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A B S T R A C T

Human experience often involves continuous sensory information that unfolds over time. This is true in particular
for speech comprehension, where continuous acoustic signals are processed over seconds or even minutes. We
show that brain responses to such continuous stimuli can be investigated in detail, for magnetoencephalography
(MEG) data, by combining linear kernel estimation with minimum norm source localization. Previous research
has shown that the requirement to average data over many trials can be overcome by modeling the brain response
as a linear convolution of the stimulus and a kernel, or response function, and estimating a kernel that predicts the
response from the stimulus. However, such analysis has been typically restricted to sensor space. Here we
demonstrate that this analysis can also be performed in neural source space. We first computed distributed
minimum norm current source estimates for continuous MEG recordings, and then computed response functions
for the current estimate at each source element, using the boosting algorithm with cross-validation. Permutation
tests can then assess the significance of individual predictor variables, as well as features of the corresponding
spatio-temporal response functions. We demonstrate the viability of this technique by computing spatio-temporal
response functions for speech stimuli, using predictor variables reflecting acoustic, lexical and semantic pro-
cessing. Results indicate that processes related to comprehension of continuous speech can be differentiated
anatomically as well as temporally: acoustic information engaged auditory cortex at short latencies, followed by
responses over the central sulcus and inferior frontal gyrus, possibly related to somatosensory/motor cortex
involvement in speech perception; lexical frequency was associated with a left-lateralized response in auditory
cortex and subsequent bilateral frontal activity; and semantic composition was associated with bilateral temporal
and frontal brain activity. We conclude that this technique can be used to study the neural processing of
continuous stimuli in time and anatomical space with the millisecond temporal resolution of MEG. This suggests
new avenues for analyzing neural processing of naturalistic stimuli, without the necessity of averaging over
artificially short or truncated stimuli.
Introduction

In a natural environment, the brain frequently processes information
in a continuous fashion. For example, when listening to continuous
speech, information is extracted incrementally from an uninterrupted
acoustic signal at multiple levels: phonetically relevant sound patterns
are recognized and grouped into words, which in turn are integrated into
phrases which are meaningful in the context of a larger discourse (e.g.
Gaskell and Mirkovic, 2016). Contrary to this continuous mode of func-
tioning, neuroimaging experiments typically isolate phenomena of
December 2017; Accepted 17 Janua
interest with short, repetitive trials (for many examples, see e.g. Gaz-
zaniga et al., 2009). While such research unquestionably leads to valu-
able results, the lack of naturalness of the stimuli is associated with
uncertainty of how generalizable such results are to real world settings
(see e.g. Brennan, 2016). Consequently, there is a need for complemen-
tary research with more naturalistic stimuli.

Brain responses to continuous speech have been studied with func-
tional magnetic resonance imaging (fMRI) (Brennan et al., 2012; Brennan
et al., 2016; Chow et al., 2014; Willems et al., 2016). Hemodynamic
changes have been shown to track inherent properties of words, such as
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Fig. 1. Linear filter model. The linear filter model r ¼ h*s assumes that the
response r is the convolution of the stimulus s with a response function, or
kernel h. A) Illustrates the linear filter model for a simple stimulus with three
discrete impulses. Since the impulses are spaced far apart relative to the size of
the kernel, the shape of the kernel is apparent in the response. B) If the
stimulus varies continuously, the convolution leads to a response in which the
kernel is not discernible by eye. The response shown is obtained by
convolving the stimulus with the same kernel as in A. C) If the stimulus as well
as the response are known, different methods exist to estimate a kernel that
optimally predicts the response given the stimulus. In the illustration, the
simulated response is obtained by convolving the stimulus with the kernel
shown under A and adding noise. The kernel is then estimated from the
stimulus and the simulated response using boosting (see Methods). The
modeled response, i.e. the stimulus convolved with the estimated kernel, can
be compared to the actual response to determine the explanatory power of
the model.
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word frequency, as well as properties of words in context, such as the
contextual probability of encountering a given word. However, the low
temporal resolution of fMRI, typically sampled at or below 1Hz, imposes
several limitations on the phenomena that can be modeled. While the
studies cited above suggest that the resolution is adequate to model re-
sponses with a timescale of individual words, this is not the case for
processes at faster timescales such as phonetic perception, where rele-
vant events last only tens of milliseconds. In addition, fMRI responses can
be modeled in terms of brain regions which are or are not sensitive to a
given variable, but the relative and absolute timing of different compo-
nents of the response remain obscure. Thus, even when word-based
variables are analyzed, hemodynamic responses are modeled as instan-
taneous effects of the relevant variable, convolved with the hemody-
namic response function, but without taking into account the temporal
relationship between the stimulus and different components of the brain
response (e.g. Brennan et al., 2016; Willems et al., 2016).

In contrast to fMRI, electroencephalography (EEG) and magnetoen-
cephalography (MEG) have the temporal resolution to track continuous
processing with millisecond accuracy. Previous research has established
that the dependency of the MEG or EEG response on a continuous stim-
ulus variable can be modeled as a linear time-invariant system (Lalor
et al., 2006). This technique has been originally developed for relating
neurons' spiking behavior to continuous sensory stimuli (see Ringach and
Shapley, 2004), but can be extended to MEG/EEG signals by modeling
the response as a linear convolution of a stimulus variable with an im-
pulse response function (see Fig. 1). Given a known stimulus and a
measured response, one can then estimate the optimal response function
to predict the measured response from the stimulus. This technique has
been used to model EEG responses to continuously changing visual
stimuli, by modeling continuous EEG signals as the convolution of
moment-by-moment stimulus luminance with an appropriate response
function (Lalor et al., 2006). An analogous procedure has been used to
estimate responses to amplitude modulated tones and noise (Lalor et al.,
2009). As an extension of this procedure, the response to continuous
speech has been modeled as a response to the level of momentary
acoustic power, the acoustic envelope (Lalor and Foxe, 2010).

While the original formulation focused on purely sensory neurons, i.e.
neurons whose response is a linear function of sensory input (Ringach
and Shapley, 2004), the same method has also been applied successfully
to determine cognitive influences on sensory processing. This can be
achieved by modeling the signal as a response to a continuous predictor
variable that represents a specific property of interest of the input stim-
ulus. Thus, besides the acoustic envelope, the EEG response to continuous
speech has been shown to reflect categorical representations of pho-
nemes (Di Liberto et al., 2015). Furthermore, using stimuli in which
speech from multiple talkers is mixed, it has been shown that the
response function to the acoustic envelope can be divided into an earlier
component around 50ms that responds to the acoustic power in the
overall stimulus, and a later component around 100ms that responds to
the acoustic envelope of the attended speech stream but not the unat-
tended one (Ding and Simon, 2012a,b).

While this research shows that response functions for continuous
stimuli can be estimated, and that they can track not just sensory but also
cognitive processes, all the above studies estimated response functions
using only sensor space data. Topographic distributions of response
functions have been assessed using equivalent current dipole localization
(Lalor et al., 2009; Ding and Simon, 2012a) but this does not use the full
localizing power of MEG. For investigating cognitive processing of sen-
sory signals in particular, better source localization has the potential to
separate response functions to different stimulus properties through
anatomical separation of the brain response. In this paper, we propose to
use distributed minimum norm source estimates to localize MEG data
before estimating response functions. We developed a procedure in
which source estimates are computed for continuous raw data, response
functions are estimated independently at each virtual current dipole of
the source model, and these individual response functions are then
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recombined to create a picture of the brain's responses to different
functional aspects of the continuous stimulus, in both time and
anatomical space. In other words, source localization is used to decom-
pose the raw signal based on likely anatomical origin, and this decom-
position is then used to estimate each potential source location's response
to a particular stimulus variable.

To test and demonstrate this procedure, we analyzed data from par-
ticipants listening to segments of a narrated story. We show that 6min of
data per participant is enough to estimate response functions that are
reliable across subjects. In order to demonstrate the ability to localize
responses in different brain regions, we focused on predictor variables
with clearly different predictions for their anatomical localization and
temporal response characteristics (see Fig. 2): the response to the
acoustic envelope of the speech signal should be associated with at least
two strong components around 50 and 100ms latency, in auditory cor-
tex; previous studies suggest that the latter component is posterior to the
former (Ding and Simon, 2012a). Responses associated with word
recognition were assessed via lexical frequency, which is known to be
one of the strongest predictors of lexical processing in general (see e.g.



Fig. 2. Stimulus coding for kernel estimation. Illustration of the first 4 s of one of the two speech stimuli. The text at the top indicates the transcript; the next four
lines show the raw acoustic waveform data and the three continuously coded predictor variables. The bottom illustrates the source localized MEG data from three
arbitrary source dipoles from a representative participant, averaged across the three presentations of the stimulus. The analysis modeled the brain signal at each
source dipole based on the three predictor variables using convolution with a kernel of 1 s length.
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Baayen et al., 2016). Higher lexical frequency is associated with faster
recognition of spoken words (e.g. Connine et al., 1990; Meunier and
Segui, 1999; Dahan et al., 2001), and lower amplitudes in event related
potentials to single spoken words (Dufour et al., 2013). FMRI in-
vestigations indicate a corresponding reduction in left-hemispheric
temporal and frontal activity when processing more frequent compared
to less frequent words in a narrated story (Brennan et al., 2016). Re-
sponses associated with higher levels of language processing beyond
word recognition were assessed with an estimate of the amount of se-
mantic combinatory processing over the course of the speech stimulus.
This estimate was based on the presence of constructions associated with
semantic composition operations, which previous MEG studies localized
to the anterior temporal lobe (Bemis and Pylkk€anen, 2011, 2012; West-
erlund et al., 2015). This variable is relatively coarse and likely to be
correlated with other variables reflecting structural integration, such as
constituent size, associatedwith left temporal and inferior frontal activity
(e.g., Pallier et al., 2011; Brennan et al., 2012). Consequently, this vari-
able was treated as a rough estimate of multi-word integration processes
during story comprehension, likely to be associated with anterior tem-
poral and frontal responses.

Methods

Testing dataset

We analyzed a subset of the data described in detail by Presacco and
colleagues (Presacco et al., 2016). In brief, 17 adults (aged 18–27 years)
recruited from the Maryland and Washington, D.C. areas listened to
1-min long segments of an audiobook recording of The Legend of Sleepy
Hollow by Washington Irving (https://librivox.org/the-legend-of-sleepy-
hollow-by-washington-irving/), narrated by a male speaker, and sampled
at 44,100Hz. Audio segments were modified to remove pauses longer
than 300ms. Stimuli were delivered diotically through foam earphones
inserted into the ear canal at ~70 dB sound pressure level, with a sound
delivery system equalized for an approximately flat transfer function
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from 40 to 3000Hz. Each segment was repeated three times. While the
recording sessions included conditions with two-speaker audio, for the
present analysis, only two 1 min long segments of single speaker audio in
quiet were used, for a total of 6min of data from each participant. To
maximize attention to the stimuli, participants were asked before pre-
sentation of each segment to silently count the number of times a specific
word or name was mentioned.

Handedness of the participants was assessed with the Edinburgh
handedness scale (Oldfield, 1971). The scale measures a lateralization
quotient, which can range from �1 (complete left-dominance) to 1
(complete right-dominance). Results indicated right-dominance in the
majority of our sample, with 15 out of 17 participants having a lateral-
ization quotient >0. To exclude the possibility that the tests for lateral-
ization of brain responses were biased by including left-handers, these
tests were repeated including only participants with a lateralization
quotient of 0.5 or larger (n¼ 13). While this did not reveal any additional
significant effects, lateralization of the early acoustic response became
non-significant as reported in the appropriate section below.

Predictor variables

Stimulus variables were created reflecting three cognitive levels of
speech processing: acoustic power, word frequency and semantic
composition (see Fig. 2). For linear kernel estimation, predictor variables
were sampled at the same rate as the dependent variable, i.e. the source
localized MEG data, at 100Hz.

Envelope
An auditory spectrogram representation was generated for each

stimulus using a model of the auditory periphery (Yang et al., 1992). The
auditory spectrogram is a frequency by time matrix reflecting the rep-
resentation of the acoustic signal in the brainstem. This representation
was averaged across frequency bands to generate a univariate continuous
predictor reflecting momentary acoustic power at each time point.

https://librivox.org/the-legend-of-sleepy-hollow-by-washington-irving/
https://librivox.org/the-legend-of-sleepy-hollow-by-washington-irving/
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Word frequency
Phonemes in the speech stimuli were labeled using the Gentle forced

aligner (Ochshorn and Hawkins, 2016), and phoneme boundaries were
manually adjusted using Praat (Boersma and Weenink, 2017). In the
analysis reported here, only word boundaries were used. Logarithmic
word frequencies (log10wf) were retrieved from the SUBTLEX database
(Brysbaert and New, 2009). They were encoded into a continuous pre-
dictor with value 0 during silence, and 6.33 – log10wf for the duration of
each word. This value was chosen to code infrequent words as high
values, and very frequent words as low values; the highest log10wf entry
in the database is 6.329.

Semantic composition
A variable approximately tracking the amount of semantic composi-

tion across the speech stimulus was created by identifying all word
groups corresponding to the semantic composition patterns identified by
Westerlund et al. (2015): adjective-noun, adverb-verb, adverb-adjective,
verb-noun, preposition-noun and determiner-noun pairs. The second
word of each pair was marked. Simple articles (the, a) were ignored when
identifying determiners because of their low semantic content. In pat-
terns with multiple modifiers, the head word was marked in the same
way; for example, in a substantial Dutch farmer, with two adjectives
modifying the same noun, the noun farmerwasmarked.Words associated
with semantic composition were coded as 1 for the duration of the word,
all other time points as 0.

Correlations between regressors
Time-point by time-point, both word-based predictor variables were

only weakly correlated with the acoustic envelope predictor variable
(word frequency: r¼ 0.08; semantic composition: r¼ 0.09). The corre-
lation between the twoword-based variables was larger (r¼ 0.39), owing
to the fact that only content words were candidates for our semantic
composition predictor, and content words tend to have lower frequencies
than function words (the correlation is positive because lower frequency
was coded with higher values).
MEG data acquisition and preprocessing

Before the experiment, each participant's head shape was digitized
with a Polhemus 3SPACE FASTRAK system, including 3 fiducial points
and 5marker positions. Five marker coils attached to the subject's head at
the position of the marker points were used to localize the head position
relative to the MEG sensors at the beginning and end of the recording
session. These head position records were also used to verify that par-
ticipants' head had not moved excessively over the course of the
recording session. The average distance between pre- and post-
experiment marker positions was 4.7mm, with two participants
exceeding 10mm (10.6mm and 14.8mm).

During the recording, participants were resting in supine position, in
a dimly lit magnetically shielded room. Data were acquired on a 157 axial
gradiometer whole head MEG system (KIT, Kanazawa, Japan) at Uni-
versity of Maryland, College Park and recorded with an online 200Hz
low pass filter and a 60Hz notch filter at a sampling rate of 1 kHz.

Data were pre-processed with mne-python 0.14 (Gramfort et al.,
2013, 2014). Flat channels were automatically detected and excluded.
Extraneous artifacts were removed using temporal signal space separa-
tion (Taulu and Simola, 2006), and data were band-pass filtered be-
tween 1 and 40Hz with a zero-phase FIR filter (with mne-python's
default settings). The six 60 s long data epochs corresponding to stim-
ulus presentation were extracted and downsampled to 100Hz. At that
point, channels were inspected based on their average correlation with
neighboring sensors in the raw data; no channel had an average
neighbor correlation coefficient below 0.3. For graphical display only,
time series were upsampled to 500Hz to minimize visual discretization
artifacts.
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Source localization

Head position measurements from the beginning and end of the MEG
recording session were averaged and used to localize the subject's head
shape relative to the MEG sensors. The digitized head shape was used to
coregister the ‘fsaverage’ brain model provided by FreeSurfer (Fischl,
2012) to each subject's head using uniform scaling, translation and
rotation. A source space was defined on the white matter surface of the
fsaverage model using four-fold icosahedral subdivision, with virtual
current dipoles oriented perpendicular to the cortical surface. These were
used to compute a cortically constrained distributed minimum ℓ2-norm
inverse operator (Dale and Sereno, 1993; H€am€al€ainen and Ilmoniemi,
1994) using a noise covariance estimated from empty room data and
depth weighting parameter of 0.8 (Lin et al., 2006). Filtered MEG data
were projected to source space. Dipoles lying on subcortical structures
along the midline were removed, leaving a total of 4731 dipoles.

While the current study employed minimum ℓ2-norm source esti-
mates because they are widely used and well established, other ap-
proaches generating distributed source models could be substituted. One
caveat concerns dipole orientations: Analysis of evoked responses often
relies on source estimates that compute absolute dipole amplitude while
discarding the direction of the current. This is appropriate when an in-
crease in current is expected in response to a unique event. However,
when analyzing continuous responses, where high pass filtering replaces
baseline correction, a change of the sign in the current estimate is
important information. Hence, directional (“fixed orientation”) source
estimates, which preserve information about the dipole orientation, are
preferable.

Since the current estimates were normalized for kernel estimation at
each source dipole, corrections that weight data by source location, such
as dSPM noise normalization (Dale et al., 2000), are not applicable.

Linear kernel estimation

The linear model relating rt , the response at time t, to the stimulus is
given by

rt ¼
X
p

X
d

hp;dsp;t�d þ et

where sp,t is the value of the stimulus variable for predictor p at time t, hp,d
is the value of the kernel for predictor variable p at delay d, and et is the
prediction error (residual) at time t. The range of d determines which
time points in the stimulus can influence the response at any time. For the
results presented here, d ranged from 0.00 to 0.99 s, thus, for example,
the predicted response at time t¼ 20.0 was modeled as a weighted
average of the values of the predictor variables at the time points from
t¼ 19.01 to t¼ 20.0.

We used boosting with cross-validation and ℓ1 error norm to estimate
sparse response functions unbiased by the autocorrelation in the stimulus
(for details see David et al., 2007). The precise implementation is
available in the Eelbrain source code (Brodbeck, 2017). Briefly, data
were first divided into 10 equal contiguous parts along the time axis, and
9 parts were used as training data, the remaining part as test data. The
boosting algorithm started with a response function of h0 ¼ 0 for its
entire duration, which was iteratively modified at a single time point in
increments of a constant Δ. Given a kernel and a stimulus array, the
response is predicted by:

br t ¼
X
p

X
d

hp;dsp;t�d

In each iteration, the training data was used to determine that
element of h in which a change lead to the largest ℓ1 error reduction; the
resulting new kernel was then evaluated as to whether it reduced the
error for the testing data. Iteration stopped when the error for the
training data could not be reduced any further, or when the error for the
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testing data increased in two successive iterations. When iteration
stopped, the kernel from the iteration with the smallest error on the
testing data was retained.

This procedure was repeated 10 times, with each of the 10 data
segments serving as test segment once. The 10 resulting kernels were
averaged.

To make the iterative changes comparable across predictor variables,
all stimulus as well as response variables were centered and normalized
by dividing by the mean absolute value, and the change step was set to
Δ ¼ 0:005.

Incremental model comparison

The quality of the prediction of the signal at each virtual current
dipole can be expressed by the correlation between the predicted and the
actual response. This implies a straight-forward method for comparing
the predictive power of different models across brain regions by
comparing correlation maps.

To test whether adding a given predictor to the model leads to sig-
nificant improvement, two models were fit for each subject: one with all
three predictors of the full model, and a second one that was identical
except that the predictor under investigation was temporally permuted to
remove the relationship with the response data. For each of the 1-min
long stimuli, the predictor was split in the middle and the first half, i.e.
the first 30 s, of the stimulus was used to predict the neural response to
the second half of the stimulus, and vice versa. This procedure removed
the temporal relationship to the neural data, while keeping the local
temporal structure of the stimulus identical between the true and the
permuted model. The Pearson correlation coefficients, expressing the fit
between the predicted and the actual responses, were rescaled with
Fisher's z-transform, and one-tailed t-tests were used to test whether the
correctly aligned predictor improved the prediction of the neural data.

To control for multiple comparisons when testing for correlation co-
efficient differences at a large number of virtual current dipoles, we used
nonparametric permutation tests (Nichols and Holmes, 2002; Maris and
Oostenveld, 2007) based on the threshold-free cluster-enhancement al-
gorithm (TFCE; Smith and Nichols, 2009). The precise implementation is
available in the Eelbrain source code (Brodbeck, 2017). First, a t-value
was computed for each virtual dipole based on the difference in corre-
lation values across subjects. The resulting t-map was then processed
with TFCE, an image processing algorithm that enhances contiguous
areas of large values compared to isolated spikes, based on the assump-
tion that meaningful differences have a larger spatial extent than noise.
To determine a statistical distribution for the resulting TFCE values, we
repeated the procedure in 10,000 random permutations of the data. In
each permutation, condition labels were flipped for a randomly selected
set of subjects, without sampling the same set of subjects twice (i.e., in
each of the 10,000 permutations, the labels for at least one, and at most
all, subjects were flipped). The t-test and TFCE were repeated for each
permutation, and the largest value from the cluster-enhanced map was
stored as an entry in the distribution. Thus, we computed a nonpara-
metric distribution for the largest expected TFCE value under the null
hypothesis. Any value in the original TFCE map that exceeded the 95th
percentile of the distribution was considered significant at the 5% level,
corrected for multiple comparisons across the whole brain.

Evaluation of response functions

In addition to the model fit, the boosting algorithm results in an
estimated response function at each virtual dipole for each predictor.
These response functions contain information about the time course with
which the information in different predictors affected different brain
regions. Because boosting tends to result in temporally sparse response
functions (cf. Fig. 1), response functions for each subject were smoothed
with a 50ms (5 sample) Hamming window to make themmore amenable
to group analysis. Since the window was centered, distortions of peak
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latencies are not expected, but effects might appear slightly more
temporally extended than they are in individuals' responses.

Since directional current estimates were used, the expected mean of
each source was 0. Response functions were thus tested with two-tailed
one-sample t-tests against 0. Control for multiple comparisons across
time and anatomical space was implementedwith the samemethod as for
model comparisons, except that the data had the additional dimension of
time.

In MEG source localization, the signal at several thousand virtual
current dipoles is estimated based on measurements at a much smaller
number of sensors, in our case 157 axial gradiometers. Source localiza-
tion accuracy is thus inherently limited; minimum ℓ2-norm estimates
tend to be spatially smeared. Since the minimum ℓ2-norm inverse
operator is a linear matrix operation, the source localization accuracy can
be characterized by the point spread function (Hauk et al., 2011). The
point spread function describes the source estimate for a hypothetical
point source, by projecting the activity in that one source dipole to the
MEG sensors, and then applying the inverse solution to project the esti-
mated magnetic fields back to the current source dipoles of the source
space. Fig. 3 illustrates the point spread function of the KIT 157 sensor
MEG system and its influence on source localization at the group level.
These exemplary plots illustrate that the spatial extent of the current
estimates must be interpreted with care.

Due to the spatial dispersion, anatomically separate sources only lead
to cleanly separated source estimates if their spatial separation is large
relative to the point spread function. Consequently, typical response
function estimates may contain multiple, partially overlapping activa-
tions, making interpretation of raw plots of source space responses more
difficult. A critical part of interpreting response functions thus consists of
disentangling overlapping responses, and in determining which activa-
tions reflect true independent neural sources, and which merely reflect
artefactual spatial dispersion from a genuine source to nearby areas. In
order to facilitate this task, we tested two methods for identifying unique
sources of variability in the response functions: hierarchical clustering,
and sparse principal component analysis (sPCA). Both methods make use
of the excellent temporal resolution of MEG to identify separable sources
of variability in the time course of responses. However, they do so using
different constraints: Hierarchical clustering attempts to find a small
number of average cluster time courses, and can use a spatial constraint
to generate contiguous clusters. A downside is that current directionality
(negative or positive current) has to be discarded to prevent the sign from
dominating the cluster mean (compare with the striping in Fig. 3). SPCA,
on the other hand, accommodates current direction reversals through
components with negative weights; however, it cannot impose a spatial
contiguity constraint, leading to distributed and partially overlapping
components. Because each method has advantages and disadvantages,
we present both for comparison. Both methods were implemented with
functions from scikit-learn 18.1 (Pedregosa et al., 2011).

Hierarchical clustering
Hierarchical clustering (Ward, 1963) was used to group dipoles with

similar time courses (for an application to fMRI data see Thirion et al.,
2014). First, response functions were masked at the 5% significance level
(based on the spatio-temporal TFCE test described in Section Evaluation
of response functions) to restrict clustering to aspects of the responses that
were reliable across subjects: Non-significant elements were set to zero,
and dipoles that included no significant element at any time point were
discarded. Because clustering was based on the mean time course in each
cluster, the absolute values of all response functions were used for clus-
tering. This was done to avoid distorting clusters based on anatomical
features, which lead to source estimates with alternating sign across gyri
and sulci due to alternating cortical surface orientation (compare Fig. 3).

The clustering algorithm successively merged sources to minimize the
sum squared error from cluster means, until a complete tree incorporated
all sources. Links were constrained such that no direct links could be
formed between sources further apart than 10mm in 3-dimensional



Fig. 3. Point spread function. The point spread function is a theoretical estimate of the maximum spatial precision that can be expected in MEG source estimates.
It is specific to a given MEG sensor configuration and head geometry; these plots are based on the specific details of the present study. Given that both forward
operator and inverse operator are linear matrix operators, transforming data from source space to sensor space and back, forward and inverse operators can be
combined to give the hypothetical source estimate for a single active dipole (left). Point spread functions can be locally summed to give the hypothetical source
estimate for an area of active dipoles (middle). Finally, individual subjects' point spread functions can be combined for an estimate of the spatial accuracy of group
results (right). In the plots above, active dipoles are circled in yellow. Source current was normalized so that the sum of all currents was 1 in each of the 3 plots.
Forward and inverse solutions were taken from the 17 subjects whose data were analyzed.

C. Brodbeck et al. NeuroImage 172 (2018) 162–174
space. This distance criterion was chosen over geodesic adjacency to
account for the fact that, due to the orientation constraint of the source
estimates, sources could be similar at elements of adjacent gyri with
corresponding orientation, with intervening elements with a different
orientation. This is particularly relevant for auditory activity, which may
“leak” from the superior temporal gyrus across the Sylvian fissure into
adjacent parts of the inferior parietal and frontal cortices. The hierar-
chical tree was then traversed from the root until implementing the next
branching would have reduced the sum squared error by less than 1% of
the total sum squared.

Because clustering is based on the cluster mean, whereas source es-
timates have a smooth center-surround shape, this procedure frequently
leads to spurious clusters that form low amplitude “halos” surrounding
other, higher amplitude peaks. Since such halos are due to spatial
dispersion and do not reflect effects of interest, it was desirable to remove
them for visualization. Two methods were employed to detect halo
clusters: First, clusters whose time course peak was more than one
standard deviation below the mean were flagged for removal. Second,
pairs of clusters with a time course correlation larger than 0.9 were
flagged for closer examination; if one constituted a clear halo of the
other, it was removed. If both clusters exhibited independent spatial
centers, they were merged into one cluster (this occurred only once, for
cluster S1cl, whose parts likely reflect the same underlying neural source,
but were not connected by the clustering algorithm due to the large
spatial separation across the Sylvian fissure). Only clusters that con-
formed to the following criteria were classified as halos and removed: 1)
a large spatial extent, surrounding one or more other clusters rather than
covering its own center 2) markedly lower amplitude than the cluster at
its center 3) no distinct peaks, except at the time points of the peaks of the
cluster at the center (and with lower amplitude).

Sparse PCA
Sparse PCA finds spatial components that optimally reconstruct the

data with an iterative procedure, adding a sparsity constraint through an
ℓ1 penalty on the components (Mairal et al., 2009). The iterative algo-
rithm attempts to minimize, for a given number of components, the error
function

eðU;VÞ ¼ 1
2
kX � UVk22 þ αkVk1

where X is the spatio-temporal response to be explained, U is the matrix
of time courses and V is the matrix of sparse components. Analogously to
the clustering procedure, response functions weremasked by significance
at the 5% level before submitting them to sPCA. The α parameter con-
trolling sparsity was set to the largest (i.e., most sparse) power of 10 at
whichmodels still regularly converged: 10�4. The number of components
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was initialized with 1, and additional components were added until
adding another component would have decreased the error by less than
1% of the total sum squared.

For visualization, sPCA components were normalized by setting the
largest absolute value on each component map to 1, and component
amplitude time courses were scaled appropriately. For display only,
anatomical component maps were smoothed with a Gaussian with 5mm
standard deviation.

Test of lateralization

We tested for functional lateralization of responses by comparing
response functions in the left and the right hemisphere. To perform a
continuous spatio-temporal comparison, response functions had to be
projected (“morphed” in FreeSurfer terminology) to a common hemi-
sphere, i.e., data from one hemisphere had to be “mirrored” onto the
other. While the fsaverage brain used for source estimation is slightly
asymmetric, FreeSurfer also provides an exactly symmetrical brain,
labeled “fsaverage_sym”, for the express purpose of hemispheric com-
parison (Greve et al., 2013). Because the fsaverage brain model is not
precisely symmetric, projecting from one hemisphere to the other is not
precise on the level of gyri and sulci (for example, the crown of a gyrus in
one hemisphere might come to lie on the wall of the gyrus in the other).
Thus, to avoid spurious differences due to current direction, response
functions were first transformed to absolute values and Gaussian
smoothing was applied with a full width half maximum of 10mm. The
resulting response functions from both hemispheres were then projected
to the left hemisphere of the fsaverage_sym brain and used to compute
left-right difference values at each source element, for each subject
(projecting to the right instead of the left hemisphere did not substanti-
vely alter any results).

The left-right difference maps were masked to include only points in
time and space at which the response function was significant in at least
one hemisphere. For this, the original response functions were converted
into a binary map at a threshold of p¼ .05 and projected to the left fsa-
verage_sym hemisphere. Since this resulted in some smoothing, the map
was again binarized using a threshold of 0.5.

The resulting masked left-right difference maps were tested with two-
tailed t-tests against 0, using the same permutation procedure with TFCE
as for other tests to correct for multiple comparisons across space and
time.

For visualization purposes, the resulting maps were again binarized at
p¼ .05, and elements with negative differences were removed from the
left hemisphere and projected to the right hemisphere. The resulting
significance map covering both hemispheres was projected back to the
fsaverage brain, and again thresholded at 0.5, resulting in a map of sig-
nificant lateralization in space and time.
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Results

The model fit was evaluated using the Pearson correlation between
the actual and the predicted responses. Each of the three predictor var-
iables was evaluated as to whether it significantly improved the model,
by comparing the fit of the full model with the fit of a model in which this
variable was deliberately misaligned, using the first half of the stimulus
to predict the second half of the response and vice versa. Whole brain
maps of the difference were tested for significance with one-tailed t-tests,
correcting for multiple comparisons using permutation tests with
threshold-free cluster enhancement (TFCE; Smith and Nichols, 2009).

Fig. 4 shows the regions where each predictor had significant
explanatory power. Results indicated highly significant contributions
from each of the three predictors (all p< .001). The plots in Fig. 4 are
suggestive of localization differences, with semantic composition
showing more anterior peaks than the acoustic envelope and word fre-
quency. However, the large spatial extent of the effects, in particular of
the acoustic envelope, also raises the strong possibility of leakage due to
the spatial dispersion of MEG source estimates. While it may be that the
response to the acoustic envelope is more distributed than the response to
the other two variables, it is also quite possible that the acoustic repre-
sentation in auditory cortex has a higher signal to noise ratio (SNR), and
hence leads to spurious significant correlations at more distant sources
due to spatial dispersion. This ambiguity also limits the usefulness of
direct statistical comparisons of r-maps for testing hypotheses of locali-
zation differences between different predictors, because differences in
SNR can obscure differences in localization.
Fig. 4. Significant model contributions. Each predictor variable was assessed
for significant model contributions by comparing the fit of the full model to a
model in which the predictor under investigation was temporally misaligned
with the response. Each plot shows the difference in correlation-coefficient
between the correct and the misaligned model at each dipole. Maps are
thresholded by statistical significance, corrected for multiple comparisons
across the whole brain, at p¼ .001 for the acoustic envelope and p¼ .05 for
word-related predictors (the different thresholds account for the difference in
signal to noise ratio in the neural representation of the predictors, and are
used for graphical display purposes only).
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In contrast to the model improvement maps, which condense all re-
sponses into a single anatomical map, the estimated response functions
partition predictive contributions over time. Response functions thus
have the potential to better show more nuanced distinctions between
contributions from different brain regions via their processing latency
differences. Furthermore, because all response functions were computed
concurrently as a multidimensional kernel, the predictors were practi-
cally competing for explaining variance in the response. Consequently,
each response function should reflect those components of the response
that were best explained by the corresponding predictor, and exclude
components that were better explained by other predictors in the model.

Fig. 5 shows the response function to the acoustic envelope, masked
by significance at the p¼ .05 level, and Fig. 6 shows responses to the two
word-related predictors. Response functions for each predictor were
tested for regions with significant deviation from zero across anatomical
space and response time with permutation tests, using TFCE. While
response functions were estimated and tested for time delays from 0 to
1000ms, they are shown in plots from 0 to 800ms only because the last
200ms were generally flat. The response functions exhibit some clearly
identifiable peaks, which are localized more distinctly than the peaks of
the correlation maps due to temporal separation of different peaks.

The acoustic envelope was associated with a first response peak
around 40ms, centered on auditory cortex bilaterally, and a second peak
around 100ms, localized slightly posterior to the first. Even though the
second peak appears larger in the right hemisphere, the difference be-
tween hemispheres was not significant (superior temporal and Heschl's
gyrus, between 75 and 125ms, p¼ .449). Around 60ms, after the first
response in auditory cortex, the response appeared to shift bilaterally to
lateral Rolandic cortex, dorsal to auditory cortex, and to the inferior
frontal gyrus. While this dissociation is harder to isolate in the raw
response function, it was confirmed in the hierarchical clustering (c.f.
clusters A1cl and A2cl in Fig. 7) as well as the sPCA analysis (components
A2pca and A3pca in Fig. 8). These effects are clearly distinguishable from
the auditory cortex response by their latency, and are unlikely to be due
Fig. 5. Acoustic envelope response function. Each black line reflects the
response function at one virtual current dipole, averaged across subjects. Lines
are separated by whether the corresponding dipole is part of the left or the
right hemisphere. All values not significant at the 5% level, corrected across
the whole brain, were set to zero. Anatomical plots show current distributions
at visually obvious peaks, as well as peaks that emerged in the clustering
analysis. Anatomical plots are rendered on the inflated surface of the fsaver-
age brain (for anatomical labels see Desikan et al., 2006). Numbers next to
brain plots indicate time in ms.



Fig. 6. Word-related response functions. Plots are analogous to, and scale is identical with Fig. 5. Areas of significant lateralization are indicated with yellow on
the hemisphere with higher amplitude in the anatomical plots. The only plot with significant lateralization is the left hemisphere for word-frequency at 170ms.

Fig. 7. Responses grouped with hierarchical clustering. Each
cluster is plotted with a color corresponding to the time
course plot in the same color (with arbitrary numbering).
The normalized activation (alpha) of the cluster reflects
relative source amplitude within the cluster. The time course
was computed as a weighted average of source time course,
with weights determined by norm of each source. Clusters
are labeled with a prefix corresponding to the predictor: (A)
acoustic envelope, (L) lexical frequency, (S) semantic
composition.
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to spatial dispersion because the response in auditory cortex at 60ms was
much reduced. Thus, response functions were able to separate what
looked like one large effect in the correlation maps presented above into
multiple temporally distinct response components with clearly different
neural sources.

The lateralization test indicated a marginally stronger response in the
anterior STG of the right hemisphere at 10ms (p¼ .036). While the
extent was small (the significant region encompassing only two source
elements and one time point), numerically the difference extended
throughout the M50 response (compare the 40ms plots in Fig. 5). This
result could thus indicate a slightly stronger and/or earlier onset of an
anterior component of the auditory response in the right compared to the
left hemisphere; however, due to its marginal size we hesitate to interpret
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this effect further. When the test was repeated including only right-
handed participants with a lateralization quotient of 0.5 or larger
(n¼ 13), the lateralization test for the acoustic response lost significance
(p¼ .098).

Word frequency was associated with a strongly left-lateralized
response peak over auditory cortex around 170ms. This peak was
significantly larger in the left hemisphere than in the right hemisphere
(p¼ .002). Areas with significant lateralization are shaded yellow in the
anatomical plots of Fig. 6. This response was followed by responses in the
frontal cortex of both hemispheres.

The semantic composition predictor was associated with a progres-
sion of responses from anterior superior temporal gyrus to the lateral
frontal lobes. The left hemisphere response exhibited clearer peaks, with



Fig. 8. Acoustic response sparse PCA. Anatomical plots show the weights in
the sPCA components, and time courses show the loading of the response
function on the relevant component at each time point. All components are
normalized such that the largest absolute value on each anatomical map is 1,
and the time courses are shown to scale relative to each other. The sign of the
components is inherently arbitrary, because simultaneously flipping the sign
of a component and the corresponding time course leads to identical results; to
make the components more comparable, the sign of overlapping components
was manually adjusted to align the current direction in the area of overlap.
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a peak in the temporal lobe around 180ms and an inferior frontal
response peak around 250ms, but hemispheric differences were not
significant (p¼ .159). In addition, the left hemisphere response function
exhibited late, weaker auditory cortex activation after 400ms.

While response functions are more informative than model fits, it can
be challenging to interpret them in terms of underlying neural sources
due to the spatial dispersion, which can create a spatially complex
pattern of results from a single neural source. However, source locali-
zation does not distort the time course of neural activity. We sought to
utilize this fact to infer independent sources underlying the observed
response functions based on the time-course of the responses. We tested
two approaches for decomposing response functions into underlying
sources based on their time course: hierarchical clustering and sparse
principal component analysis (sPCA).

The first approach was based on hierarchical clustering of dipoles
with similar time-course, while enforcing a realistic spatial layout by
constraining possible groupings by anatomical proximity (Fig. 7). This
procedure identified 6 clusters in the acoustic envelope response function
(after 2 halo artifacts were excluded). Clusters A3cl in the left, and A4cl-
A6cl in the right hemisphere confirm the distinct localization of the two
response peaks in auditory cortex. In addition, A1cl and A2cl identified a
distinct response over Rolandic and inferior frontal areas of both hemi-
spheres, with a slightly delayed peak compared to the early auditory
cortex response. For word frequency, 7 clusters were identified (2
excluded halo artifacts). While the raw response function displayed in
Fig. 6 suggested one large peak in left auditory cortex, clusters L1cl –L4cl
suggest that this response is actually made up of distinct components,
starting with a more posterior response in auditory (L1cl) and possibly
sensory-motor cortex (L2cl), which is followed by a more anterior peak
(L4cl); L3cl might reflect a blend of L2cl and L4cl. In addition, the clusters
L5cl –L7cl draw attention to weaker but consistent frontal responses in
both hemispheres. For semantic composition, 6 clusters were identified
(3 excluded halo artifacts; one cluster created from merging 2 others). In
the left hemisphere, cluster S1cl likely reflects an underlying source in the
superior anterior temporal lobe with spatial dispersion across the Sylvian
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Fissure; S2cl and S3cl show a progression of activity to more anterior re-
gions in the inferior frontal gyrus, while S4cl might indicate later feed-
back to auditory regions. The right hemisphere showed a more
homogeneous anterior temporal and inferior frontal response in clusters
S5cl and S6cl.

The second approach to isolating the sources underlying the response
functions employed sparse principal component analysis (sPCA) to
decompose response functions into a small number of spatially fixed
patterns with time-varying amplitude. For the response to the acoustic
envelope, sPCA isolated 4 components (Fig. 8). In addition to repro-
ducing the auditory cortex peak responses at 40ms (A1pca) and 100ms
(A4pca), the results suggested that the intermediate response over the
central sulcus can be divided into two components. A2pca identified a
slightly more dorsal peak around 50ms, and A3pca identified a slightly
more ventral peak at 70ms. Because the sPCA procedure did not impose
any constraints on the spatial topography of the components, finding
largely symmetrical components suggests that the effects were bilateral
with very similar time course. The results for the lexical frequency
response (Fig. 9) confirmed the split of the left-dominant response into a
main component over posterior STG (L1pca), and a more dorsal (L2pca)
and a more anterior (L3pca) secondary component. This is interesting for
the more dorsal L2pca in particular, because components in sPCA are not
formed based on amplitude but only based on the time course, thus,
unlike in hierarchical clustering, weaker amplitude cannot be the sole
explanation for a separate component. Rather, this result suggests the
possibility that the response to lexical frequency is also associated with a
component in left Rolandic cortex. A comparison of the primary response
to lexical frequency, L1pca, with the primary acoustic response, A1pca,
suggests closely aligned neural sources in the left hemisphere. Late
frontal cortex responses with lower amplitude were also identified (L4pca
and L5pca). The 6 components identified in the semantic composition
response suggest very similar conclusions as the hierarchical clustering
(Fig. 9). A single component centered on the superior anterior temporal
lobe (S1pca) indicates that the clusters merged into S1cl were indeed due
to the same underlying source.

Discussion

We described a procedure for combining linear kernel estimation
with distributed MEG source localization to estimate the brain response
to continuous stimuli as a function of delay time and anatomical space.
We demonstrated the utility of this procedure by analyzing responses to
continuous speech. Using just 6 min of MEG data per subject, we found
reliable responses reflecting variables related to different cognitive levels
of speech comprehension, including acoustic, lexical and semantic pro-
cessing. Examination of the response functions revealed a detailed pic-
ture of the spatio-temporal evolution of cortical responses to continuous
speech.

The spatial resolution of the estimated response functions is limited
by the underlying inverse model, which infers current flow over a large
surface area from measurements at a comparatively limited number of
sensors (cf. Fig. 3). One possible approach to this issue is thresholding
results to emphasize peaks, which are more accurate than the extent of
activation estimates (e.g. Hauk et al., 2011). However, thresholding re-
sponses composed of separate peaks with different signal strength may
also hide peaks with lower amplitude. Here we illustrate a different
approach, identifying effects with different underlying neural sources by
separating sources of variation in the time course of activity. Hierarchical
clustering and sPCA both allowed visualization of separate, more specific
activation patterns, likely arising from different neural sources (e.g.
Fig. 8). Still, interpretation of the results should be guided by an
awareness of the spatial resolution of the current estimates: The center of
a given activation cluster can be assumed to be comparatively reliable,
while the extent is likely exaggerated due to spreading of the minimum
norm estimates.



Fig. 9. Word-related response sparse PCA. Details as in Fig. 8, except that the
response time courses were scaled by a factor of two.
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Response functions to speech

Not surprisingly, we found a robust response to the acoustic envelope
of the speech signal. This variable has been shown to be associated with
brain signals measured with EEG (Lalor and Foxe, 2010) and MEG
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(Ahissar et al., 2001; Ding and Simon, 2012b), as well as intracranial
measurements (Nourski et al., 2009; Mesgarani and Chang, 2012).
Response functions to acoustic power were significant from the earliest
time points. While the earliest responses could be due to the smoothing of
the response functions, short latency responses to acoustic properties of
speech are consistent with data suggesting that cortical responses to
sounds occur within about 20ms (Nourski et al., 2014; Parkkonen et al.,
2009).

Previous studies have shown an earlier response component with a
peak latency around 50ms that follows acoustic power in the stimulus
regardless of attention, and a later response component around 100ms
that reflects acoustic power in the attended speech stream rather than the
raw acoustic stimulus (Ding and Simon, 2012b, 2012a, 2013; Akram
et al., 2016). Our results suggested that the earlier response is in fact
separable into two components, with a first peak around 40ms, localized
in auditory cortex, and a subsequent response within 10–30 ms over the
central sulcus, dorsal to auditory cortex, and the IFG in both hemi-
spheres. The location of this second component over the central sulcus is
broadly consistent with the mouth region of the somatosensory homun-
culus (Nakamura et al., 1998). Motor cortex involvement in speech
perception is predicted by the motor theory of speech perception (see
Galantucci et al., 2006) and has been demonstrated with meaningless
syllables and single word stimuli (Pulvermüller et al., 2006; Schomers
et al., 2015; Wilson et al., 2004). Recent evidence suggests that this
functional integration is supported by tight anatomical connections be-
tween Heschl's gyrus and primary motor and somatosensory cortex
(Skipper and Hasson, 2017). Our result of rapid bilateral responses
related to the speech envelope is compatible with a bilateral mechanism
for a unified sensory-motor representation of speech (Cogan et al., 2014)
through responses tied to acoustic, more than phonemic or motor,
properties (Cheung et al., 2016). This system is contrasted with more
abstract mappings between acoustic and motor representations, which
are thought to be left-lateralized (Hickok and Poeppel, 2004; Saur et al.,
2008) and, as evidenced by patients with left-lateralized brain lesions,
are probably not necessary for speech comprehension (Rogalsky et al.,
2011). Our results thus suggest that involvement of bilateral motor re-
gions in speech processing is not restricted to the somewhat unnatural
discrete listening tasks frequently used in research, but occurs also during
processing of natural connected speech, and with a short latency relative
to the acoustic signal.

Results also revealed a consistent response associated with the lexical
frequency of the words being processed. This response was localized
primarily to the auditory cortex of the left hemisphere, followed by
frontal modulations of lower amplitude. This is consistent with fMRI
results on auditory story comprehension, which found significant asso-
ciation with word-frequency in left STG and IFG (Brennan et al., 2016) as
well as weaker right-hemispheric activity (Brennan et al., 2012). A
comparison of sPCA components A1pca and L1pca suggests that the
strongest response to word frequency originated from a location only
slightly ventral to the primary auditory response. Language-specific
processing in early auditory areas is consistent with the observation of
selective responses to speech sounds early in the cortical hierarchy in
STG (Nourski et al., 2014; Hullett et al., 2016) and is consistent with
models placing lexical processing of speech in a hierarchy between the
STG and the middle temporal gyrus (e.g. Overath et al., 2015). The
lateralization test revealed significant lateralization of this response
component towards the left hemisphere. This suggests that in contrast to
acoustic processing, lexical processing, as indexed by lexical frequency, is
lateralized to the language-dominant hemisphere.

Semantic composition was associated with temporal and frontal lobe
activity. Previous MEG research, using visually presented, strictly
controlled minimal phrases, suggested that activation associated with
semantic composition localizes most consistently to the anterior tempo-
ral lobe (Bemis and Pylkk€anen, 2011; Westerlund et al., 2015). A study
that compared responses to spoken and written two-word stimuli also
found activity in a superior posterior temporal region comparable to our
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sPCA component S4pca (Bemis and Pylkk€anen, 2012). Lateral prefrontal
cortex activation was not described in these studies. One possible
explanation for this divergence is that the increased demand imposed by
continuous speech leads to more extensive brain involvement for the
same process. However, semantic composition in natural speech is also
correlated with other structural properties of language, which have been
associated with lateral prefrontal activation (Brennan et al., 2016; Nelson
et al., 2017). While our stimuli do not provide enough variation to
distinguish between different related variables, our demonstration that
MEG is sensitive to these variables in continuous speech opens up new
possibilities to disentangle contributions from different semantic and
structural variables.

Finally, response functions allow comparisons of the time course of
processing of different variables. Precise comparison between the
acoustic envelope and the word-related predictors is difficult due to the
temporal nature of the respective variables. Acoustic power was coded as
momentary acoustic power with millisecond resolution, while words
were coded as events that could be temporally extended over hundreds of
milliseconds. Indeed, this is not just a matter of coding, but also of the
time scale at which the information unfolds, with words reflecting inte-
gration of information over a larger time interval. Thus, while the
acoustic power is clearly associated with an earlier response than word
properties, direct comparison of peak latencies is difficult. On the other
hand, the two word-related predictors were coded with the same tem-
poral structure and can be directly compared. The main response to
semantically composable words in the anterior temporal lobe peaked
around 180ms, only 10–20ms after the main response to lexical fre-
quency. This is consistent with the observations in two-word studies that
composition-related activity can have a short latency, peaking
225–250ms after visual word onset (Bemis and Pylkk€anen, 2011, 2012;
Westerlund et al., 2015). Together, these observations support the notion
that lexical information is integrated quickly with the information that is
already available from the preceding speech signal.

More generally, previous research suggests that low-frequency phase-
locked brain activity is related to higher levels of language processing,
consistent with higher level information occurring at slower rates (e.g.
Ding et al., 2015). In the present analysis, this is reflected in the predictor
variables for word frequency and semantic composition, which are both
dominated by temporal variations in the delta band (1–3 Hz). However,
the linear filter model implies that a predictor cannot predict brain ac-
tivity at frequencies it does not model; While the present results are thus
consistent with a role of low frequency phase locked activity in higher
level language comprehension, this is a consequence of the model, and
does not preclude the possibility of a cognitive process that could be
modeled at higher frequencies. A challenge for future work will be
modeling predictors for different aspects of the comprehension process
more accurately.

Using source localization with linear kernel estimation

Our results confirm the viability of combining source localization
with linear kernel estimation to estimate brain responses to continuous
stimuli. Significant contributions from different stimulus variables could
be identified, and response functions provided more details on the
anatomical and temporal properties of the brain's response.

The present analysis described neural response functions by testing
for responses that were significantly non-zero across participants. While
this is useful for demonstrating that brain activity tracks a given stimulus
variable at all, and for determining which brain regions are involved in
processes related to this variable, more fine-grained analyses will be
possible by comparing response functions to the same variable under
different experimental conditions. Such statistical analysis would be a
straightforward extension of the approach shown here, replacing the one-
sample t-tests used for analyzing the response functions with two sample
t-tests or ANOVAs. The present analysis suggests that robust response
functions can be estimated from just 6 min of MEG data per subject,
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demonstrating that future experiments could estimate response functions
for multiple experimental conditions.

Robust responses were discovered for predictor variables reflecting
not only acoustic properties of the speech stimulus, but also lexical and
semantic properties, attesting to the possibility of studying not only
sensory, but also cognitive processing of continuous stimuli. Computing
response functions for source localized data allowed us to separate the
brain responses associated with different properties of the same speech
stimulus anatomically. In addition, response functions revealed dynamics
over the course of the response to each variable, with different brain
regions responding at different latencies. Based on the fact that the
temporal resolution of MEG source estimates exceeds their spatial reso-
lution, it should be possible to identify different neural sources by the
unique sources of variation over the time courses at different dipoles. We
tested two such methods, hierarchical clustering and sPCA, with largely
convergent results. On the whole, though hierarchical clustering leads to
simpler visualization (see Fig. 7), sPCA has the advantage of preserving
current direction and allowing for spatially overlapping components. As
a consequence, sPCA is able to separate underlying sources more cleanly,
and is not susceptible to halos and blended clusters. For example, sPCA
modeled the M50/M100 distinction as two overlapping components
(A1pca and A4pca), whereas hierarchical clustering resulted in three
clusters, with an additional cluster for the region of overlap blending
both components (A4cl-A6cl).

While the correlation between the acoustic predictor variable and the
lexical and semantic variables was relatively low (r� 0.09), the corre-
lation between word frequency and semantic composition was higher
(r¼ 0.39). This underlines the importance of modeling contributions
from different predictors together, rather than independently. The pre-
sent approach using boosting addresses this issue in two ways: First, one
multidimensional kernel is estimated to predict the response from all
predictors simultaneously, i.e., the predictors compete for explaining
variance in the response. And second, by fitting a permuted baseline
model for each predictor, we specifically test that adding the predictor
improves the model after accounting for the other predictors.

The ability to detect temporally and anatomically distinct response
components offers new possibilities for future research. Often, distinct
response components correspond to different cognitive processing steps.
For example, two response components to the speech envelope with
peaks around 50 and 100ms differ in their sensitivity to attention, sug-
gesting that only the latter is sensitive to top-down attentional modula-
tion and thus reflects a more invariant auditory object representation
(Ding and Simon, 2012a). Thus, the ability to distinguish response
components is instrumental in delineating cognitive processing stages.

For analyzing responses to continuous stimuli, this technique com-
plements fMRI, which can localize slower hemodynamic changes with
high spatial accuracy, but does not have the temporal resolution of MEG
critical for rapidly evolving processes like language comprehension. For
example, a study that assessed similar variables with fMRI (Brennan
et al., 2012) sampled neural data and predictors at 0.5 Hz. The hemo-
dynamic response was directly compared with predictor variables
convolved with the hemodynamics response function, without modeling
dynamic response functions for neural responses. While fMRI thus
allowed more accurate anatomical localization, it did not allow com-
parisons involving the temporal evolution of the neural responses as were
revealed by our results. For example, while fMRI could localize the effects
of word frequency to the left temporal and frontal cortices (Brennan
et al., 2016), our results detected a temporal progression, with temporal
lobe responses preceding frontal lobe responses.

Limitations

A major limitation of distributed minimum norm estimates of MEG
employed here is the comparably low spatial accuracy. Ultimately, the
actual accuracy depends on a variety of factors, from the MEG system
used to the choice of inverse solution, and is not uniform across the brain
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(see e.g. Hauk et al., 2011). This issue directly affects the analyses pre-
sented here, and results should be interpreted accordingly. The issue of
spatial dispersion can be partly addressed by using the estimated current
time course to group dipoles that are likely to reflect the same underlying
neural source. We showed that two such methods, clustering and sPCA,
provided useful summaries of the response functions. A comparison of
sPCA components with the point spread function (Fig. 3) suggests that
many sPCA components could potentially be the result of a single
localized neural source. In sum, while informative at larger scales,
localization results should be interpreted with care at a scale below a few
tens of millimeters.

A related limitation specific to the present study is the substitution of
scaled average brains for source reconstruction. Structural MRIs, when
available, would allow source estimates to be computed on more accu-
rate, subject-specific anatomical models.

Finally, a number of specific data processing methods used in the
current analysis could easily be exchanged for alternatives. In particular,
the present analysis used boosting to estimate response functions; other
methods, such as ridge regression (Lalor et al., 2006), would constitute
viable alternatives and might even be better suited for different designs.
Similarly, the present analysis was based on assuming a linear filter
model, but it could be extended to nonlinear filters to test more advanced
hypotheses.

Conclusion

We demonstrated that linear kernel estimation can be combined with
distributed minimum norm source estimates to map brain response to
continuous speech in time and anatomical space. While we developed
and tested this technique for studying speech processing, it is applicable
to other continuous stimuli. Kernels can be estimated with multiple
predictor variables competing for explanatory power, which makes it
possible to model responses to suspected covariates and test whether
variables of interest explain variance in the responses above and beyond
the covariates. This makes it amenable to investigating a range of sensory
and cognitive processes with more natural stimuli than hitherto possible.
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