\Gamma) = \left(\prod_{m=1}^M |(2\pi)\Gamma_m|^{-T/2}\right) \exp \left(-\frac{1}{2} \sum_{m=1}^M \|V_m\|_{\Gamma_m^{-1}}^2 \right)$$

$$p(J|\Phi, \Gamma) = |(2\pi)\Gamma|^{-T/2} \exp \left(-\frac{1}{2} \|J - \Phi S\|_{\Gamma^{-1}}^2 \right)$$

not observed

Joint density of measurements (Y) and current dipoles (J):

$$p(Y, J|\Phi, \Gamma) = |(2\pi)\Sigma_w|^{-T/2}|(2\pi)\Gamma|^{-T/2} \exp \left(-\frac{1}{2} \|Y - LJ\|_{\Sigma_w^{-1}}^2 - \frac{1}{2} \|J - \Phi S\|_{\Gamma^{-1}}^2 \right)$$

Marginal density of the measurements given NCRFs (Φ):

$$p(Y|\Phi, \Gamma) = |(2\pi) (\Sigma_w + L\Gamma L^\top)|^{-T/2} \exp \left(-\frac{1}{2} \|Y - L\Phi S\|_{(\Sigma_w + L\Gamma L^\top)^{-1}}^2 \right)$$

Maximum likelihood estimate of NCRFs (Φ):

$$\min_{\Phi} \frac{1}{2} \|Y - L\Phi S\|_{(\Sigma_w + L\Gamma L^\top)^{-1}}^2$$
Measurement noise: Gaussian \(\mathcal{N}(0, \Sigma_w) \)
\[
p(Y|J) = \frac{1}{(2\pi)^\frac{N}{2} |\Sigma_w|^{\frac{N}{2}}} \exp \left(-\frac{1}{2} \| Y - LJ \|_{\Sigma_w^{-1}}^2 \right)
\]

Background activity: Gaussian \(\mathcal{N}(0, \Gamma) \)
\[
p(V|\Gamma) = \frac{1}{(2\pi)^\frac{M}{2} |\Gamma|^{\frac{M}{2}}} \exp \left(-\frac{1}{2} \sum_{m=1}^{M} \| V_m \|_{\Gamma^{-1}}^2 \right)
\]
\[
p(J|\Phi, \Gamma) = \frac{1}{(2\pi)^\frac{N}{2} |\Gamma|^{\frac{N}{2}}} \exp \left(-\frac{1}{2} \| J - \Phi S \|_{\Gamma^{-1}}^2 \right)
\]

Joint density of measurements (\(Y \)) and current dipoles (\(J \)):
\[
p(Y, J|\Phi, \Gamma) = \frac{1}{(2\pi)^\frac{N+M}{2} |\Sigma_w \Gamma|^{\frac{N+M}{2}}} \exp \left(-\frac{1}{2} \| Y - LJ \|_{\Sigma_w^{-1}}^2 - \frac{1}{2} \| J - \Phi S \|_{\Gamma^{-1}}^2 \right)
\]

Marginal density of the measurements given NCRFs (\(\Phi \)):
\[
p(Y|\Phi, \Gamma) = \frac{1}{(2\pi)^\frac{N}{2} (\Sigma_w + LGL^T)^{\frac{N}{2}}} \exp \left(-\frac{1}{2} \| Y - L\Phi S \|_{(\Sigma_w + LGL^T)^{-1}}^2 \right)
\]

Maximum likelihood estimate of NCRFs (\(\Phi \)):
\[
\min_{\Phi} \frac{1}{2} \| Y - L\Phi S \|_{(\Sigma_w + LGL^T)^{-1}}^2
\]
Maximum likelihood estimate:

$$\min_{\Phi} \frac{1}{2} \left\| Y - L\Phi S \right\|^2_{(\Sigma_w + L\Gamma L^\top)^{-1}}$$

But

- NCRF estimates contain high frequency noise
Maximum likelihood estimate:

\[
\min_{\Phi} \frac{1}{2} \| Y - L\Phi S \|^2 (\Sigma_w + LL^T)^{-1}
\]

But

- NCRF estimates contain high frequency noise

Solution:

Represent \(\Phi \) using a Gabor dictionary, \(G \)

\[
\Phi = \Theta G^T
\]

\[
\tilde{S} := G^T S
\]

\[
\min_{\Theta} \frac{1}{2} \| Y - L\Theta \tilde{S} \| \Sigma_w + LL^T^{-1}
\]

NCRF Learning: Bayesian Estimation (more modeling)

Maximum likelihood estimate:

$$\min_{\Phi} \frac{1}{2} \| Y - L\Phi S \|_2^2 (\Sigma_w + L\Gamma L^\top)^{-1}$$

But

- NCRF estimates contain high frequency noise → Use Gabor dictionary representation

Solution:

Represent Φ using a Gabor dictionary, G

$$\Phi = \Theta G^\top$$

$$\tilde{S} := G^\top S$$

$$\min_{\Theta} \frac{1}{2} \| Y - L\Theta \tilde{S} \|_{\Sigma_w + L\Gamma L^\top}^{-1}$$

Maximum likelihood estimate:

$$\min_{\Theta} \frac{1}{2} \| Y - L\Theta \tilde{S} \|_{\Sigma_w + L\Gamma L^T}^{-1}$$

But

- NCRF estimates contain high frequency noise \rightarrow Use Gabor dictionary representation
- It is an ill-posed problem
 \[N \sim 10^2 \ll M \sim 10^4 \]

Incorporate prior knowledge
Maximum likelihood estimate:

$$\min_\Theta \frac{1}{2} \| Y - L\Theta S \|^2_{\Sigma_w + L\Gamma L^T}^{-1}$$

But

- NCRF estimates contain high frequency noise
 Use Gabor dictionary representation
- It is an ill-posed problem
 $$N \sim 10^2 \ll M \sim 10^4$$

Incorporate prior knowledge
Maximum likelihood estimate:

\[
\min_{\Theta} \quad \frac{1}{2} \| Y - L\Theta S \|_{\Sigma_w + L\Gamma L^T}^{-1}
\]

But

- NCRF estimates contain high frequency noise \(\rightarrow \) Use Gabor dictionary representation
- It is an ill-posed problem

\[N \sim 10^2 \ll M \sim 10^4 \]

Incorporate prior knowledge:

- Most of brain does not process this stimulus

 Enforce spatial sparsity

- TRFs dominated by peaks and troughs

 Enforce lag-domain sparsity

- Dipole currents are vectors

 Enforce coordinate rotational invariance
NCRF Learning: Bayesian Estimation (more modeling)

Maximum likelihood estimate:

\[
\min_{\Theta} \frac{1}{2} \| Y - L\Theta S \|_{\Sigma + LL^T}^{-1}
\]

But
- NCRF estimates contain high frequency noise \(\rightarrow \) Use Gabor dictionary representation
- It is an ill-posed problem \(\rightarrow \) Enforce spatial and lag-domain sparsity

\[N \sim 10^2 \ll M \sim 10^4 \]

Incorporate prior knowledge:
- Most of brain does not process this stimulus
 - Enforce spatial sparsity
- TRFs dominated by peaks and troughs
 - Enforce lag-domain sparsity
- Dipole currents are vectors
 - Enforce coordinate rotational invariance

\[P_{2,1,1}(\Theta) = \sum_m \sum_l \| \theta_{m,l} \|_2 \]

NCRF Learning: Bayesian Estimation (more modeling)

Maximal likelihood estimate:

$$\min_{\Theta} \frac{1}{2} \| Y - L\tilde{S}\|_2^2 (\Sigma + LGL^\top)^{-1} + \eta P_{2,1,1}(\Theta)$$

But

- NCRF estimates contain high frequency noise
- It is an ill-posed problem

$$N \sim 10^2 \ll M \sim 10^4$$

Incorporate prior knowledge:

- Most of the brain does not process this stimulus
 - Enforce spatial sparsity

- TRFs dominated by peaks and troughs
 - Enforce lag-domain sparsity

- Dipole currents are vectors
 - Enforce coordinate rotational invariance

Use Gabor dictionary representation

$$P_{2,1,1}(\Theta) = \sum_m \sum_l \| \Theta_{m,l} \|_2$$

Maximum likelihood estimate:

\[
\min_{\Theta} \frac{1}{2} \| \mathbf{Y} - L\Theta \tilde{S} \|_{(\Sigma_w + LL^\top)^{-1}}^2 + \eta P_{2,1,1}(\Theta)
\]

But

- NCRF estimates contain high frequency noise \(\longrightarrow\) Use Gabor dictionary representation
- It is an ill-posed problem \(\longrightarrow\) Enforce spatial and lag-domain sparsity
- Nuisance covariance \((\Gamma)\) is unknown \(\longrightarrow\) Estimate \(\Gamma\) jointly with \(\Theta\)

Estimate \(\Gamma\) jointly with \(\Theta\):

\[
\min_{\Theta, \Gamma} \frac{T}{2} \log |\Sigma_w + LL^\top| + \frac{1}{2} \| \mathbf{Y} - L\Theta \tilde{S} \|_{(\Sigma_w + LL^\top)^{-1}}^2 + \eta P_{2,1,1}(\Theta)
\]
Maximum likelihood estimate:

$$\min_{\Theta} \frac{1}{2}\|Y - L\Theta \tilde{S}\|^2_{(\Sigma_w + L\Gamma L^\top)^{-1}} + \eta P_{2,1,1}(\Theta)$$

But

- NCRF estimates contain high frequency noise \implies Use Gabor dictionary representation
- It is an ill-posed problem \implies Enforce spatial and lag-domain sparsity
- Nuisance covariance (Γ) is unknown \implies Estimate Γ jointly with Θ

Estimate Γ jointly with Θ:

$$\min_{\Theta,\Gamma} \frac{T}{2} \log |\Sigma_w + L\Gamma L^\top| + \frac{1}{2}\|Y - L\Theta \tilde{S}\|^2_{(\Sigma_w + L\Gamma L^\top)^{-1}} + \eta P_{2,1,1}(\Theta)$$

Maximum likelihood estimate:

\[
\min_{\Theta} \frac{1}{2} \left\| Y - L\Theta\tilde{S}\right\|^2_{(\Sigma_w + L\Gamma L^\top)^{-1}} + \eta \mathcal{P}_{2,1,1}(\Theta)
\]

But

- NCRF estimates contain high frequency noise \(\Rightarrow\) Use Gabor dictionary representation
- It is an ill-posed problem \(\Rightarrow\) Enforce spatial and lag-domain sparsity
- Nuisance covariance \((\Gamma)\) is unknown \(\Rightarrow\) Estimate \(\Gamma\) jointly with \(\Theta\)

Estimate \(\Gamma\) jointly with \(\Theta\):

\[
\min_{\Theta, \Gamma} \frac{T}{2} \log |\Sigma_w + L\Gamma L^\top| + \frac{1}{2} \left\| Y - L\Theta\tilde{S}\right\|^2_{(\Sigma_w + L\Gamma L^\top)^{-1}} + \eta \mathcal{P}_{2,1,1}(\Theta)
\]
NCRF Learning: Bayesian Estimation (more modeling)

Maximum likelihood estimate:

\[
\min_{\Theta, \Gamma} \frac{T}{2} \log \left| \Sigma_w + \mathbf{L} \Gamma \mathbf{L}^\top \right| + \frac{1}{2} \| \mathbf{Y} - \mathbf{L} \Theta \tilde{\mathbf{S}} \|_2^2 (\Sigma_w + \mathbf{L} \Gamma \mathbf{L}^\top)^{-1} + \eta \mathcal{P}_{2,1,1}(\Theta)
\]

But

- NCRF estimates contain high frequency noise \(\rightarrow\) Use Gabor dictionary representation
- It is an ill-posed problem \(\rightarrow\) Enforce spatial and lag-domain sparsity
- Nuisance covariance \((\Gamma)\) is unknown \(\rightarrow\) Estimate \(\Gamma\) jointly with \(\Theta\)
- Hard to solve the non-convex problem
NCRF Learning: Bayesian Estimation (more modeling)

Maximum likelihood estimate:

$$\min_{\Theta, \Gamma} \frac{T}{2} \log \left| \Sigma_w + L \Gamma L^\top \right| + \frac{1}{2} \| Y - L \Theta \tilde{S} \|_{(\Sigma_w + L \Gamma L^\top)^{-1}}^2 + \eta \mathcal{P}_{2,1,1}(\Theta)$$

But

- NCRF estimates contain high frequency noise \(\rightarrow\) Use Gabor dictionary representation
- It is an ill-posed problem \(\rightarrow\) Enforce spatial and lag-domain sparsity
- Nuisance covariance (\(\Gamma\)) is unknown \(\rightarrow\) Estimate \(\Gamma\) jointly with \(\Theta\)
- Hard to solve the non-convex problem
Champ-Lasso Algorithm

NCRF Learning: Bayesian Estimation (more modeling)

Maximum likelihood estimate:

$$\min_{\Theta, \Gamma} \quad \frac{T}{2} \log |\Sigma_w + L\Gamma L^\top| + \frac{1}{2} \|Y - L\Theta \tilde{S}\|^2_{(\Sigma_w + L\Gamma L^\top)^{-1}} + \eta P_{2,1,1}(\Theta)$$

But
- NCRF estimates contain high frequency noise \rightarrow Use Gabor dictionary representation
- It is an ill-posed problem \rightarrow Enforce spatial and lag-domain sparsity
- Nuisance covariance (Γ) is unknown \rightarrow Estimate Γ jointly with Θ
- Hard to solve the non-convex problem \rightarrow Champ Lasso algorithm

Idea: coordinate descent approach

Initialize $\Theta^{(0)} = 0$

$\Theta^{(r+1)} = \arg\min_{\Theta} \quad \frac{1}{2} \|L\Theta \tilde{S} - Y\|^2_{\Sigma_v^{(r+1)}^{-1}} + \eta P_{2,1,1}(\Theta)$

$\Gamma^{(r+1)} = \arg\min_{\Gamma} \quad \text{tr} \left(\Sigma_v^{-1} C_v^{(r)} \right) + \log |\Sigma_v|$

s.t. $\Sigma_v = \Sigma_w + L\Gamma L^\top$

Champagne
Wipf et. al, 2010

Forward-Backward splitting
Nesterov, 2005
Beck & Teboulle, 2009

Code available on Github

MEG Data:

- 17 young-adult participants.
- Two 60-second segments from ‘The Legend of Sleepy Hollow’ by W. Irving.
- 3 repetitions for each segment.

No MRI was available: ‘fsaverage’ morphed in individual head shape
MEG Application to Cortical Processing of Speech

Semantics composition
Westerlund et al., 2015

Word frequency
Brysbaert et al., 2009

Acoustic envelope
Yang et al., 1992

MEG Application to Cortical Processing of Speech

Semantic composition
Westerlund et al., 2015

Word frequency
Brysbaert et al., 2009

Acoustic envelope
Yang et al., 1992

MEG Application to Cortical Processing of Speech

Semantic composition
Westerlund et al., 2015

Word frequency
Brysbaert et al., 2009

Acoustic envelope
Yang et al., 1992

MEG Application to Cortical Processing of Speech

- Acoustic envelope: Yang et al., 1992
- Word frequency: Brysbaert et al., 2009
- Semantic composition: Westerlund et al., 2015

MEG Application to Cortical Processing of Speech

- Acoustic envelope
 Yang et. al., 1992

- Word frequency
 Brysbaert et. al., 2009

- Semantic composition
 Westerlund et. al., 2015
MEG Application to Cortical Processing of Speech

- Acoustic envelope
 - Yang et. al., 1992

- Semantic composition
 - Westerlund et al., 2015

- Word frequency
 - Brysbaert et. al., 2009
Semantic composition:

- Bilateral auditory component at ~ 155 ms, late auditory component at ~ 475 ms.
- Auditory-frontal dynamics at ~ 175-210 ms (\(rMT_{sc} \rightarrow rF2_{sc} \rightarrow rF1_{sc} \rightarrow rF2_{sc} \)).
Summary

- NCRFs: A tool for directly extracting the cortical dynamics that underlie **continuous stimulus processing** from MEG.

- Novel spatiotemporal prior that not only combats overfitting and spatio-temporal dispersion but is also robust in absence of MR scan.

- The NCRFs are readily interpretable in a without post-hoc processing.

NCRFs as a powerful source localization tool for continuous stimulus experiments.

Thank you!