Rapid Time-Locked Lexical Processing of Attended but Not of Unattended Continuous Speech

Christian Brodbeck University of Maryland, College Park

brodbeck@umd.edu

Outline

Speech processing of continuous speech

- Different levels observed with magnetoencephalography (MEG) / electroencephalography (EEG)
 - Acoustic processing
 - Phonetic features (e.g. Di Liberto et al., 2015, but also see Daube et al., 2019)
 - Lexical processing of phonetic information?
 - Semantic processing (e.g. Broderick et al., 2018)

Outline

Speech processing of continuous speech

- Different levels observed with magnetoencephalography (MEG) / electroencephalography (EEG)
 - Acoustic processing
 - Phonetic features (e.g. Di Liberto et al., 2015, but also see Daube et al., 2019)
 - Lexical processing of phonetic information?
 - Semantic processing (e.g. Broderick et al., 2018)

Lexical processing

 Information from phoneme level information is integrated in a time-locked fashion for word perception (cohort theory)

Outline

Speech processing of continuous speech

- Different levels observed with magnetoencephalography (MEG) / electroencephalography (EEG)
 - Acoustic processing
 - Phonetic features (e.g. Di Liberto et al., 2015, but also see Daube et al., 2019)
 - Lexical processing of phonetic information?
 - Semantic processing (e.g. Broderick et al., 2018)

Lexical processing

 Information from phoneme level information is integrated in a time-locked fashion for word perception (cohort theory)

This presentation

- Measure lexical processing of phonetic information with MEG
- Lexical processing in cocktail-party stimuli

Temporal Response Function (TRF) estimation:

Stimulus and response are known; find the best TRF to produce the response from the stimulus:

Temporal Response Function (TRF) estimation:

Stimulus and response are known; find the best TRF to produce the response from the stimulus:

Statistics

Evaluate model:

Pearson correlation:
 r(predicted response, measured response)

Evaluate a predictor, bias-corrected (e.g., word frequency):

- R of the full model
 Envelope + Word frequency + Semantic composition
- R of a model with word frequency permuted
 Envelope + Permute(word frequency) + Semantic composition
- Test for significant improvement across subjects

Significance test:

- Mass-univariate t-test
- Threshold-free cluster enhancement
- Max statistic distribution with 10,000 permutations

Model: Acoustics

Stimulus

Audiobook excerpt (8 minutes)

Predictors:

- Acoustic spectrogram (8 bands)
- Acoustic onsets (8 bands)
- Phonemes (next slide)

Predicted:

Continuous, source-localized MEG responses

Model: Phonemes

Phonemes

Modeled as impulses at phoneme onset

Phoneme processing

Impulses scaled by relevant variable

Word onset

Separately from word-internal phonemes

/k.../

Graphs	Pronunciation	SUBTLEX Count
ca	K AH	109
	K AA	
cab	K AE B	1826
caba	K AA B AH	2
cabal	K AH B AA L	13
caballero	K AE B AH Y EH R OW	21
cabana	K AH B AE N AH	46
cabanas	KAHBAENAHZ	2
cabaret	K AE B ER EY	115
cabarets	K AE B ER EY Z	13
cabbage	K AE B AH JH	148
	K AE B IH JH	
cabbages	K AE B IH JH IH Z	37
cabbie	K AE B IY	71
• • •		
4447		1811951

/kei.../

Graphs	Pronunciation	SUBTLEX Count
cable	K EY B AH L	1108
cabled	K EY B AH L D	19
cablegram	KEYBAHLGRAEM	10
cables	KEYBAHLZ	110
cade	K EY D	11
cadence	K EY D AH N S	15
cadences	K EY D AH N S IH Z	1
cady	K EY D IY	64
caesarean	K EY S ER IY N	10
caesareans	K EY S ER IY N Z	1
cage	K EY JH	1034
	K EY JH IH	
caged	K EY JH D	83
• • •		
90		52908

/keik.../

Graphs	Pronunciation	SUBTLEX Count
cake	K EY K	2298
caked	KEYKT	9
cakes	KEYKS	291
3		2598

- Activation of multiple candidates
- Competition for recognition

"Pick up the beaker. Now put it above the diamond."

Surprisal

Number of times a word that starts with this K EY M ... sequence 23875 (45%) "came", "Cambridge", ... occurs in (4 words) SUBTLEX K EY S ... "case", "cases", "caseworker", 16048 (30%) K EY ... "casein", ... (13 words) 52908 (90 words) KEYK... "cake", "caked", "cakes" 2598 (5%) (3 words) Number of words that K EY **N** ... "cane", "canine", "Canaan", start with 1337 (3%) "Kane", "Keynesian", ... this sequence (13 words)

Surprisal

Entropy

Cohort entropy

How unpredictable is the current word?

Model: Phonemes

Phoneme onset

Impulse at every phoneme onset

Cohort size

Number of words in cohort (log)

Cohort reduction

Number of words that are removed from the cohort

Phoneme surprisal

Related to prediction error

Cohort entropy

Related to lexical competition

Results: Acoustics

Acoustic features

- Strong bilateral responses
- Two main response peaks (as expected)
- Strong responses to acoustic onsets

Results: Phonemes

No significant effect:

- Cohort size
- Cohort reduction
- Any modulation of word-onset

Phoneme surprisal

- ▶ Left-lateralized
- Related to prediction error

Cohort entropy

- Left-lateralized after excluding right-handers
- Slightly longer latency than surprisal (2 stages?)
- Related to lexical competition

Word onsets

Do we...

- Anticipate word boundaries based on preceding context?
- Infer them later based on consistency with subsequent context?

"The catalogue in a library"

Results: Word onsets

Response at word onsets

- Suggests that on average, word onsets are processed immediately
- Localization similar to acoustic responses
- Opposite current direction of surprisal

Two speakers ("Cocktail Party")

Lexical processing of unattended speech?

- Hearing your name attracts attention (Cherry, 1953)
- Attending to a conversation is easier when you don't know the language in the background
- Do we process words in unattended speech?

Two speakers ("Cocktail Party")

Lexical processing of unattended speech?

- Hearing your name attracts attention (Cherry, 1953)
- Attending to a conversation is easier when you don't know the language in the background
- Do we process words in unattended speech?

Stimuli

- Two speakers, equal loudness
- Instructions: Attend to one, ignore the other
- After each segment, answer a question about the content of the attended stimulus

Results: Two speakers

Acoustic responses

- Neural representation of attended and unattended speech
- Amplification of attended features (M100)

Results: Two speakers

Acoustic responses

- Neural representation of attended and unattended speech
- Amplification of attended features (M100)

Attended: Lexical processing

- Response patterns consistent with single speaker responses
- Delayed responses (~15 ms)

Results: Two speakers

Acoustic responses

- Neural representation of attended and unattended speech
- Amplification of attended features (M100)

Attended: Lexical processing

- Response patterns consistent with single speaker responses
- Delayed responses (~15 ms)

Unattended: No time-locked lexical processing

 Lexical processing could still happen but in non time-locked fashion

Summary

Levels of speech

- Acoustic features (acoustic envelope, onsets)
- Phonemes: categories or features
- ▶ **Lexical processing** of phonemes: transformation from phonemes to words
 - Cohort-model: activate multiple words compatible with phonemes that are perceived

Time-locked lexical processing of phonetic information

- Modeled as information content of individual phonemes
 - Word onsets (lexical segmentation)
 - Phoneme surprisal (phoneme information content, predictive coding) ~110 ms
 - Lexical entropy (lexical competition) ~130 ms

"Cocktail party"

- Two concurrent speakers, attend to one and ignore the other
- ▶ Time-locked lexical processing of only the attended speech

Thank you!

Acknowledgements

- Jonathan Simon, Elliot Hong Co-authors
- Krishna PuvvadaStimulus design and data collection
- Natalia LapinskayaData collection
- NIH, University of Maryland Funding

Published as

Brodbeck, C., Hong, L. E., & Simon, J. Z. (2018). Rapid Transformation from Auditory to Linguistic Representations of Continuous Speech. Current Biology, 28(24), 3976-3983.e5. 10.1016/j.cub. 2018.10.042

Pairwise Correlations

Spatial Separation

