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Objective Measures of
Speech Perception

® What do | mean by objective measure!
p EEG/MEG measures of cortical activity
p Stimulus: naturalistic, long-duration speech

p Not addressed here:

- subcortical activity
- other non-invasive measures (fNIRS, fMRI)

- other forms of speech



Objective Measures of
Speech Perception

® What do | mean by speech perception?
p Beyond intelligibility
p Allow for role of cognition
p Role of attention
p Importance of language in speech perception
p Importance of speech meaning (semantics)

p Processing effort? (not addressed here)



Qutline

® Background & motivation
» Neural responses in time

» Response prediction from a stimulus
via Temporal Response Function (TRF)

» Stimulus reconstruction from responses
® TJowards objective measures of

» Speech intelligibility

» Lexical processing of speech

» Semantic processing of speech
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EEG & MEG Responses in Time
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Predicting EEG/MEG Responses
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Predicting EEG/MEG Responses

Temporal Response Function (TRF) estimation:

Stimulus and response are known; find the best TRF
to produce the response from the stimulus:
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Predicting EEG/MEG Responses

Temporal Response Function (TRF) estimation:

Stimulus and response are known; find the best TRF
to produce the response from the stimulus:
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Stimulus Reconstruction in Time

his schoolhouse was a low building of one large room rudely constructed of logs

Speech envelope
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Stimulus Reconstruction in Time
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Stimulus Reconstruction in Time

{ 100 ms

Stimulus envelope
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Stimulus Reconstruction in Time
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Stimulus Reconstruction in Time

{ 100 ms

Stimulus Reconstruction:

Stimulus and response are known;

Find the best matrix in time and space to
produce the stimulus from the response

Stimulus envelope

MEG responses




Cortical Representations of
Continuous Speech

® For long duration continuous speech

® Encoding & decoding (complementary)
® [inear model

® Acoustics: spectrotemporal envelope

® Envelope rates:~ | - |0 Hz
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® TJowards objective measures of

» Speech intelligibility



Stimulus Reconstruction
=¥ Intelligibility
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Stimulus Reconstruction
=¥ Intelligibility
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Stimulus Reconstruction
=¥ Intelligibility
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Stimulus Reconstruction
=¥ Intelligibility
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Stimulus Reconstruction in Time

his schoolhouse was a low building of one large room rudely constructed of logs

Speech envelope

Continuous MEG recording
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Stimulus Reconstruction
=¥ Intelligibility

Integration window
span indicates
latencies of interest

- choose window for
reconstruction

* not based on
highest correlation
(of reconstructed
stimulus)

* based on
reconstruction
monotonicity as a
function of SNR.

Vanthornhout et al., JARO (2018)



Stimulus Reconstruction
=¥ Intelligibility

Reconstruction Monotonicity by SNR
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Stimulus Reconstruction
=¥ Intelligibility

® Continuous speech envelope reconstruction
(neurometric) threshold predicts behavioral
speech reception threshold (SRT).

® Uses long duration continuous speech
® Based on robust acoustic speech representation

® Early auditory cortex most critical (pre-attentive)



Stimulus Reconstruction
=¥ Intelligibility

® UPDATES from the Francart Lab
p Response prediction (stimulusreconstruction)
p Theta band
p Speech Envelope =¥ Spectrogram

p Added new representation: phonetic features™

*Role of phonetic features vs. spectrogram onsets!?

Lesenfants et al., Hear Res (2019)



Phonetic Features vs.
Spectrogram Onsets

® + ‘phonetic features’ representation increases
EEG response prediction: Di Liberto et al. (2015).

® Adding only acoustic spectrogram onsets gives

same predictive benefits as phonetic features for
MEG responses: Daube et al. (2019).

® Also seen in Simon lab: Brodbeck et al. (2018).

B Phonetic features too correlated with acoustic
onsets, in natural speech, to isolate them



Stimulus Reconstruction
=¥ Intelligibility

e UPDATES from the Francart Lab
p Age really matters: Decruy et al. (2019)

-

O 0.40

§ Not just linear but quadratic uptick
g 090 - Cognitive decline also matters

§ In agreement with Presacco et al.
® (2016a, 2016b).
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® TJowards objective measures of

» Lexical processing of speech



Lexical Processing

® Processing by early auditory cortex critical
® Using more than global speech envelope helps
® Another level of speech perception:

p Transforming speech sounds into words

p “Lexical processing”

® | anguage-based but not via word meaning

Brodbeck et al.,, Curr Biol (2018)



Acoustic to Lexical
Speech Processing
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Acoustic to Lexical
Speech Processing
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Acoustic to Lexical
Speech Processing
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Surprisal

Number of
times a word Surprisal
that starts
with this KEY M ...
sequence 23875 (45%) “came”, “Cambridge”,
occurs in (4 words)
SUBTLEX
/ KEY'S ... “case”, “cases”, “caseworker”
K EY . /'16048 (30%) “casein” ’
52908 (13 words) P
(90 words) \ KEY K .
2598 ( % “cake”, “caked”, “cakes”
Number of (3 words)
words that KEYN .. o i
start with 1337 (3%) “cane”, “canine”, “Canaan”,

“Kane”, “Keynesian”,

this sequence (13 words)



Entropy

Cohort entropy
» How unpredictable is the current word?
LEY K. KEY K ... BEYK..
¥ ¥/ | \\
lake lakes cake ... caked baker haked baoke
©@5%) (%)  88%) 119 (1%)  (29%) t(’;g;)r; a9 1)

Entropy -




VWord onsets

Do we...

» Anticipate word boundaries based on context?

» Infer them later based on consistency?

catalogue > inner eye
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“The catalogue in a library”

(Norris & McQueen, 2008)



Acoustic Results

Acoustic
Envelope

Brodbeck et al.,, Curr Biol (2018)
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Acoustic Results
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Brodbeck et al.,, Curr Biol (2018)



Acoustic Results
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Onset explains more variance
Latency(ies) as expected

Strongly bilateral

Onset stronger in right hemisphere

Brodbeck et al.,, Curr Biol (2018)



Neural Lexical Processing
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Brodbeck et al.,, Curr Biol (2018)



Neural Lexical Processing
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Neural Lexical Processing

|
|
_00 (
o
X
—
o
&
@

Word
Onset

& el i ﬁ
2 - g 110 ms J 260 ms 400 ms
== |

N ~ 120 ms ; w200 ms 300 ms
——————— |

7 \ qg

Phoneme
Surprisal

Cohort
Entropy

_

0 100 200 300 400 500
Time [ms]

Brodbeck et al.,, Curr Biol (2018)



Neural Lexical Processing

® Rapid transformation to lexical
® Word boundaries identified
® Surprisal = local measure of
phoneme prediction error
(predictive coding?)
Cohort entropy = global measure of

Word lexical competition across cohort

Onset Strongly left hemisphere dominant
Phoneme I T e A =T T
Surprisal - U e — e

Cohort s o

Entro - \\g' B

P 1125 ms
0 100 200 300 400 500

Time [ms]

Brodbeck et al.,, Curr Biol (2018)



Listening at the
Cocktail Party

Springer Handbook of Auditory Research

John C. Middlebrooks
Jonathan Z. Simon
Arthur N. Popper
Richard R. Fay Editors

The Audltory
System at

the Cocktail
Party

@ Springer




Acoustic Attention

2 competing speakers, equal loudness, attend to one

"WMWW#W' —p- - .

Brodbeck et al.,, Curr Biol (2018)



Acoustic Attention

2 competing speakers, equal loudness, attend to one

OWMWHM*% o+ B

i Attended acoustic model Acoustic stimulus model Unattended acoustic model

RN
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® Onset Representation Dominates
e Attended Dominates Later

Brodbeck et al.,, Curr Biol (2018)



Lexical Attention

Attended lexical model

£

Phoneme B | | |
Onset ‘ / | | ]

Word .
<:)r]S€3t 110 ms ‘
Phoneme | »
Surprisal S o
2ol Sala
Entropy S g0ms

0 100 200 300 400 500

Brodbeck et al.,, Curr Biol (2018)

(@ i eporipttrpisger st o+ B

Unattended lexical model

——b———————} ——

————f—————b—————— |

0 100 200 300 400 500
Time Imsl



Lexical Attention
@ et e L

i Attended lexical model Unattended lexical model
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® Only attended speech processed lexically
® | exical processing slowed by ~15 ms

Brodbeck et al.,, Curr Biol (2018)



Lexical Processing

® Speech perception at level of transforming
speech sounds into words

® “Post-acoustic” phoneme processing

® VWord-based
® Attention required (?)

® Surprisingly early

Brodbeck et al.,, Curr Biol (2018)
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Semantic Processing

® Speech perception includes perceiving the
meaning of the speech

® Computational language models give several
semantic measures: semantic dissimilarity

® Analysis of Semantic-dissimilarity-based TRF

p potential basis of objective measure of
perception of speech meaning

Broderick et al., Curr Biol (2018)
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Semantic Processing

Semantic-dissimilarity TRF
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Semantic Processing
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Semantic Processing

Semantic-dissimilarity TRF
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Semantic Processing
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Semantic Processing

Semantic-dissimilarity TRF

0.06 e
400 500 Unattended Speech
. 0 '
=
©
Attended Speech
-0.08¢} :

Time (ms)

® This TRF reflects processing of semantics
Broderick et al., Curr Biol (2018)  ® This semantic processing depends on attention



Summary

® Speech perception takes many forms
® Cortical processing of speech takes many forms

® Many potential ways to link the two
- Faithful representation of speech acoustics
- Processing speech sounds into words (lexical)
- Semantic level processing

- Cognitive aspects of perception allowed

® Cortical (temporal) processing of continuous
speech processing: both encoding & decoding



Thank You
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