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SUMMARY

During speech perception, a central task of the
auditory cortex is to analyze complex acoustic pat-
terns to allow detection of the words that encode a
linguistic message [1]. It is generally thought that
this process includes at least one intermediate,
phonetic, level of representations [2–6], localized
bilaterally in the superior temporal lobe [7–9].
Phonetic representations reflect a transition from
acoustic to linguistic information, classifying acous-
tic patterns into linguistically meaningful units,
which can serve as input to mechanisms that ac-
cess abstract word representations [10, 11]. While
recent research has identified neural signals arising
from successful recognition of individual words in
continuous speech [12–15], no explicit neurophysio-
logical signal has been found demonstrating the
transition from acoustic and/or phonetic to sym-
bolic, lexical representations. Here, we report a
response reflecting the incremental integration of
phonetic information for word identification, domi-
nantly localized to the left temporal lobe. The short
response latency, approximately 114 ms relative to
phoneme onset, suggests that phonetic information
is used for lexical processing as soon as it becomes
available. Responses also tracked word bound-
aries, confirming previous reports of immediate lex-
ical segmentation [16, 17]. These new results were
further investigated using a cocktail-party paradigm
[18, 19] in which participants listened to a mix
of two talkers, attending to one and ignoring the
other. Analysis indicates neural lexical processing
of only the attended, but not the unattended,
speech stream. Thus, while responses to acoustic
features reflect attention through selective amplifi-
cation of attended speech, responses consistent
with a lexical processing model reveal categorically
selective processing.
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RESULTS AND DISCUSSION

Magnetoencephalography (MEG) responses to continuous

narrative speech were analyzed with a framework designed to

measure acoustic and lexical processing simultaneously.

Source-localized brain responses were modeled as linear re-

sponses to multiple predictor variables that reflect acoustic

and lexical properties of continuous speech (see Figure 1).

Each source’s response time course was modeled as a sum of

responses to all predictors, such that the predictors competed

for explaining variance in the response [13]. Initially, a range of

predictor variables were generated to cover a variety of neural

processes plausibly involved in lexical processing. Statistical

model comparison was then used to determine which of those

variables significantly improved neural response predictions.

Acoustic properties weremodeled through an 8-band auditory

spectrogram and its half wave rectified derivative to model both

the continuously varying ‘‘acoustic envelope’’ and ‘‘acoustic

onsets’’ [20].

Responses to phonemes, regardless of their informational

value, were modeled with a binary ‘‘phoneme onset’’ predictor

variable. Modulation of phoneme responses due to lexical

processing was modeled with impulses at phoneme onsets of

variable size. All variables were based on the premise, widely

supported by behavioral experiments, that phonetic information

is used to incrementally constrain possibilities for theword that is

currently being processed [10, 11, 21]; this entails initial activa-

tion of multiple candidate lexical items, which compete for

recognition until they become incompatible with the input. For

example, after hearing the phoneme sequence /noʊ/, both noble

and notable might be activated as potential candidates, but

once the next phoneme /b/ becomes available (generating the

sequence /noʊb/), notable would be discarded as a possibility.

This model suggests that with the occurrence of each phoneme

in a word, there is a cohort of lexical items compatible with the

phoneme sequence up to themost current phoneme. Since acti-

vation of allowable candidates might be associated with neural

processes, ‘‘cohort size’’ was modeled as the number of lexical

items under consideration at each phoneme occurrence. The

number of items removed from the cohort at each phoneme,

‘‘cohort reduction’’, was used as an estimate of how informative

a given phoneme is. While these two variables treat all lexical
evier Ltd.
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Figure 1. Analysis Framework, Illustrated with an Excerpt

from One of the Stimuli

The acoustic waveform (top row) is shown for reference only.

Subsequent rows show the predictor variables used to model re-

sponses to a single speaker. Acoustic predictors were based on an

auditory spectrogram aggregated into 8 frequency bands. For the

phoneme-based predictor variables, the initial phoneme of each

word is drawn in black, whereas all subsequent phonemes are

drawn in blue. The last row contains estimated brain responses

from three virtual current dipoles, representative of the modeled

signal. The anatomical plot of the cortex is shaded to indicate the

temporal lobe, the anatomical region of interest (only the left

hemisphere is shown, but both hemispheres were analyzed). See

Table S1 for correlations between different predictor variables and

Figure S1 for corresponding scatter-plots (of the phoneme-based

predictor variables).
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items equally, evidence suggests that lexical processing is

sensitive to frequency of usage [11, 22]. If this is reflected

neurally, a better estimate of phoneme informativeness

would be ‘‘phoneme surprisal’’, which reflects how surprising a

phoneme is, given the cohort that is currently active, and

assuming that the probability of hearing each word is propor-

tional to its frequency in a large speech corpus [23]. Finally,

cohort theory suggests that lexical items compete for activation

from incomplete input. The degree of competition can be

quantified as ‘‘cohort entropy’’, which is defined as the Shannon

entropy [24] over all lexical items compatible with the input at

the given point in the word. Both phoneme surprisal and cohort

entropy have been shown to be associated with reaction times

[25, 26] and MEG responses [27–30] to isolated spoken words.

‘‘Word onsets’’, i.e., word-initial phonemes, were modeled

separately from subsequent phonemes (black and blue in

Figure 1) to account for the possibility that word onsets might

involve different or additional processes, e.g., activation of an

initial cohort as opposed to modification of an existing cohort

[30, 31].

Responses to Single Speaker Reflect Lexical Processing
MEG recordings from participants listening to a single talker

were used to determine which variables significantly predict

brain responses. Taken together, the 8 lexical processing vari-

ables significantly improved model predictions (tmax = 5.93,

p < 0.001; significance was assessed by comparing the predic-

tive power of the full model to the ensemble average of

3 models representing the null hypothesis, in which the predic-

tors under investigation were shuffled by randomly re-assigning

their values to different phonemes). Because these variables

are not independent (see Table S1 and Figure S1), the initial

set of variables was reduced to a set in which each variable

explained a distinct proportion of the variance in the data. To

this end, the significance of each lexical variable was evalu-

ated, and the model was reduced by sequentially excluding

non-significant predictors until only significant variables re-

mained (cf. [25]).

Two of the eight lexical variables survived this minimization

procedure: phoneme surprisal (tmax = 4.47, p < 0.001) and cohort

entropy (tmax = 5.68, p < 0.001). Both variables were already

significant in the initial model including all variables (tmax =

3.87, p = 0.006; tmax = 4.61, p < 0.001), and none of the other 8

were (Table S2). This suggests that surprisal and entropy both

account for unique features of brain responses even when con-

trolling for all other variables. More generally, this result suggests

that it was possible to distinguish contributions from the different

variables even though they were correlated to various degrees.

The model resulting from this minimization procedure, hence-

forth called the ‘‘reduced model’’, is shown in Figure 2. The left

column shows anatomical plots, indicating where the predictor

significantly improved predictions (for acoustic features and

phoneme onset, significance was evaluated against shuffled

models in which predictors were time-shifted by 15, 30 or

45 s). The right column shows the filter kernels estimated for

the reduced model, the so-called temporal response functions

(TRFs). TRFs reflect the estimated response to an elementary

temporal feature in the stimulus [13, 32, 33] and are thus a contin-

uous analog of evoked responses to temporally distinct events.
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The effect of surprisal was significantly left-lateralized (tmax =

4.16, p = 0.001). Lateralization of entropy was not significant in

the full dataset (tmax = 2.86, p = 0.103), though it became signif-

icant when the 3 left-handed subjects were excluded (tmax =

4.60, p = 0.005). The anatomical centers of mass of the peak

responses to surprisal and entropy did not differ significantly

(d = 3mm, p = 0.701), but the response associated with surprisal

peaked significantly earlier than the one associated with entropy

(114 ms versus 125 ms, t(25) = 2.45, p = 0.022), suggesting that

the two variables may reflect separable stages of speech pro-

cessing. The temporal order of the effects is consistent with

the level of information that the two variables encode in the

context of the cohort model and, by implication, the neural

mechanisms they might arise from: surprisal is a more local

measure of phoneme prediction error, which could be related

to updating of a predictive coding mechanisms [27], whereas

cohort entropy incorporates information about the cohort of

lexical items activated by the current phoneme sequence,

possibly reflecting lexical competition [27, 34].

More broadly, such activation of form and lexical item informa-

tion in the superior and middle temporal lobe is consistent with

reports of hemodynamic activity in this region [35–38]—for

example, effects of speech intelligibility [39] and generalization

across different acoustic realizations of the same sentence [40].

Our results suggest that acoustic information is used to update

phonetic expectations held in the STG by approximately

114 ms and to constrain the activated cohort of lexical items by

125 ms. While the earliness of these effects might be surprising,

evidence from gating studies suggests that 50–100ms of input is

sufficient to correctly identify the initial phoneme of a word [41],

and it is plausible that the cortex uses this information as soon

as it becomes available. Furthermore, these latencies were

calculated fromphonemeonset,without additional consideration

of coarticulation cues. Since lexical processing is sensitive to

coarticulation cues [5, 42, 43], information about phoneme iden-

titymay benefit frompriming prior to the nominal phonemeonset.

Finally, continuous, meaningful speech provides rich layers of

contextual information, and it is plausible that processes under-

lying lexical perception are facilitated by this information [44].

Neither cohort size nor cohort reduction significantly predicted

neural responses. Our results thus support the view that

lexical perception is sensitive to language statistics, modeled

through frequency of use. None of the predictors associated

with word-initial phonemes were significant, suggesting that re-

sponses to initial phonemes could not be modeled by lexical

distributions. This could indicate that word-initial phonemes

are processed differently from subsequent ones [30, 31].

Responses Reflect Lexical Segmentation
The effect of word onset, compared to a null distribution esti-

mated from models in which word onsets were randomly as-

signed among all phonemes, was highly significant (tmax =

4.76, p < 0.001). Despite a numerically larger effect in the

left hemisphere, lateralization was not significant (tmax = 2.58,

p = 0.118). With a latency of 103 ms, the peak was significantly

earlier than entropy (t(25) = 2.98, p = 0.006) but not surprisal

(t(25) = 0.71, p = 0.487). The spatial center of mass of the

response peak was located more superior than both surprisal

and entropy (d = 9 mm, p = 0.022; d = 8 mm, p = 0.007). While
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Figure 2. Brain Responses to Single Speaker

Left column: significant predictive power (p % 0.05, corrected). Colors reflect the difference in z-transformed correlation between the full and the appropriately

shuffled model. Color-maps are normalized for each predictor to maximize visibility of internal structure, as appropriate for evaluating source localization results:

due to spatial dispersion of minimum norm source estimates, effect peaks are relatively accurate estimates, but strong effects can cause spurious spread whose

amplitude decreases with distance from the peak. See also Table S2. Right column: Temporal response functions (TRFs) estimated for the reducedmodel. Each

line reflects the TRF at one virtual current dipole, with color coding its location by hemisphere, and saturation coding significance (p % 0.05, corrected).

Anatomical plots display TRFs at certain time points of interest (only significant values are shown), with color coding current direction relative to the cortical

surface. Acoustic TRFs were averaged across frequency band for display as visual inspection revealed no major differences apart from amplitude differences

between frequency bands. See also Figure S2 and Table S3.
it could be argued that word onsets should be associated

with disproportionately large surprisal, it is noteworthy that the

word onset TRF peak has the opposite polarity (i.e., current

direction) than the surprisal peak, further dissociating the two

responses.

A more general implication of these responses to word onsets

is that word boundaries should be perceptually salient despite

the observation that clear cues for word boundaries are generally

missing from speech waveforms [45]. A similar word-onset elec-

troencephalographic response emerged only after listeners

learned to segment an artificial language into words, suggesting

that it is not a response to local acoustic properties alone

[16, 17]. A response tightly locked to word onset suggests

that whichever cues listeners use to detect word boundaries

[45, 46], boundaries seem to be generally detected as they

occur, rather than after incorporating cues occurring subsequent

to word onset.
Word-medial phonemes, modeled as an impulse at each

phoneme excluding word onsets, were associated with a sig-

nificant (tmax = 3.15, p = 0.005) right-lateralized (tmax = 2.75,

p = 0.035) response.

Responses to Acoustic Features
Both acoustic predictors were associated with strong bilateral

effects (tmax = 9.08 and 9.23, both p < 0.001). Both were localized

close to core auditory cortex, with acoustic onsets somewhat

more predictive in the right hemisphere (tmax = 4.24, p = 0.007).

Significant effects extended over much of the temporal lobe,

though the extended area could be due to spatial dispersion of

MEG source estimates rather than genuine responses outside

of core auditory regions [13]. TRFs to the acoustic envelope ex-

hibited two main peaks at 30 and 106 ms, consistent with earlier

results [13, 33, 47]. The latency of two analogous peaks to

acoustic onsets at 68 and 131 ms was found to be greater, as
Current Biology 28, 3976–3983, December 17, 2018 3979
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Figure 3. Brain Responses to Two Concurrent Speakers

Details analogous to Figure 2. The three columns display results for the model components for: the attended speech stream (left), the actual acoustic stimulus

mixture (middle), and the unattended speech stream (right). The upper part of the figure displays results for acoustic features, the lower part for lexical processing.
expected due to the temporal relationship between the two vari-

ables: the time of maximum rising slope precedes the time of

maximum amplitude, and is thus earlier compared with specific

time points in the neural response. The presence of analogous

peaks in the TRFs to both acoustic representations might indi-

cate that they jointly arise from a single, more complex underly-

ing neural response type, reflecting both onset and continuous

acoustic properties [48]. On the other hand, spatially, the two

response peaks to acoustic onsets were localized posterior

to the corresponding acoustic envelope peaks (d = 8 mm,

p = 0.002; d = 10 mm, p < 0.001), which might instead indicate

that the two responses stem from partially distinct neural

populations [49].

Responses to Two Concurrent Speakers Reflect
Acoustic, but Not Lexical, Information in Unattended
Speech
The variables that significantly predicted responses to a single

speaker were used to model acoustic and lexical processing in

a version of the cocktail-party paradigm [18, 19]. Participants
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listened to a single-channel acoustic mixture of a male and a

female speaker, attending to one and ignoring the other. This

made it possible to test whether the lexical processing observed

for a single speaker is restricted to the attended speech stream

or whether it occurs also for the unattended stream. Figure 3

shows the predictive power of groups of predictors modeling

relevant processing stages and TRFs for the full model fitted to

the two-speaker data.

Responses were significantly modulated by acoustic features

of both the attended and the unattended speaker (tmax = 11.83

and 16.67, both p < 0.001; lateralization tmax = 4.17, p = 0.041

and tmax = 5.28, p = 0.001). The relative amplitudes of the TRF

peaks to acoustic onsets were consistent with previous results

[33, 47, 50], with an earlier (�70 ms) peak predominantly reflect-

ing the raw acoustic mixture, and a later (�150 ms) peak pre-

dominantly reflecting acoustic energy in the attended speech.

Responses to the acoustic envelope almost exclusively reflected

processing of the acoustic mixture, suggesting that auditory

stream segregation may be predominantly reflected in onset

processing.
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(A) Illustration of aspects of the cohort model on which significant variables were based: lexical segmentation (word onset), predictive coding based on preceding

phoneme sequence (phoneme surprisal) and lexical competition (cohort entropy).

(B) Time course of TRF amplitude for each variable, major peaks marked with symbols corresponding to those used in (C).

(C) Center of mass of average peaks shown in B (see also Table S3 and Figure S2).

(D) Schematic illustration of results of the two-speaker analysis: early acoustic TRF peaks track the processing of the acoustic signal fromboth speakers, whereas

lexical TRFs track processing of only the attended speech.
In contrast to the acoustic models, only the lexical processing

model for the attended speech showed a significant effect (tmax =

6.08, p < 0.001); lexical properties of the unattended stream did

not (tmax = 2.90, p = 0.159), and the effect of lexical processing of

the attended speech was significantly greater than that for unat-

tended speech (tmax = 6.13, p < 0.001). Individually, only word

onset and cohort entropy significantly contributed to model pre-

dictions (tmax = 4.93, p < 0.001 and tmax = 3.96, p = 0.002), while

surprisal did not (tmax = 2.63, p = 0.802). Consistent with this,

TRFs to word onset and cohort entropy were significant in the at-

tended speech only. These responses were very similar to the

corresponding single speaker responses in shape, although

with a significant delay (word onset: 118 versus 103 ms t(25) =

2.52, p = 0.018; entropy: 140 versus 125 ms, t(25) = 2.15, p =

0.042).

While recent research suggests that processing of information

contingent on successful word recognition is suppressed for

unattended speech [12, 14], these previous findings leave open

the possibility that unattended speech is processed up to and

including identification of lexical items, but without retrieval of

the recognizedwords’properties. The resultspresentedhere indi-

cate that lexical processing of unattended speech is suppressed

at the level of detectingword forms. This raises the possibility that

lexical processing constitutes a bottleneck in speech perception.

Lexical perception is thought to bemassively parallel by involving

activation of multiple candidate lexical representations through

the cohort [10]. The mechanisms implementing this multiple acti-

vation might involve mental resources that cannot be shared

across parallel instances of the same process, making it impos-

sible formore than one cohort to be represented at the same time.
Conclusion
MEG responses to continuous speech reflect a transformation

of the speech signal from acoustic representations, which can

be characterized with spectro-temporal receptive fields, to

probabilistically driven activation of lexical units. Phonetic

cues are rapidly analyzed for their relevance to word perception,

updating a lexical processor in the left temporal lobe within

�130 ms (Figures 4A–4C). In the presence of two competing

speakers, this transformation is restricted to the attended

speech stream (Figure 4D). While the analysis presented here

is naturally limited to a specific listening condition and adults

with normal hearing, the framework lends itself to studying the

influence of different conditions and individual differences on

speech processing. Importantly, the methods presented here

allow studying lexical processing while listeners are engaged

in comprehension of continuous speech without an intrusive

extraneous task.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

MEG data and predictor variables Digital Repository at the University of Maryland http://hdl.handle.net/1903/21109

Software and Algorithms

Presentation Software Neurobehavioral Systems (https://www.neurobs.com/) RRID: SCR_002521

Python 2.7 Anaconda https://www.anaconda.com

MNE-Python MNE Developers (http://martinos.org/mne/) RRID: SCR_005972

Eelbrain Christian Brodbeck (https://pypi.org/project/eelbrain/) RRID: SCR_014661

Gentle (forced aligner) Robert M Ochshorn and Max Hawkins https://lowerquality.com/gentle/

MATLAB The MathWorks RRID: SCR_001622

NSL MATLAB Toolbox Neural Systems Laboratory, University of Maryland https://isr.umd.edu/Labs/NSL/Software.htm

Other

‘A Child’s History of England’ by

Charles Dickens, chapters 3 and 8

LibriVox https://librivox.org/a-childs-history-of-

england-by-charles-dickens/

157 axial gradiometer whole head

MEG at the University of Maryland

KIT, Kanazawa, Japan N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Christian

Brodbeck (brodbeck@umd.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

MEG data were recorded from 28 native speakers of English, recruited by media advertisements from the Baltimore area as control

group for another study. Participants with medical, psychiatric or neurological illnesses, head injury, and substance dependence or

abuse were excluded. All subjects signed informed consents and were paid for their participation. Data from two participants were

excluded, one due to corrupted localizer measurements, and one due to excessive magnetic artifacts associated with dental work.

The sample analyzed was composed of 18 male and 8 female participants with mean age 45.2 (range 22 - 61). All subjects provided

informed consent in accordance with the University of Maryland Baltimore Institutional Review Board.

Three participants were left handed [51]. Excluding them from analysis changed only onemajor result: The effect of cohort entropy,

which was not significantly lateralized in the full group, became significantly left-lateralized, as mentioned in Results.

METHOD DETAILS

Stimuli
1min long segments were extracted from audiobook recordings ofAChild’s History of England byCharles Dickens, one chapter read

by a male and one by a female speaker (https://librivox.org/a-childs-history-of-england-by-charles-dickens/, chapters 3 and 8).

Pauses longer than 300 ms were shortened to an interval randomly chosen between 250 and 300 ms, and loudness was matched

perceptually. Cocktail party stimuli were generated by additively combining two segments, one from each speaker, with an initial 1 s

period containing only the to-be attended speaker.

Four segments were extracted for each speaker: male-1 through 4 and female-1 through 4; mix-1 through 4 were constructed by

mixing male-1 and female-1, and so forth. Participants listened four times to mix-1, while attending to one speaker and ignoring the

other (which speaker they attended to was counterbalanced across subject), then 4 times to mix-2 while attending to the other

speaker. Then, the four segments just heard were all presented once individually. The same procedure was repeated for stimulus

segments 3 and 4. After each mix segment, participants answered a question relating to the content of the attended stimulus.

Participants lay supine and were instructed to keep their eyes closed during stimulus presentation (to minimize ocular artifacts

and head movement). Stimuli were delivered through foam pad earphones inserted into the ear canal at a comfortably loud listening

level.
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MEG data acquisition and preprocessing
Continuous MEG data were acquired with the 157 axial gradiometer whole head MEG system (KIT, Kanazawa, Japan) inside a

magnetically shielded room (Vacuumschmelze GmbH & Co. KG, Hanau, Germany) at the University of Maryland, College Park.

Sensors (15.5 mm diameter) are uniformly distributed inside a liquid-He dewar, spaced �25 mm apart, and configured as first-order

axial gradiometers with 50 mm separation and sensitivity >5 fT$Hz-1/2 in the white noise region (> 1 KHz). Data were recorded with an

online 200 Hz low-pass filter and a 60 Hz notch filter at a sampling rate of 1 kHz.

Recordings were pre-processed using mne-python [52, 53]. Flat channel responses were automatically detected and excluded.

Extraneous artifacts were removed with temporal signal space separation [54]. Data were filtered between 1 and 40 Hz with a

zero-phase FIR filter (mne-python 0.15 default settings). Responses time-locked to the onset of the speech stimuli were extracted

and downsampled to 100 Hz.

Source localization
Before the MEG recording, each participant’s head shape was digitized (Polhemus 3SPACE FASTRAK) and five marker coils were

attached to their head. The marker coils were localized with respect to the MEG sensors at the beginning and at the end of the

recording session, and these position measurements were used to determine the head position relative to the MEG sensors. The

digitized head shape was used to coregister the FreeSurfer [55] ‘‘fsaverage’’ template brain to each subject’s head shape using

rotation, translation, and uniform scaling.

A source space was defined using four-fold icosahedral subdivision of the white matter surface of the fsaverage brain, with all

source dipoles oriented perpendicularly to the cortical surface. Based on this source space, [2 minimum norm current estimates

[56, 57] were computed for all data using a depth weighting parameter of 0.8 [58]. Analysis was restricted to the temporal lobe

of both hemispheres, based on anatomical labels in the ‘‘aparc’’ parcellation [59]. This resulted in 314 source dipoles in the left

hemisphere and 313 source dipoles in the right (see highlighted area in Figure 1).

QUANTIFICATION AND STATISTICAL ANALYSIS

Predictor variables
Predictor variables were generated as uniform time series with a sampling rate of 100 Hz to match the processedMEG data. Figure 1

illustrates the predictor variables, aligned with an excerpt from one of the stimuli.

Responses to the acoustic features of the speech signal weremodeled using amodel of acoustic transformations in the brainstem,

the so called auditory spectrogram [60]. The auditory spectrogram was computed using the NSL Toolbox (https://isr.umd.edu/Labs/

NSL/Software.htm) and shifted by�20 ms in order to compensate for the intrinsic delay introduced by this transformation. A predic-

tor reflecting the moment by moment acoustic envelope was generated by summing the auditory spectrogram in 8 logarithmically

spaced frequency bands (8 bands were chosen as a compromise between reducing the computational demand for model fitting,

while still being able to recognize phonetically relevant acoustic features in the spectrogram). Because brain responses are known

to be sensitive to contrast and changes, and phonetic information is often specifically located in acoustic onsets [20], it was important

to control for responses to onsets in the acoustic signals. For this reason, an acoustic onset predictor was constructed from the

half-wave rectified derivative of the acoustic envelope predictor.

All phoneme-based predictors were modeled as impulses at phoneme onset (see Figure 1). Phoneme onsets in the stimuli were

automatically determined by the Gentle forced aligner (https://lowerquality.com/gentle/) and then adjusted by hand where

appropriate using Praat [61]. A phonetic lexicon with lexical statistics was generated by combining pronunciations from the CMU

Pronouncing Dictionary (http://www.speech.cs.cmu.edu/cgi-bin/cmudict) and word frequency statistics from the SUBTLEX subtitle

database [23]. Stress information was stripped from all phonemes. Missing pronunciations were manually added, and words occur-

ring in the stimuli but missing from SUBTLEX were assigned a frequency count of 1.

The cohort refers to the set of words compatible with the acoustic input at any point during a word [10]. For each phoneme, the

cohort was determined by selecting from the phonetic lexicon those entries that started with the phoneme sequence from the begin-

ning of the word to the current phoneme. The cohort size variable was the log of the number of words in the cohort at each phoneme.

The cohort reduction variable was the log of the number of words at the current phonememinus the number of words at the previous

phoneme or, for the initial phoneme,minus the number of words in thewhole lexicon.While these two variables are not aswidely used

as surprisal and entropy (see below), they are potentially more fundamental variables that should be controlled for before drawing

conclusions about surprisal and entropy.

While cohort size variables depend only on word counts, the frequency with which individual words occur in the language is known

to affect lexical processing [11, 22]. This is taken into account by themeasures of phoneme surprisal and entropy. Phoneme surprisal

is defined as the inverse of the conditional probability of each phoneme, given the preceding phonemes in the current word:

surprisali = � log2

�
freqðcohortiÞ
freqðcohorti�1Þ

�
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where cohorti is the cohort at phonemewith position i, and freq(c) is the summed frequency of all words in cohort c. Cohort entropy is

defined as the entropy [24] of the cohort at each phoneme. Entropy at phoneme i is given by:

Hi = �
Xcohorti
word

pword log2 pword

where pword is the probability of the given word form, here modeled as the relative frequency count in the SUBTLEX corpus.

To account for the possibility that the initial phoneme of each word is processed differently from the subsequent phonemes

(see e.g., [10]), we modeled the initial phoneme of each word separately from the subsequent phonemes for each variable (indicated

by a different color of the word-initial phonemes in Figure 1).

Model estimation
For each subject, the localized current at each potential neural source dipole was modeled as a sum of linear convolutions of the

stimulus variables with a filter of 500 ms duration. Separate and independent models were estimated for each of the 627 source

dipoles. Optimal filters were estimated for all predictor variables concurrently with a coordinate descent algorithm [13, 62] minimizing

the [1 error between predicted and actual current time course. Filters were generated from a basis of 50 ms Hamming windows,

centered at each time point in the kernel. This smoothness constraint on the filters was imposed to improve the reliability of predic-

tions, compensating for the temporal sparseness of the impulse representation of phonemes. Algorithms used for model estimation

and statistical analysis are publicly available in the Eelbrain open source Python package [63] (https://github.com/christianbrodbeck/

eelbrain).

Model comparisons
Model fit was evaluated using the z-transformed Pearson correlation between estimated and measured responses (the Fisher

z-transformation corrects for distortions introduced by the fixed end-points at 1 and �1 of correlation coefficients). Model fit

z-maps were smoothed with a Gaussian kernel (STD = 5 mm) to account for granularity caused by local variation in source dipole

orientation. To compare the fit of two models, their respective z-maps were compared with related measures t tests. First, a t

map was computed for the difference at each source dipole. The resulting map was then processed with threshold-free cluster

enhancement (TFCE) [64], and a distribution of the largest expected TFCE value per t map under the null-hypothesis was computed

with 10,000 permutations, randomly switching condition labels within subjects [64, 65]. A p value for each dipole was computed by

locating the original TFCE-enhanced t value on the permutation distribution. Along with the permutation-based p value, we report

tmax, the largest t value from the given comparison’s t map (using absolute t values for two-tailed tests).

To test for significant contributions of a given predictor, the predictive power of the full model was compared to the average of

3 models consistent with the null hypothesis, which were identical except for the predictor under investigation, each shuffled in a

way appropriate for the hypothesis being tested. A predictor was considered significant if it significantly improved model fit across

participants over the respective shuffledmodels. Three shufflings were used to decrease the influence of arbitrary features of a single

randomization. This procedure allowed testing for incremental model improvement due to a specific predictor, without introducing

bias by changing the degrees of freedom. Under the null hypothesis that there is no significant association between the given

predictor and the responses, a shuffled version of the predictor should be equally effective as the properly aligned version. A differ-

ence in model fit between the full and the shuffled models thus indicates a significant relationship between predictor and responses.

Test of lateralization
Tests of hemispheric asymmetry were performed by comparing model-fit improvement between the two hemispheres. First, a

difference map was computed by subtracting, from the z-values of the full model, the average from the 3 shuffled models. The

resulting differencemaps from both hemispheres weremapped to the left hemisphere of the ‘‘fsaverage_sym’’ brain [13, 66], masked

by the region of significant model improvement in at least one hemisphere, and compared with a two-tailed t test while controlling for

multiple comparisons with TFCE as described above.

A potential concern with source localized MEG data could be differential sensitivity in the two hemispheres. However, a laterality

test of the reduced model as a whole for the single speaker data indicated that there was no overall difference in predictive power in

the left and right hemisphere (tmax = 2.94, p = 0.142). Together with the result that significant lateralization was observed in both

directions for different variables, this suggests that bias toward one hemisphere was minimal.

Spatio-temporal response functions
Temporal response functions, i.e., the kernels of the optimal filters, were analyzed similarly, but including the additional dimension of

time. A spatio-temporal t-map was computed for a one-sample t test against 0. This mapwas again processed with TFCE and a two-

tailed distribution for the maximum TFCE value was computed based on 10,000 permutations. For graphical display only, time series

were upsampled to 1000 Hz to minimize visual discretization artifacts.
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Response time course
The time points of response peaks were estimated from the group average TRFs. The spatio-temporal response functions were

masked by significance, and their absolute values were summed across sources. The resulting time course was resampled to

1000 Hz, and response peaks were identified as local maxima (time courses are displayed in Figure 4B).

In order to compare response peak latencies across the phoneme-based variables, a spatio-temporal mask was generated as the

union of the masks for the individual predictors (phoneme onset, word onset, phoneme surprisal, and cohort entropy). As above, the

response functions weremasked, absolute values were summed across source dipoles and the resulting time course was resampled

to 1000 Hz. For pairwise comparisons, the response peak with the largest amplitude was identified for each subject for each variable

in the window from 60 – 160 ms. This window was centered around the main peaks of the four variables, which all occurred between

103 and 125 ms, and largely encompassed the temporal extent of significant responses. Peaks from different variables were

compared using two-tailed t tests.

Response localization
Themain peaks in the response functions were compared as to their spatial localization. Since the responses to themain variables of

interest were dominant in the left hemisphere, this analysis was restricted to the left hemisphere. For each response peak in the

average response, a spatial map was generated based on the sum of the absolute TRFs in a time window of 60 ms centered on

that peak (since response peaks were identified in upsampled time courses and usually lay between two actual TRF samples, this

amounted to including 3 samples on either side of the peak). Each map was thresholded at half its maximum value to reduce the

influence of spatial leakage of source estimates, and the center ofmasswas computed as theweighted average of the corresponding

FreeSurfer fsaverage right/anterior/superior coordinates.

A permutation test was used to test the null hypothesis that the location of two peaks was indistinguishable. For each subject,

the difference vector between the two locations was computed. The length of the average vector served as a statistic of intertest,

and its distribution under the null hypothesis was determined in 10,000 permutations in which each vector was rotated by a randomly

determined angle. Results of pairwise comparisons are listed in Table S3.

Due to the finite extent of the source space volume, averages of individual subjects’ centers of masswere biased toward the center

of the source space,making themunsuitable for visualization (Figures 4 andS2). Instead, centers ofmasswere computed for average

TRF peakmaps (see Figure S2). For this purpose, individual subject peak maps were normalized and averaged (before thresholding).

Then, the center of mass was computed as described above, but using the coordinates of the inflated brain used for visualization. For

visualization in Figure S2, the peak maps were smoothed with a Gaussian kernel (STD = 5 mm).

Single speaker analysis
Responses to a single speaker were used to determine variables that reflect lexical processing of phonetic information. To test for an

effect of lexical variables without inflated type I error due to multiple comparisons, an initial test was performed against shuffled

models in which all 8 lexical variables were shuffled together. Subsequently, the set of lexical variables was reduced to a set in which

each variable explained a distinct proportion of the variance. To this end, themodel was reduced one predictor at a time by removing

the predictor with the largest p value, until only significant predictors were left (see e.g., reference [25] for a similar approach). Once

only significant lexical predictors remained (henceforth called the reduced model), the other variables in the model were also eval-

uated for significance (shown in Figure 2).

The way in which variables were shuffled depended on the nature of the variable and the corresponding null hypothesis: Lexical

variables were shuffled by randomly reordering the values (e.g., phoneme surprisal) while leaving the phoneme time locations

constant. Acoustic predictors were shuffled by shifting the acoustic stimulus in time by 15, 30 or 45 s (including wrapping around

from the end to the beginning). To test whether word onsets were represented neurally, word onsets were randomly assigned to

different phoneme locations, while keeping all phoneme locations constant. To test whether phoneme onsets were represented,

the time-series modeling non-word initial phonemes (i.e., all phonemes except those at word onset) was time-shifted in the same

manner as the acoustic predictors. In each case, all remaining predictors were left unchanged in the control model.

Two speaker analysis
For modeling responses to stimuli with a mixture of two speakers, separate predictors were included for the attended and the

unattended speech stream, both based on the reduced single speaker model. In addition, acoustic predictors were generated for

the acoustic mixture of the two speakers, i.e., for the raw acoustic stimulus that was actually presented to the participants.

Models were assessed by grouping the predictors modeling each process of interest. Since the acoustic mixture is closely approx-

imated by a linear combination of the attended and the unattended signals (in all bands r > 0.95 for the acoustic envelope and r > 0.88

for acoustic onsets), the predictive power of the mix could not be assessed independently. Instead, the predictive power of the at-

tended stimulus was assessed by shuffling both the attended and the mix acoustic predictors, and the unattended stimulus was as-

sessed by shuffling both the unattended and themix acoustic predictors. Nevertheless, acoustic TRFs could be analyzed for all three

streams, since the coordinate descent algorithm determines which predictor can reduce the error most efficiently, regardless of

whether the same model fit could be achieved by a linear combination of other, less efficient predictors. Lexical processing was as-
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sessed separately for attended and unattended streams, by shuffling all the values among phoneme locations, but leaving phoneme

locations themselves unchanged. Thus, the model comparison controlled for responses associated with all phonemes independent

of lexical processing.

TRF latencies were determined as for the single speaker responses. In order to compare latencies from the two speaker responses

to the latencies from the single speaker responses, the same mask and procedure as for the peak analysis of single speaker

responses was used, but the time window for analysis was extended by 20 ms to account for the increase in latency clearly present

in the averaged responses.

No detectable effect of repeated presentation
A potential concern in the present experiment was that stimuli were repeated multiple times. While each stimulus was a full minute

long, making it unlikely that participants were able to form a detailed memory over the course of a few presentations, repeated

presentation might nevertheless have led to subtle changes in processing. The effect of previous exposure on lexical responses

was assessed separately for clean speech and two-talker mixed speech.

For clean speech, separate models were fit to stimuli based on whether the speech had been previously attended or ignored,

respectively, when presented as part of two-talker mixed speech. Listeners attended to the same speaker during each presentation

of a mixed stimulus, e.g., always attending to the female-1 stimulus when it was presented mixed with the male-1 stimulus. Conse-

quently, subsequently listening to female-1 alone should essentially amount to a fifth repetition, while listening to male-1 should

amount to a new stimulus. TRFs to previously attended and ignored stimuli were compared for all lexical predictors using paired

t tests and TFCE, analogous to tests described above. The statistical analysis was restricted to response latencies between 0

and 250ms, which encompassed the main responses found in themain analysis. None of the TRFs differed significantly (word onset:

tmax = 3.82, p = 0.176; phoneme surprisal: tmax = 4.59, p = 0.208; cohort entropy: tmax = 3.03, p = 0.119). For increased power, the

analysis was repeated with TRFs masked by the spatio-temporal region in which each predictor was significantly different from 0 in

the reducedmodel. This did not change the conclusions (word onset: tmax = 3.82, p = 0.221; phoneme surprisal: tmax = 2.54, p = 0.181;

cohort entropy: tmax = 2.55, p = 0.255). Time courses of responses appeared very similar, and this was confirmed by an analysis of

peak latencies, using the same methods as described above for the comparison of peak latencies between predictors (word onset:

t(25) = 0.36, p = 0.725; phoneme surprisal: t(25) = 0.65, p = 0.521; cohort entropy: t(25) = 0.78, p = 0.441).

For the two-speaker mix, separate models were fit to the first, second, third, and fourth presentations of the two speaker stimuli.

Spatio-temporal one-way ANOVA with four levels representing order of presentation did not reveal any differences in TRFs to lexical

processing of the foreground speech between 0 and 250 ms (word onset: fmax = 5.01, p = 0.316; phoneme surprisal: fmax = 6.65,

p = 0.110; cohort entropy: fmax = 7.46, p = 0.656; masked by significant response in the main analysis, word onset: fmax = 4.36,

p = 0.472; cohort entropy: fmax = 4.65, p = 0.316). An analysis of peak latency also did not indicate a difference due to how many

times a stimulus had been heard (word onset: f(3,75) = 0.06, p = 0.982; cohort entropy: f(3,75) = 0.60, p = 0.616).

DATA AND SOFTWARE AVAILABILITY

Algorithms used for model estimation and statistical analysis are available in the Eelbrain open source Python package [63] (https://

github.com/christianbrodbeck/eelbrain). Data are available from the Digital Repository at the University of Maryland (http://hdl.

handle.net/1903/21109).
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Figure S1. Relationship between predictor variables, across all stimuli. Related to Figure 1 and Table S1. 
Each data point reflects one phoneme. Corresponding correlation values are also listed in Table S1. 

 
 
 

 
 

Figure S2. TRF peak maps. Related to Figures 2 and 4 and Table S3. Average of subject maps for all major TRF 
peaks, averaged in 60 ms windows around peaks. Black circles indicate the center of mass of each map, calculated 
as described in the Methods section and displayed on Figure 4. See Table S3 for pairwise tests of peak locations. 
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ENVELOPE 
ACOUSTIC 

ONSET 
COHORT 

SIZE 
COHORT 

REDUCTION 
PHONEME 
SURPRISAL 

ACOUSTIC ONSET .44     
Word-medial 
    COHORT SIZE .01 - .12 .03 - .19    
    COHORT REDUCTION .01 - .12 .03 - .20 .80   
    PHONEME SURPRISAL .01 - .08 .02 - .13 .19 .48  
    COHORT ENTROPY .00 - .11 .01 - .19 .75 .57 .32 
Word-initial 
    COHORT SIZE -.07 - .00 -.03 - .05    
    COHORT REDUCTION -.07 - .00 -.03 - .04 -.81   
    PHONEME SURPRISAL -.07 - .00 -.03 - .04 .02 .07  
    COHORT ENTROPY -.07 - .01 -.03 - .03 .73 -.78 .19 

 
Table S1. Predictor correlation. Related to Figure 1. Pairwise correlation for predictor variables across all 
stimuli. For correlations between the two acoustic predictors, the correlation reflects all samples across time and 
center frequency. For correlations between acoustic and phoneme-based predictors, correlations were computed 
separately for each frequency band across all time samples, and the range (min – max) of correlations with the 
different frequency bands is given. For correlations between phoneme-based variables, correlations between 
phoneme values, i.e., the values of the non-zero impulses, were computed. Corresponding scatter-plots for phoneme-
based variables are displayed in Figure S1. 

 
  Word-medial Word-initial 
  Cohort 

size 
Cohort 

reduction 
Phoneme 
surprisal 

Cohort 
entropy 

Cohort 
size 

Cohort 
reduction 

Phoneme 
surprisal 

Cohort 
entropy 

1 tmax 1.47    2.68    3.87**  4.61*** 2.21    2.81    2.88    2.54    
 p .998 .870 .006 < .001 .970 .307 .558 .832 
2 tmax  2.95    3.71**  5.10*** 2.03    3.37    2.51    2.85    
 p  .517 .006 < .001 .996 .119 .903 .748 
3 tmax  3.24    3.95**  4.85***  2.76    2.41    2.50    
 p  .263 .004 < .001  .489 .938 .867 
4 tmax  3.70    3.94**  5.09***  2.78     2.37    
 p  .099 .002 < .001  .417  .967 
5 tmax  3.57    3.74**  5.49***  3.40      
 p  .105 .004 < .001  .086   
6 tmax   3.98**  6.04***  3.00      
 p   .002 < .001  .397   
7 tmax   4.47*** 5.68***     
 p   < .001 < .001     

 
Table S2. Model reduction. Related to Figure 2. Each row constitutes one step in the model reduction. The row 
provides tmax and p-values for each predictor variable (significance marked * ≤ .05; ** ≤ .01; *** ≤ .001). The 
variable with the lowest non-significant effect size (greatest p-value) was excluded for the next row, until only 
significant predictor variables remained. 

  



 
  ACOUSTIC ENVELOPE ACOUSTIC ONSET WORD 

ONSET 
PHONEME 
SURPRISAL 

  30 ms 106 ms 68 ms 131 ms 103 ms 114 ms 
ACOUSTIC ENVELOPE 30 ms       

106 ms 2        
ACOUSTIC ONSET 68 ms 8**  6        

131 ms 11*** 9*** 7**     
WORD ONSET 103 ms 10*** 9**  3    5      
PHONEME SURPRISAL 114 ms 5    4    7    7    8*    
COHORT ENTROPY 125 ms 8**  6    7**  4    7**  3    

 
Table S3. Pairwise tests of peak locations. Related to Figures 2 and 4. For each subject, the center of mass of the 
TRF at a given peak was extracted, and the resulting center coordinates were compared with pairwise permutation-
based tests (see Methods section). Each cell displays the distance in mm and corresponding significance test (* ≤ 
.05; ** ≤ .01; *** ≤ .001). See Figure S2 for average peak distribution maps. Note that center of mass estimates are 
biased towards the center of the source space volume, and distances are thus smaller than distances between the 
peaks of average maps. 
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