Towards Objective Measures of Speech Perception

Jonathan Z. Simon

Department of Electrical & Computer Engineering Department of Biology Institute for Systems Research University of Maryland

http://www.isr.umd.edu/Labs/CSSL/simonlab

CIAP, 16 July 2019

Objective Measures of Speech Perception

- What do I mean by **objective measure**?
 - EEG/MEG measures of cortical activity
 - Stimulus: naturalistic, long-duration speech
 - Not addressed here:
 - subcortical activity
 - other non-invasive measures (fNIRS, fMRI)
 - other forms of speech

Objective Measures of Speech Perception

- What do I mean by **speech perception**?
 - Beyond intelligibility
 - Allow for role of cognition
 - Role of attention
 - Importance of language in speech perception
 - Importance of speech meaning (semantics)
 - Processing effort? (not addressed here)

Outline

- Background & motivation
 - Neural responses in time
 - Response prediction from a stimulus
 via Temporal Response Function (TRF)
 - Stimulus reconstruction from responses
- Towards objective measures of
 - Speech intelligibility
 - Lexical processing of speech
 - Semantic processing of speech

Outline

- Background & motivation
 - Neural responses in time
 - Response prediction from a stimulus
 via Temporal Response Function (TRF)
 - Stimulus reconstruction from responses
- Towards objective measures of
 - Speech intelligibility
 - Lexical processing of speech
 - Semantic processing of speech

EEG & MEG Responses in Time

Ding & Simon, J Neurophysiol (2009)

Temporal Response Function (TRF) estimation:

Stimulus and response are known; find the best TRF to produce the response from the stimulus:

lesp

√ → Fstimated TRF

Actual response

Predicted response (Stimulus * TRF)

Temporal Response Function (TRF) estimation:

Stimulus and response are known; find the best TRF to produce the response from the stimulus:

Actual response

Resp.

Predicted response (Stimulus * TRF)

Speech envelope

Time [seconds]

Stimulus Reconstruction:

Stimulus Reconstruction:

Stimulus Reconstruction:

Stimulus Reconstruction:

Stimulus Reconstruction:

Cortical Representations of Continuous Speech

- For long duration continuous speech
- Encoding & decoding (complementary)
- Linear model
- Acoustics: spectrotemporal **envelope**
- Envelope rates: ~ I I0 Hz

Outline

- Background & motivation
 - Neural responses in time
 - Response prediction from a stimulus
 via Temporal Response Function (TRF)
 - Stimulus reconstruction from responses
- Towards objective measures of
 - Speech intelligibility
 - Lexical processing of speech
 - Semantic processing of speech

Outline

- Background & motivation
 - Neural responses in time
 - Response prediction from a stimulus
 via Temporal Response Function (TRF)
 - Stimulus reconstruction from responses
- Towards objective measures of
 - Speech intelligibility
 - Lexical processing of speech
 - Semantic processing of speech

Vanthornhout et al., JARO (2018)

measured neurally?

Cortical responses, but where? (or when?)

Integration window span indicates latencies of interest

- choose window for reconstruction
- not based on highest correlation (of reconstructed stimulus)
- based on reconstruction **monotonicity** as a function of SNR.

Vanthornhout et al., JARO (2018)

Integration window span indicates latencies of interest

- choose window for reconstruction
- not based on highest correlation (of reconstructed stimulus)
- based on reconstruction **monotonicity** as a function of SNR.

Reconstruction Monotonicity by SNR 100% (SE) 200 Integration Window End 50% 100 **Integration window choice:** 0 ms to 75 ms early auditory cortex pre-attentive 0 0% 100 200 n Integration Window Start (ms)

Vanthornhout et al., JARO (2018)

- Continuous speech envelope reconstruction (neurometric) threshold predicts behavioral speech reception threshold (SRT).
- Uses long duration continuous speech
- Based on robust *acoustic* speech representation
- Early auditory cortex most critical (pre-attentive)

- UPDATES from the Francart Lab
 - Response prediction (stimulus reconstruction)
 - Theta band
 - Speech Envelope -> Spectrogram
 - Added new representation: phonetic features*

*Role of phonetic features vs. spectrogram onsets?

Lesenfants et al., Hear Res (2019)

Phonetic Features vs. Spectrogram Onsets

- + 'phonetic features' representation increases
 EEG response prediction: Di Liberto et al. (2015).
- Adding only acoustic spectrogram onsets gives same predictive benefits as phonetic features for MEG responses: Daube et al. (2019).
- Also seen in Simon lab: Brodbeck et al. (2018).
- Phonetic features too correlated with acoustic onsets, in natural speech, to isolate them

- UPDATES from the Francart Lab
 - Age really matters: Decruy et al. (2019)

Not just linear but quadratic uptick

Cognitive decline also matters

In agreement with Presacco et al. (2016a, 2016b).

Outline

- Background & motivation
 - Neural responses in time
 - Response prediction from a stimulus
 via Temporal Response Function (TRF)
 - Stimulus reconstruction from responses
- Towards objective measures of
 - Speech intelligibility
 - Lexical processing of speech
 - Semantic processing of speech

Outline

- Background & motivation
 - Neural responses in time
 - Response prediction from a stimulus
 via Temporal Response Function (TRF)
 - Stimulus reconstruction from responses
- Towards objective measures of
 - Speech intelligibility
 - Lexical processing of speech
 - Semantic processing of speech

Lexical Processing

- Processing by early auditory cortex critical
- Using more than global speech envelope helps
- Another level of speech perception:
 - Transforming speech sounds into words
 - "Lexical processing"

• Language-based but not via word meaning

Surprisal

"came", "Cambridge", ...

"case", "cases", "caseworker", "casein", ...

"cake", "caked", "cakes"

"cane", "canine", "Canaan", "Kane", "Keynesian", ...

Entropy

Cohort entropy

How unpredictable is the current word?

25

Word onsets

Do we...

- Anticipate word boundaries based on context?
- Infer them later based on consistency?

"The catalogue in a library"

cf. Daube et al., Curr Biol (2019)

- Onset explains more variance
- Latency(ies) as expected
- Strongly bilateral
- Onset stronger in right hemisphere

3.0 × 1

Λ

0

 1.1×1

- Rapid transformation to lexical
- Word boundaries identified
- Surprisal = local measure of phoneme prediction error (predictive coding?)
- Cohort entropy = global measure of lexical competition across cohort
- Strongly left hemisphere dominant

Cohort Entropy

Brodbeck et al., Curr Biol (2018)

Word

Onset

Phoneme

Surprisal

Listening at the Cocktail Party

Springer Handbook of Auditory Research

John C. Middlebrooks Jonathan Z. Simon Arthur N. Popper Richard R. Fay *Editors*

The Auditory System at the Cocktail Party

Acoustic Attention

2 competing speakers, equal loudness, attend to one

Acoustic Attention

2 competing speakers, equal loudness, attend to one

- Onset Representation Dominates
- Attended Dominates Later

- Only attended speech processed lexically
- Lexical processing slowed by ~15 ms

Lexical Processing

- Speech perception at level of transforming speech sounds into words
- "Post-acoustic" phoneme processing
- Word-based
- Attention required (?)
- Surprisingly early

Outline

- Background & motivation
 - Neural responses in time
 - Response prediction from a stimulus
 via Temporal Response Function (TRF)
 - Stimulus reconstruction from responses
- Towards objective measures of
 - Speech intelligibility
 - Lexical processing of speech
 - Semantic processing of speech

Outline

- Background & motivation
 - Neural responses in time
 - Response prediction from a stimulus
 via Temporal Response Function (TRF)
 - Stimulus reconstruction from responses
- Towards objective measures of
 - Speech intelligibility
 - Lexical processing of speech
 - Semantic processing of speech

- Speech perception includes perceiving the meaning of the speech
- Computational language models give several semantic measures: semantic dissimilarity
- Analysis of Semantic-dissimilarity-based TRF
 - potential basis of objective measure of perception of speech meaning

- Speech perception includes perceiving the meaning of the speech
- Computational language models give several semantic measures: semantic dissimilarity
- Analysis of Semantic-dissimilarity-based TRF
 - potential basis of objective measure of perception of speech meaning

This TRF reflects processing of semantics

This semantic processing depends on attention

Summary

- Speech perception takes many forms
- Cortical processing of speech takes many forms
- Many potential ways to link the two
 - Faithful representation of speech acoustics
 - Processing speech sounds into words (lexical)
 - Semantic level processing
 - Cognitive aspects of perception allowed
- Cortical (temporal) processing of continuous speech processing: both encoding & decoding

Thank You

Acknowledgements

Current Lab Members & Affiliates

Christian Brodbeck Alex Presacco Proloy Das Jason Dunlap Theo Dutcher Alex Jiao Dushyanthi Karunathilake Joshua Kulasingham Natalia Lapinskaya Sina Miran David Nahmias Peng Zan

Past Lab Members & Affiliates

Nayef Ahmar Sahar Akram Murat Aytekin Francisco Cervantes Constantino Maria Chait Marisel Villafane Delgado Kim Drnec Nai Ding Victor Grau-Serrat Julian Jenkins Pirazh Khorramshahi Huan Luo Mahshid Najafi Krishna Puvvada Jonas Vanthornhout

Ben Walsh Yadong Wang Juanjuan Xiang Jiachen Zhuo

Collaborators

Pamela Abshire Samira Anderson Behtash Babadi Catherine Carr Monita Chatterjee Alain de Cheveigné Stephen David Didier Depireux Mounya Elhilali *Tom Francart*Jonathan Fritz
Michael Fu
Stefanie Kuchinsky
Steven Marcus
Cindy Moss
David Poeppel
Shihab Shamma

Past Undergraduate Students

Nicholas Asendorf Ross Baehr Anurupa Bhonsale Sonja Bohr Elizabeth Camenga Katya Dombrowski Kevin Hogan Andrea Shome James Williams

Funding NIH (*NIDCD*, *NIA*, *NIBIB*); NSF; DARPA; UMD; USDA