Neural Representations of the Cocktail Party in Human Auditory Cortex

Jonathan Z. Simon

Department of Biology Department of Electrical & Computer Engineering Institute for Systems Research University of Maryland

http://www.isr.umd.edu/Labs/CSSL/simonlab

CHSCOM2015, 15 June 2015

Acknowledgements

Current (Simon Lab & Affiliates)

Francisco Cervantes Natalia Lapinskaya Mahshid Najafi Alex Presacco Krishna Puvvada Lisa Uible

Peng Zan

Past (Simon Lab & Affiliate Labs)

Nayef Ahmar Sahar Akram Murat Aytekin Claudia Bonin Maria Chait Marisel Villafane Delgado Kim Drnec Nai Ding

Victor Grau-Serrat Julian Jenkins David Klein Ling Ma Kai Sum Li Huan Luo Raul Rodriguez Ben Walsh Juanjuan Xiang Jiachen Zhuo

Collaborators

Pamela Abshire Samira Anderson Behtash Babadi

Catherine Carr Monita Chatterjee Alain de Cheveigné Didier Depireux Mounya Elhilali Bernhard Englitz Jonathan Fritz Cindy Moss David Poeppel Shihab Shamma

Past Postdocs & Visitors

Aline Gesualdi Manhães Dan Hertz Yadong Wang

Undergraduate Students

Abdulaziz Al-Turki Nicholas Asendorf Sonja Bohr Elizabeth Camenga **Corinne Cameron** Julien Dagenais Katya Dombrowski Kevin Hogan Kevin Kahn Alexandria Miller Isidora Ranovadovic Andrea Shome Madeleine Varmer **Ben Walsh**

Funding NIH (NIDCD, NIA, NIBIB); USDA

The Cocktail Party

The Cocktail Party

The Cocktail Party

Outline

- Cortical Representations of Speech (Encoding vs. Decoding)
- Attended vs. Unattended Speech
- Studies in Progress:
 - Attentional Dynamics
 - Aging & Neural Representations of Speech

Magnetoencephalography

- Non-invasive, Passive, Silent Neural Recordings
- Simultaneous Whole-Head Recording (~200 sensors)
- Sensitivity
 - high: ~100 fT (10⁻¹³ Tesla)
 - low: $\sim 10^4 \sim 10^6$ neurons
- Temporal Resolution: ~1 ms
- Spatial Resolution
 - coarse: ~ I cm
 - ambiguous

Time Course of MEG Responses

Auditory Evoked Responses

- MEG Response Patterns Time-Locked to Stimulus Events
- Robust
- Strongly Lateralized

MEG Responses to Speech Modulations

MEG Responses Predicted by STRF Model

Neural Reconstruction of Speech Envelope

Neural Reconstruction of Speech Envelope

Ding & Simon, J Neurophysiol (2012) Zion-Golumbic et al., Neuron (2013) Reconstruction accuracy comparable to single unit & ECoG recordings

Neural Representation of Speech: Temporal

Speech in Noise

Ding & Simon, J Neuroscience (2013)

Speech in Noise

Ding & Simon, J Neuroscience (2013)

Neural Reconstruction of Underlying Speech Envelope

Neural Reconstruction of Underlying Speech Envelope

Neural Reconstruction of Underlying Speech Envelope

Contrast Index

Ding & Simon, J Neuroscience (2013)

Neural Reconstruction of Underlying Speech Envelope

Reconstruction Accuracy

Neural Reconstruction of Underlying Speech Envelope

correlation

Reconstruction Accuracy

Ding & Simon, J Neuroscience (2013)

Neural Reconstruction of Underlying Speech Envelope

Ding & Simon, J Neuroscience (2013)

Correlation with Intelligiblity

Cortical Speech Representations

- Neural Representations: Encoding & Decoding
- Linear models: Useful & Robust
- Speech Envelope only (as seen by MEG)
- Envelope Rates: ~ I I0 Hz

Auditory Objects at the Cocktail Party

Auditory Objects at the Cocktail Party

Experiments

Selective Neural Encoding

Selective Neural Encoding

Unselective vs. Selective Neural Encoding

Selective Neural Encoding

Stream-Specific Representation

Identical Stimuli!

Ding & Simon, PNAS (2012)

Single Trial Speech Reconstruction

Ding & Simon, PNAS (2012)

Single Trial Speech Reconstruction

Invariance Under Relative Loudness Change?

Invariance Under Relative Loudness Change?

Invariance under Relative Loudness Change

- Neural representation invariant to relative loudness change
- Stream-based Gain Control, not stimulus-based

Forward STRF Model

Spectro-Temporal Response Function (STRF)

Forward STRF Model

Spectro-Temporal Response Function (STRF)

STRF Results

STRF separable (time, frequency)
300 Hz - 2 kHz dominant carriers
M50_{STRF} positive peak
M100_{STRF} negative peak

STRF Results

time (ms)

STRF Results

- STRF separable (time, frequency)
 300 Hz 2 kHz dominant carriers
 M50_{STRF} positive peak
 M100_{STRF} negative peak
- •M100_{STRF} strongly modulated by attention, *but not M50_{STRF}*

Neural Sources

- •M100_{STRF} source near (same as?) M100 source: Planum Temporale
- •M50_{STRF} source is anterior and medial to M100 (same as M50?): Heschl's Gyrus

•PT strongly modulated by attention, *but not HG*

Studies In Progress

- Attentional Dynamics
- Aging & Neural Representations of Speech

Attentional Dynamics

Attend to Speaker 1

Attentional Dynamics

Attend to Speaker 1

Younger vs. Older Listeners

Older Adults Younger Adults Speech Reconstruction ** ** In Quiet 0.25 0.25 * In Quiet 0.2 0.2 with with Competing Competing Speaker 0.15 0.15 Speaker ٦ 0.1 0.1 500 400 300 200 100 500 400 300 200 100

Integration window (ms)

Younger vs. Older Listeners

Integration window (ms)

Summary

- Cortical representations of speech
 - representation of envelope (up to ~10 Hz)
- Cortical Processing Hierarchy: Consistent with being neural representation of auditory perceptual object
- Object representation at 100 ms latency (PT), but not by 50 ms (HG)

Thank You