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Overview

Puzzle Older Younger
» Compared to young adults, older adults exhibit: Do
- Impaired auditory temporal processing ;| )
- More difficulty comprehending speech in challenging circumstances B ” Hﬁ;
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» Yet, the speech envelope can be reconstructed more accurately from their cortical responses, recorded with MEG

Presacco et al.,
J Neurophysiol, 2016a




Overview

Puzzle Older Younger

» Compared to young adults, older adults exhibit: o
- Impaired auditory temporal processing “ |
- More difficulty comprehending speech in challenging circumstances
- Decreased subcortical responses, esp. Frequency Following Response (FFR) —

0 S0 100 150 200 .. 0100 150 200

» Yet, the speech envelope can be reconstructed more accurately from their cortical responses, recorded with MEG

Presacco et al.,
J Neurophysiol, 2016a

Different possible explanations, for example...

» Increased cortical gain of bottom-up responses

» Recruitment of additional top-down resources

» Physiological changes, e.g. excitation-inhibition imbalance



Overview

ruzzie Older Younger
» Compared to young adults, older adults exhibit: Do
- Impaired auditory temporal processing ;’gi ﬁﬂ
- More difficulty comprehending speech in challenging circumstances gzz% M{JM w)L}W “ll E[Ewghg
- Decreased subcortical responses, esp. Frequency Following Response (FFR) = .. P I

0 S0 100 150 200 .. 0100 150 200

» Yet, the speech envelope can be reconstructed more accurately from their cortical responses, recorded with MEG

Presacco et al.,
J Neurophysiol, 2016a

Different possible explanations, for example...

» Increased cortical gain of bottom-up responses

» Recruitment of additional top-down resources

» Physiological changes, e.g. excitation-inhibition imbalance

This talk

» Localize cortical responses to speech of younger and older adults
- Anatomy: localization in cortex
- Time: latency at which information is represented

Brodbeck et al., Acta
Acust united Ac, 2018



Methods (Initial Study)

Design
» 60 s long audiobook excerpts, 3 repetitions each

» 2 excerpts were clean speech

» 8 excerpts with second speaker at different signal to noise ratios (SNRs; +3, O, -3, -6 dB)

Frequency (Hz)
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Participants

» 17 young adults (aged 18-27 years)
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» 15 older adults (aged 61-73 years)
- Cognitive screening
- Clinically normal audiogram
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MEG data
» KIT MEG Lab at University of Maryland, 157 axial gradiometers

» Band pass filter 1-8 Hz

Presacco et al.,
J Neurophysiol, 2016a



Background: Decoding Model

his schoolhouse was a low building of one large room rudely constructed of logs
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Background: Stimulus Reconstruction

Speech envelope
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Background: Stimulus Reconstruction
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Increased cortical gain for early bottom-up responses

» Prediction:. same neural origin for older and younger, but more current for older
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» Prediction:. Response enhancement, possibly from higher order regions



Possible explanations

Increased cortical gain for early bottom-up responses

» Prediction:. same neural origin for older and younger, but more current for older

Top-down/strategic later processing

» Compensate for degraded input from the periphery

» Recruitment of additional frontal and temporal regions (Peelle et al., 2010)

» Increased attentional gain’?

» Prediction:. Response enhancement, possibly from higher order regions

Low level physiological change: excitation/inhibition imbalance

» Reduction in inhibitory neurons in A1 (de Villers-Sidani et al., 2010)

» Increased firing rates in A1 (Overton & Recanzone, 20106)

» Faster recruitment of higher order regions (Engle & Recanzone, 2013)

» Prediction. Enhanced early responses, possibly with higher order regions



Methods (with additional subjects)

Participants
» 17 young adults (aged 18-27 years) & 23 older adults (aged 61-/3 years)

MEG source localization
» Minimum norm estimates with depth weighting; empty room noise covariance

» Source-localized spectro-temporal response functions (STRFs) estimated via Boosting (David et al., 2007)
- Minimizing €1 error & stopping based on cross-validation

Evaluate model predictions:

» At each source element: Pearson correlation r(predicted response, measured response)

Bias-correction:

» Compute r of a temporally shuffled model & test for better r of the true model

Significance test:

» Mass-univariate t-test (Smith & Nichols, 2009)
- Threshold-free cluster enhancement & max statistic distribution; 10,000 permutations



Encoding model

his schoolhouse was a low building of one large room rudely constructed of logs
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Encoding model
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Brain activity (MEG source estimate)
predicted from acoustic envelope

» Maps of correlation (r) between actual and
predicted neural time course
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Brain activity (MEG source estimate)
predicted from acoustic envelope
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Spectro-temporal response function
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lemporal response function
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lemporal response function

M50
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lemporal response function
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New results: influence ot attention
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New results: influence ot attention
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» Persistent task-related activity
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