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What is Decoding?
• Stimulus Reconstruction (from neural responses)


• Subset of decoding 


• I will use “decoding” and “reconstruction” 
interchangeably (until it gets me into trouble)


• I will use “stimulus” reconstruction and “other 
kinds” of reconstruction interchangeably  
(until it gets me into trouble)


• Linear decoding/reconstruction emphasized 
here

Example: EEG/MEG Reconstruction of Speech Envelope
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Decoding ≠ Encoding
• Encoding = predicting neural responses 

from stimulus features, e.g., via TRF


• “Stimulus features”? the sky's the limit


• Typically harder than reconstruction, since 
stimulus dimension ≪ response dimension


• For this reason: stimulus features that 
can be seen to be encoded = excellent 
candidates for decoding 


• Why bother looking at encoding? It often 
tells us more about the brain

Example: MEG Prediction of Voxel Responses



Decoding: easier vs. harder
easier

Mesgarani et al., PNAS 2014

harder

Example: EEG/MEG Reconstruction of Speech Envelope

duration of the stimulus (SD) or response (GN) that influ-
ences the neural response (see Methods for details). To study
how these parameters influence the predicted responses, we
measured the MSE difference between responses predicted by
the model and actual responses to the noisy speech stimuli
(Fig. 3 B and C). We also measured the effects of varying tau
for SD and GN components separately by averaging MSE
measurements as shown in Fig. 3C. We observed significant
improvement in prediction error as we increased both time
constants from 0 ms. Performance ceased to improve beyond
a value of 70 ms for the SD module and 90 ms for the GN
module. Thus, for subsequent simulations, we fixed the time
constants at these values. Although effective here, these val-
ues should not be interpreted too strictly as upper bounds.
Our experiments did not probe the entire range of possible
distortions or nonstationary distortions, particularly for re-
verberation, which can have longer echo times.
Responses by the different static and dynamic models to dis-

torted speech are compared in Fig. 4. The responses predicted by
the SN model do not suppress the additive noise, as shown by the
predicted neural activity even in the absence of the stimulus (Fig.
4 A and B, yellow line). The SN model also predicts a prolonged
response to reverberant stimuli, reflecting the temporal smearing
caused by this distortion (Fig. 4C, yellow line). The GN model
alone (Fig. 4 A−C, green line) also fails to decrease the noise and
merely scales the average spike rate. By contrast, the SD model
alone predicts the suppressed noise floor in additive noise con-
ditions, but also (erroneously) predicts a significantly reduced
overall spiking rate (Fig. 4 A−C, blue lines). This reduction,
however, is compensated for in the predictions of the SDGN
model, resulting in suppression of noisy distortions while pre-
serving the overall neural firing activity (Fig. 4 A−C, red lines).
These observations are quantified in the histograms of predicted
responses for the different models (Fig. 4D), where the SDGN
model produces the most similar histograms for the clean and
noisy conditions and replicates the neural data (Fig. 1B). Finally,
we quantified the MSE difference between responses predicted
by the different models in each distorted condition to actual
neural responses in the same conditions, shown in Fig. 4E.

Responses predicted by the SDGN model were significantly
more similar to the actual responses than SN, SD, or GN alone
(P < 0.01, t test, n = 91, 101, and 97 for white, pink, and re-
verberation conditions, respectively). Although inclusion of ei-
ther dynamic mechanism individually results in more accurate
prediction of the neural response, the actual neural data are best
predicted when both mechanisms are combined. More specifi-
cally, the subtractive SD model is more effective than the mul-
tiplicative GN in additive noise conditions (blue vs. green bars
for white and pink noise in Fig. 4E), but not in reverberation.
To study how the different models encoded clean and noisy

speech at the population level, we applied the reconstruction
analysis to the simulated responses. We used the same re-
construction filters obtained from neural responses to clean
speech, as in the analysis in Fig. 2. The original and recon-
structed spectrograms for the SN, SD, GN, and SDGN models
are shown in Fig. 5. As expected, the reconstructed spectrograms
for the SN and GN models contain both speech and noise and
a relatively smeared response in the reverberant conditions. The
SD model reduces the noise level but at the expense of excessive
overall response suppression that fades the finer features of the
speech signal. Reconstructed spectrograms for the SDGN model
produced spectrograms most similar to the original clean signals
(Fig. 2A) and to the reconstruction from actual neural data (Fig. 2B).
We used the MSE distance metric to compare the recon-

structions for the different models quantitatively, as shown in
Fig. 5C. This analysis confirms the significant enhancement of
the speech signal and suppression of distortions for the SDGN
model (red bars, Fig. 5C, t test, Bonferroni correction). Note also
that the reconstructed spectrograms from the SD model were
closer to the clean stimulus for additive white and pink noise
(blue bars, Fig. 5C), but the only model that also reduced the
reverberant distortions was the combined SDGN model. Based
on these observations, we conclude that a simple higher-level read-
out stage (simulated by linear reconstruction in our study) that is
estimated only in clean condition will generalize to distorted
speech, because the responses themselves adapt to the changing
condition, eliminating the need for reestimation of a decoding
model. This self-normalization of the responses is advantageous for
subsequent stages of information processing by reducing the vari-
ability of the signal that simplifies adaptation to novel conditions.
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Fig. 2. Reduced stimulus distortions in spectrograms reconstructed from
the A1 population response. (A) Original and (B) reconstructed spectrograms
of clean and distorted speech. The reconstructed spectrograms from the
population response of A1 neurons to the clean and distorted speech were
more similar to the spectrogram of the clean speech signal (first panel in A)
than to those of the distorted signals (second through fourth panels in A).
(C) Original and (D) reconstructed spectrogram of clean and noisy ferret
vocalization sounds, showing a similar effect as in A and B. (E and F) MSE
distance between the spectrograms reconstructed from neural responses
and clean (blue) or noisy (red) original spectrograms. In all distortions,
reconstructions were closer to the clean than to the noisy stimuli (**P < 0.01,
t test), both for speech and ferret vocalization sounds. Error bars were es-
timated across different speech samples.
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Fig. 3. Simulating the neural responses in clean and noise using static and
dynamic models. (A) Schematic of the model to simulate neural responses
including linear STRF, a feed-forward subtractive model of SD and a feed-
back multiplicative model of GN. The synaptic depression stage [rSD(t)]
eliminates the baseline stimulus energy, whereas the gain normalization
stage normalizes the predicted output. (B) MSE distance of predicted neural
responses to actual neural responses in distorted conditions as a function of
SD and GN integration windows. (C) MSE distance of predicted to actual
noisy responses for SD and GN models separately.
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duration of the stimulus (SD) or response (GN) that influ-
ences the neural response (see Methods for details). To study
how these parameters influence the predicted responses, we
measured the MSE difference between responses predicted by
the model and actual responses to the noisy speech stimuli
(Fig. 3 B and C). We also measured the effects of varying tau
for SD and GN components separately by averaging MSE
measurements as shown in Fig. 3C. We observed significant
improvement in prediction error as we increased both time
constants from 0 ms. Performance ceased to improve beyond
a value of 70 ms for the SD module and 90 ms for the GN
module. Thus, for subsequent simulations, we fixed the time
constants at these values. Although effective here, these val-
ues should not be interpreted too strictly as upper bounds.
Our experiments did not probe the entire range of possible
distortions or nonstationary distortions, particularly for re-
verberation, which can have longer echo times.
Responses by the different static and dynamic models to dis-

torted speech are compared in Fig. 4. The responses predicted by
the SN model do not suppress the additive noise, as shown by the
predicted neural activity even in the absence of the stimulus (Fig.
4 A and B, yellow line). The SN model also predicts a prolonged
response to reverberant stimuli, reflecting the temporal smearing
caused by this distortion (Fig. 4C, yellow line). The GN model
alone (Fig. 4 A−C, green line) also fails to decrease the noise and
merely scales the average spike rate. By contrast, the SD model
alone predicts the suppressed noise floor in additive noise con-
ditions, but also (erroneously) predicts a significantly reduced
overall spiking rate (Fig. 4 A−C, blue lines). This reduction,
however, is compensated for in the predictions of the SDGN
model, resulting in suppression of noisy distortions while pre-
serving the overall neural firing activity (Fig. 4 A−C, red lines).
These observations are quantified in the histograms of predicted
responses for the different models (Fig. 4D), where the SDGN
model produces the most similar histograms for the clean and
noisy conditions and replicates the neural data (Fig. 1B). Finally,
we quantified the MSE difference between responses predicted
by the different models in each distorted condition to actual
neural responses in the same conditions, shown in Fig. 4E.

Responses predicted by the SDGN model were significantly
more similar to the actual responses than SN, SD, or GN alone
(P < 0.01, t test, n = 91, 101, and 97 for white, pink, and re-
verberation conditions, respectively). Although inclusion of ei-
ther dynamic mechanism individually results in more accurate
prediction of the neural response, the actual neural data are best
predicted when both mechanisms are combined. More specifi-
cally, the subtractive SD model is more effective than the mul-
tiplicative GN in additive noise conditions (blue vs. green bars
for white and pink noise in Fig. 4E), but not in reverberation.
To study how the different models encoded clean and noisy

speech at the population level, we applied the reconstruction
analysis to the simulated responses. We used the same re-
construction filters obtained from neural responses to clean
speech, as in the analysis in Fig. 2. The original and recon-
structed spectrograms for the SN, SD, GN, and SDGN models
are shown in Fig. 5. As expected, the reconstructed spectrograms
for the SN and GN models contain both speech and noise and
a relatively smeared response in the reverberant conditions. The
SD model reduces the noise level but at the expense of excessive
overall response suppression that fades the finer features of the
speech signal. Reconstructed spectrograms for the SDGN model
produced spectrograms most similar to the original clean signals
(Fig. 2A) and to the reconstruction from actual neural data (Fig. 2B).
We used the MSE distance metric to compare the recon-

structions for the different models quantitatively, as shown in
Fig. 5C. This analysis confirms the significant enhancement of
the speech signal and suppression of distortions for the SDGN
model (red bars, Fig. 5C, t test, Bonferroni correction). Note also
that the reconstructed spectrograms from the SD model were
closer to the clean stimulus for additive white and pink noise
(blue bars, Fig. 5C), but the only model that also reduced the
reverberant distortions was the combined SDGN model. Based
on these observations, we conclude that a simple higher-level read-
out stage (simulated by linear reconstruction in our study) that is
estimated only in clean condition will generalize to distorted
speech, because the responses themselves adapt to the changing
condition, eliminating the need for reestimation of a decoding
model. This self-normalization of the responses is advantageous for
subsequent stages of information processing by reducing the vari-
ability of the signal that simplifies adaptation to novel conditions.
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Fig. 2. Reduced stimulus distortions in spectrograms reconstructed from
the A1 population response. (A) Original and (B) reconstructed spectrograms
of clean and distorted speech. The reconstructed spectrograms from the
population response of A1 neurons to the clean and distorted speech were
more similar to the spectrogram of the clean speech signal (first panel in A)
than to those of the distorted signals (second through fourth panels in A).
(C) Original and (D) reconstructed spectrogram of clean and noisy ferret
vocalization sounds, showing a similar effect as in A and B. (E and F) MSE
distance between the spectrograms reconstructed from neural responses
and clean (blue) or noisy (red) original spectrograms. In all distortions,
reconstructions were closer to the clean than to the noisy stimuli (**P < 0.01,
t test), both for speech and ferret vocalization sounds. Error bars were es-
timated across different speech samples.
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Fig. 3. Simulating the neural responses in clean and noise using static and
dynamic models. (A) Schematic of the model to simulate neural responses
including linear STRF, a feed-forward subtractive model of SD and a feed-
back multiplicative model of GN. The synaptic depression stage [rSD(t)]
eliminates the baseline stimulus energy, whereas the gain normalization
stage normalizes the predicted output. (B) MSE distance of predicted neural
responses to actual neural responses in distorted conditions as a function of
SD and GN integration windows. (C) MSE distance of predicted to actual
noisy responses for SD and GN models separately.
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Pasley et al., PLoS Biol. 2012

below. First, informative temporal electrodes were primarily
localized to pSTG. To quantify this, we defined ‘‘informative’’
electrodes as those associated with parameters with high signal-to-
noise ratio in the reconstruction models (t ratio.2.5, p,0.05, false
discovery rate (FDR) correction) Figure 4A shows the anatomical
distribution of informative electrodes pooled across participants
and plotted in standardized anatomical coordinates (Montreal
Neurological Institute, MNI) [23]). The distribution was centered
in the pSTG (x = 270, y = 229, z = 12, MNI coordinates;
Brodmann area 42), and was dispersed along the anterior-
posterior axis.

Second, significant predictive power (r.0) was largely confined to
neural responses in the high gamma band (,70–170 Hz; Figure 4B;
p,0.01, one-sample t tests, df = 14, Bonferroni correction).
Predictive power for the high gamma band (,70–170 Hz) was
significantly better compared to other neural frequency bands
(p,0.05, Bonferroni adjusted pair-wise comparisons between
frequency bands, following significant one-way repeated measures
analysis of variance (ANOVA), F(30,420) = 128.7, p,10210). This is

consistent with robust speech-induced high gamma responses
reported in previous intracranial studies [24–29] and with observed
correlations between high gamma power and local spike rate [30].

Third, increasing the number of electrodes used in the reconstruc-
tion improved overall reconstruction accuracy (Figure 4C). Overall
prediction quality was relatively low for participants with five or fewer
responsive STG electrodes (mean accuracy r = 0.19, N = 6 partici-
pants) and was robust for cases with high density grids (mean accuracy
r = 0.43, N = 4, mean of 37 responsive STG electrodes per
participant).

What neural response properties allow the linear model to find
an effective mapping to the stimulus spectrogram? There are two
major requirements as described in the following paragraphs.
First, individual recording sites must exhibit reliable frequency
selectivity (e.g., Figure 2B, right column; Figures S1B, S2). An
absence of frequency selectivity (i.e., equal neural response
amplitudes to all stimulus frequencies) would imply that neural
responses do not encode frequency and could not be used to
differentiate stimulus frequencies. To quantify frequency tuning at

Figure 2. Spectrogram reconstruction. (A) Top: spectrogram of six isolated words (deep, jazz, cause) and pseudowords (fook, ors, nim) presented
aurally to an individual participant. Bottom: spectrogram-based reconstruction of the same speech segment, linearly decoded from a set of
electrodes. Purple and green bars denote vowels and fricative consonants, respectively, and the spectrogram is normalized within each frequency
channel for display. (B) Single trial high gamma band power (70–150 Hz, gray curves) induced by the speech segment in (A). Recordings are from four
different STG sites used in the reconstruction. The high gamma response at each site is z-scored and plotted in standard deviation (SD) units. Right
panel: frequency tuning curves (dark black) for each of the four electrode sites, sorted by peak frequency and normalized by maximum amplitude.
Red bars overlay each peak frequency and indicate SEM of the parameter estimate. Frequency tuning was computed from spectro-temporal receptive
fields (STRFs) measured at each individual electrode site. Tuning curves exhibit a range of functional forms including multiple frequency peaks
(Figures S1B and S2B). (C) The anatomical distribution of fitted weights in the reconstruction model. Dashed box denotes the extent of the electrode
grid (shown in Figure 1). Weight magnitudes are averaged over all time lags and spectrogram frequencies and spatially smoothed for display.
Nonzero weights are largely focal to STG electrode sites. Scale bar is 10 mm.
doi:10.1371/journal.pbio.1001251.g002
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different STG sites used in the reconstruction. The high gamma response at each site is z-scored and plotted in standard deviation (SD) units. Right
panel: frequency tuning curves (dark black) for each of the four electrode sites, sorted by peak frequency and normalized by maximum amplitude.
Red bars overlay each peak frequency and indicate SEM of the parameter estimate. Frequency tuning was computed from spectro-temporal receptive
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Decoding: Brain Machine Interface

• Decoding of “motor intent” 


• Shamefully ignored here  ☹
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selectivity. We were able to visualize the pattern of semantic-domain 
selectivity across the entire cortex by projecting voxel-wise models onto 
the shared semantic dimensions. Figure 2b shows projections onto the 
first three dimensions for one subject, plotted together using the same 
RGB colour scheme as in Fig. 2a (Extended Data Fig. 3a shows each 
dimension separately). Thus, for example, a green voxel produces 
greater BOLD responses to categories that are coloured green in the 
semantic space, such as ‘visual’ and ‘numeric’. This visualization sug-
gests that semantic information is represented in intricate patterns that 
cover the semantic system, including broad regions of the prefrontal 
cortex, LTC and MTC, and LPC and MPC. Furthermore, these patterns 
appear to be relatively consistent across individuals (Fig. 2c; see also 
Extended Data Fig. 3b).

Using PrAGMATiC to construct a semantic atlas
Given the apparent consistency in the patterns of semantic selectivity  
across individuals, we sought to create a single atlas that describes 
the distribution of semantically selective functional areas in human 
cerebral cortex. To accomplish this, we developed a new Bayesian 
algorithm, PrAGMATiC, that produces a probabilistic and generative 
model of areas tiling the cortex22. This algorithm models patterns of 
functional tuning recovered by voxel-wise modelling as a dense, tiled 
map of functionally homogeneous brain areas (Fig. 3a), while respect-
ing individual differences in anatomical and functional anatomy23,24. 
The arrangement and selectivity of these areas are determined 
by parameters learned from the fMRI data through a maximum- 
likelihood estimation technique similar to contrastive divergence25. 

Figure 2 | Principal components of voxel-wise semantic models.  
a–c, Principal components analysis of voxel-wise model weights reveals 
four important semantic dimensions in the brain (Extended Data Fig. 2). 
a, An RGB colourmap was used to colour both words and voxels based 
on the first three dimensions of the semantic space. Words that best 
match the four semantic dimensions were found and then collapsed into 
12 categories using k-means clustering. Each category (Supplementary 
Table 2) was manually assigned a label. The 12 category labels (large 
words) and a selection of the 458 best words (small words) are plotted here 
along four pairs of semantic dimensions. The largest axis of variation lies 
roughly along the first dimension, and separates perceptual and physical 

categories (tactile, locational) from human-related categories (social, 
emotional, violent). PC, principal component. b, Voxel-wise model 
weights were projected onto the semantic dimensions and then coloured 
using the same RGB colourmap (see Extended Data Fig. 3 for separate 
dimensions). Projections for one subject (S2) are shown on that subject’s 
cortical surface. Semantic information seems to be represented in intricate 
patterns across much of the semantic system. c, Semantic principal 
component flatmaps for three other subjects. Comparing these flatmaps, 
many patterns appear to be shared across individuals. (See Extended Data 
Fig. 3 for other subjects.) Abbreviations for regions of interest are listed in 
the Methods section.
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Static vs. Continuous Decoding
• Decoding of static stimulus not 

emphasized today 
(but please interject if interested!)


• Examples: image / visual object,  
semantic object


• Strongly related to temporal decoding


• Emphasis here on decoding of 
continuous/natural speech


• Applications + Data Richness

Huth et al. Nature 2019fMRI
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selectivity. We were able to visualize the pattern of semantic-domain 
selectivity across the entire cortex by projecting voxel-wise models onto 
the shared semantic dimensions. Figure 2b shows projections onto the 
first three dimensions for one subject, plotted together using the same 
RGB colour scheme as in Fig. 2a (Extended Data Fig. 3a shows each 
dimension separately). Thus, for example, a green voxel produces 
greater BOLD responses to categories that are coloured green in the 
semantic space, such as ‘visual’ and ‘numeric’. This visualization sug-
gests that semantic information is represented in intricate patterns that 
cover the semantic system, including broad regions of the prefrontal 
cortex, LTC and MTC, and LPC and MPC. Furthermore, these patterns 
appear to be relatively consistent across individuals (Fig. 2c; see also 
Extended Data Fig. 3b).

Using PrAGMATiC to construct a semantic atlas
Given the apparent consistency in the patterns of semantic selectivity  
across individuals, we sought to create a single atlas that describes 
the distribution of semantically selective functional areas in human 
cerebral cortex. To accomplish this, we developed a new Bayesian 
algorithm, PrAGMATiC, that produces a probabilistic and generative 
model of areas tiling the cortex22. This algorithm models patterns of 
functional tuning recovered by voxel-wise modelling as a dense, tiled 
map of functionally homogeneous brain areas (Fig. 3a), while respect-
ing individual differences in anatomical and functional anatomy23,24. 
The arrangement and selectivity of these areas are determined 
by parameters learned from the fMRI data through a maximum- 
likelihood estimation technique similar to contrastive divergence25. 

Figure 2 | Principal components of voxel-wise semantic models.  
a–c, Principal components analysis of voxel-wise model weights reveals 
four important semantic dimensions in the brain (Extended Data Fig. 2). 
a, An RGB colourmap was used to colour both words and voxels based 
on the first three dimensions of the semantic space. Words that best 
match the four semantic dimensions were found and then collapsed into 
12 categories using k-means clustering. Each category (Supplementary 
Table 2) was manually assigned a label. The 12 category labels (large 
words) and a selection of the 458 best words (small words) are plotted here 
along four pairs of semantic dimensions. The largest axis of variation lies 
roughly along the first dimension, and separates perceptual and physical 

categories (tactile, locational) from human-related categories (social, 
emotional, violent). PC, principal component. b, Voxel-wise model 
weights were projected onto the semantic dimensions and then coloured 
using the same RGB colourmap (see Extended Data Fig. 3 for separate 
dimensions). Projections for one subject (S2) are shown on that subject’s 
cortical surface. Semantic information seems to be represented in intricate 
patterns across much of the semantic system. c, Semantic principal 
component flatmaps for three other subjects. Comparing these flatmaps, 
many patterns appear to be shared across individuals. (See Extended Data 
Fig. 3 for other subjects.) Abbreviations for regions of interest are listed in 
the Methods section.
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The revolution will not be controlled: natural stimuli in speech neuroscience
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ABSTRACT
Humans have a unique ability to produce and consume rich, complex, and varied language in order
to communicate ideas to one another. Still, outside of natural reading, the most common methods
for studying how our brains process speech or understand language use only isolated words or
simple sentences. Recent studies have upset this status quo by employing complex natural
stimuli and measuring how the brain responds to language as it is used. In this article we argue
that natural stimuli offer many advantages over simplified, controlled stimuli for studying how
language is processed by the brain. Furthermore, the downsides of using natural language
stimuli can be mitigated using modern statistical and computational techniques.
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A fundamental goal in neuroscience is to discover how
the human brain understands and produces language.
The methods used to study processes in the human
brain have advanced considerably over the past
decades. Advancements in neuroimaging and neural
recording technologies have made it possible to
measure brain responses with higher fidelity and spatio-
temporal resolution, and modern analysis techniques
have made it possible to analyze larger and more
complex datasets. Yet many—if not most—experimental
designs in neurolinguistics are still rooted in the tech-
niques of the past: comparing brain responses to isolated
words or simplified sentences. One alternative is to
perform experiments using natural language stimuli,
with connected sentences that approximate or draw
directly from language as it is used in everyday life.
Outside of neuroscience, highly natural approaches
have already found use in conversation analysis (CA),
where natural social conversations are analysed qualitat-
ively (Kendrick, 2017; Schegloff, Koshik, Jacoby, & Olsher,
2002). Natural stimuli have also been used widely in
studies concerned with the neural processes that
underlie reading behaviours (Kliegl, Dambacher,
Dimigen, Jacobs, & Sommer, 2012). But for studies that
probe how the brain understands language or processes
speech, natural stimuli have found only limited use. A
few recent studies have shown that conclusions based
on simplified or highly controlled language stimuli may

not apply to data collected using natural language, or
that similar conclusions can be reached more efficiently
using natural language (Huth, de Heer, Griffiths, Theunis-
sen, & Gallant, 2016; Lerner, Honey, Silbert, & Hasson,
2011; Wehbe et al., 2014).

Recent efforts to use natural language stimuli in
neuroscience closely echo debates that occurred in
visual neuroscience over the past 20 years. That field
was dominated for decades by an experimental
approach in which tightly controlled visual stimuli were
used to study receptive field properties of neurons in
visual cortex. This was successful in characterising
many properties of the visual cortex, including retinoto-
pic representations of the visual field, ocular dominance
columns, the receptive field properties of simple and
complex cells in the visual pathway, and more. Yet
over time it became clear that many effects assumed
to be universal were actually highly dependent on the
tightly controlled stimuli, and were diminished or
absent in experiments that used natural visual stimuli
(David, Vinje, & Gallant, 2004). Recently many visual
neuroscience experiments have begun to use more
natural stimuli either to construct or test models of
visual processing (Geisler, Perry, Super, & Gallogly,
2001; Kay, Naselaris, Prenger, & Gallant, 2008; Nishimoto
& Gallant, 2011; Rao & Ballard, 1999).

The changes in vision neuroscience were spurred
largely by technology. Both measurements of brain
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rhythm it is synchronized to. Critically, bottom-up neural adaptation
to sound intensity is also investigated. Neural adaptation also
determines whether a neural representation is object-based based
or not, depending on which sound stream (or mixture) the neural
representation adapts to. We do this by analyzing the phase-
locked neural activity when the intensity of the attended speaker
and the background speaker is manipulated separately (Fig. 1C).
These hypothesized, object-specific neural representations are
investigated and revealed, using single-trial neural recordings and
an advanced neural decoding method that parallels state-of-the-
art analysis methods used in functional MRI (fMRI) (23) and
intracranial recording (24, 25).

Results
Deciphering the Spatial-Temporal Code for Individual Speakers. In
the first experiment, listeners selectively listened to one of two
competing speakers of different sex, mixed into a single acoustic
channel with equal intensity. To probe object-specific neural rep-
resentations, we reconstructed the temporal envelope of each of
the two simultaneous speech streams by optimally integrating
MEG activity over time and space (i.e., sensors). Such a recon-
struction of the envelope of each speech stream, rather than the
physical stimulus, can be successful only if the stimulus mixture is
neurally segregated (“unmixed”) and the speech streams of the two
speakers are represented differentially. We first reconstructed the
temporal envelope of the attended speech. Fig. 2A shows repre-
sentative segments of the different envelopes reconstructed by this
decoder, from listeners hearing the identical speech mixture but
attending to different speakers in it. Clearly, the reconstructed
envelope depends strongly on the attentional focus of the listener
and resembles the envelope of the attended speech. At the single-
subject level and the single-trial level, the reconstructed envelope is

more strongly correlated with the envelope of the attended speaker
than of the unattended speaker (P < 0.001, paired permutation
test; Fig. 2B, Left). This attention-dependent neural reconstruction
is seen in 92% of trials (Fig. S1).
We also reconstructed the temporal envelope of the back-

ground speech using a second decoder that integrates neural
activity spatiotemporally in a different way. The result of this
reconstruction is indeed more correlated with the envelope of the
background speech rather than of the attended speech (P < 0.005,
paired permutation test; Fig. 2B, Right). Therefore, by integrating
the temporal and spatial neural responses in two distinct ways, the
attended and background speech can be successfully decoded
separately. On average, the reconstruction for the background
speech is more correlated with the background speech in 73% of
the trials from individual subjects (Fig. S1; significantly above
chance level; P < 0.002, binomial test). In this experiment, the
speakers are of opposite sex, but the neural representations of
segregated speech streams can be similarly demonstrated even for
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Fig. 1. Illustration of object-based neural representations. Here, the audi-
tory scene is illustrated using a mixture of two concurrent speech streams.
(A) If a complex auditory scene is not neurally parsed into separate auditory
objects, cortical activity (Upper, curve) phase locks to the temporal envelope
of the physical stimulus [i.e., the acoustic mixture (Lower, waveform)]. (B) In
contrast, using the identical stimulus (but illustrated here with the unmixed
instances of speech in different colors), for a hypothetical neural represen-
tation of an individual auditory object, neural activity would instead selec-
tively phase lock to the temporal envelope only of that auditory object. (C)
Neural representation of an auditory object should, furthermore, neurally
adapt to an intensity change of its own object (Upper) but should remain
insensitive to intensity changes in another auditory object (Lower). Neither of
these modifications to the acoustic stimulus therefore significantly changes the
neural representation (comparing A and C ).
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Fig. 2. Decoding the cortical representation specific to each speech stream.
(A) Examples of the envelope reconstructed from neural activity (black),
superimposed on the actual envelope of the attended speech when pre-
sented in isolation (gray). (Upper and Lower) Different envelopes are
decoded from neural responses to identical stimuli, depending on whether
the listener attends to one or the other speaker in the speech mixture, with
each resembling the envelope of the attended speech. Here, the signals, 5 s
in duration, are averaged over three trials for illustrative purposes, but all
results in the study are based on single-trial analysis. (B) Two separate
decoders reconstruct the envelope of the attended and background speech,
respectively, from their separate spatial-temporal neural responses to the
speech mixture. The correlation between the decoded envelope and the
actual envelope of each speech stream is shown in the bar graph (averaged
over trials and speakers), with each error bar denoting 1 SEM across subjects
(**P < 0.005, paired permutation test). The separate envelopes reconstructed
by the two decoders selectively resemble that of attended and background
speech, demonstrating a separate neural code for each speech stream.
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of two concurrent audiobooks to both ears (i.e. diotic pres-
entation without any spatial cues; !gure  1(A)). The stimuli 
were two different Danish works of !ction spoken by a female 
(Marryatt, Children of the forest) and a male speaker (Poe, A 
Descent into the Maelström), with matched long-term root-
mean-squared (rms) sound intensity. Each exemplar of 1 min 
mixtures was presented twice in succession. Counterbalanced 
across trials, subjects were asked to either attend to the male 
voice !rst and second to the female voice or vice versa. In 
total, 60 trials of such 1 min mixtures were presented.

2.3. EEG-data acquisition and preprocessing

Sixty-four-channel scalp-EEG was recorded alongside in-
Ear-EEG using a BioSemi ActiveTwo ampli!er (Biosemi, 
Netherlands). In-Ear-EEG electrodes were connected to the aux-
iliary inputs of the ActiveTwo ampli!er via pre-ampli!ers iden-
tical to the ones used for scalp-EEG electrodes. EEG data were 
recorded with a sampling rate fs  =  2048 Hz. Please !nd more 
details about the recording procedure in Fiedler et al (2016).

Data were preprocessed using both the "eldtrip toolbox 
(Oostenveld et  al 2011) for Matlab (MathWorks, Inc.) and 
custom-written code. The continuous EEG data recorded 
during the oddball task were highpass-!ltered at fc  =  1 Hz 
and lowpass-!ltered at fc  =  15 Hz. The continuous EEG data 
recorded during the audiobooks task were highpass-!ltered 
at fc  =  2 Hz and lowpass-!ltered at fc  =  8 Hz according to 
O’Sullivan et al (2015). In order to compensate phase shifts, 
data were !ltered both forward and backward using Hamming-
window FIR !lters with orders N  =  3fs/fc. Subsequently, all 
data were downsampled to 125 Hz to match the sampling rate 
of the onset envelopes (see below).

After an initial inspection of the event-related potential 
(ERP) between in-Ear-EEG electrodes and Cz, we encounter ed 
the issue of not all in-Ear-EEG electrodes keeping proper 
conductance across the whole experiment. Thus, for each ear 
canal, only the electrode showing minimal standard deviation 
across trials in the ERP summed up between 0 and 500 ms 
relative to tone-onsets was selected for further analysis.

In order to evaluate the potential difference between in-
Ear-EEG electrodes and scalp-EEG electrodes, we created 
two datasets for each participant, one with all scalp-channels 
referenced to the priorly selected left in-Ear-EEG electrode 
and the other with all scalp-EEG channels referenced to the 
selected right in-Ear-EEG electrode.

2.4. Extraction of onset envelopes

Several approaches to extraction of the broad-band temporal 
envelope from a speech signal have been proposed (Biesmans 
et al 2016, Thwaites et al 2016). In case of the oddball task, 
the envelope was extracted by a direct calculation of the abso-
lute values of the Hilbert-transform. In case of broad-band 
speech signals, the Hilbert transform is only a rough approx-
imation and it has been shown that an intermediate step of 
extraction and subsequent summation of frequency sub-band 
envelopes increases the accuracy of detecting the attended 
speaker (Biesmans et al 2016). Thus, for the audiobooks task, 
we extracted the sub-band envelopes using NSL Toolbox (Ru 
2001) for Matlab (Mathworks, Inc.), which resulted in a rep-
resentation containing the envelopes of 128 frequency bands 
of uniform width on the logarithmic scale with center frequen-
cies logarithmically spaced between 0.1 and 4 kHz (24 bands 
per octave). In order to obtain the broad-band temporal 

Broad-band
temporal envelope

f

A

B

 Ignored Attended 
Ignored

C
Onset envelope

Oddball task Audiobooks task
Attended

Figure 1. Design and onset envelope extraction. (A) Exemplary stimulus waveforms show the spatial separation of target (green) and 
distractor (grey) stimuli in both tasks. In the oddball task, two streams of 100 ms tones differing in repetition rate and pitch were presented. 
Subjects were asked to attend to the left or the right stream and press a button as soon as they heard an oddball (pitch deviation) in the 
attended stream. In the audiobooks task, two Danish audiobooks spoken by a female and male speaker were presented. The identical 
mixture of both speakers was presented on both ears (diotic). Subjects were asked to attend either the female or the male voice. (B) In the 
oddball task, the broad-band temporal envelope was captured from the stimulus-waveforms directly. In order to capture the broad-band 
temporal envelope from the audiobooks, an auditory time-frequency representation was summed up across its spectral sub-bands. (C) The 
onset envelope was obtained by computing the !rst derivative of the broad-band temporal envelope and subsequently zeroing values smaller 
than zero (half-wave recti!cation).
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rhythm it is synchronized to. Critically, bottom-up neural adaptation
to sound intensity is also investigated. Neural adaptation also
determines whether a neural representation is object-based based
or not, depending on which sound stream (or mixture) the neural
representation adapts to. We do this by analyzing the phase-
locked neural activity when the intensity of the attended speaker
and the background speaker is manipulated separately (Fig. 1C).
These hypothesized, object-specific neural representations are
investigated and revealed, using single-trial neural recordings and
an advanced neural decoding method that parallels state-of-the-
art analysis methods used in functional MRI (fMRI) (23) and
intracranial recording (24, 25).

Results
Deciphering the Spatial-Temporal Code for Individual Speakers. In
the first experiment, listeners selectively listened to one of two
competing speakers of different sex, mixed into a single acoustic
channel with equal intensity. To probe object-specific neural rep-
resentations, we reconstructed the temporal envelope of each of
the two simultaneous speech streams by optimally integrating
MEG activity over time and space (i.e., sensors). Such a recon-
struction of the envelope of each speech stream, rather than the
physical stimulus, can be successful only if the stimulus mixture is
neurally segregated (“unmixed”) and the speech streams of the two
speakers are represented differentially. We first reconstructed the
temporal envelope of the attended speech. Fig. 2A shows repre-
sentative segments of the different envelopes reconstructed by this
decoder, from listeners hearing the identical speech mixture but
attending to different speakers in it. Clearly, the reconstructed
envelope depends strongly on the attentional focus of the listener
and resembles the envelope of the attended speech. At the single-
subject level and the single-trial level, the reconstructed envelope is

more strongly correlated with the envelope of the attended speaker
than of the unattended speaker (P < 0.001, paired permutation
test; Fig. 2B, Left). This attention-dependent neural reconstruction
is seen in 92% of trials (Fig. S1).
We also reconstructed the temporal envelope of the back-

ground speech using a second decoder that integrates neural
activity spatiotemporally in a different way. The result of this
reconstruction is indeed more correlated with the envelope of the
background speech rather than of the attended speech (P < 0.005,
paired permutation test; Fig. 2B, Right). Therefore, by integrating
the temporal and spatial neural responses in two distinct ways, the
attended and background speech can be successfully decoded
separately. On average, the reconstruction for the background
speech is more correlated with the background speech in 73% of
the trials from individual subjects (Fig. S1; significantly above
chance level; P < 0.002, binomial test). In this experiment, the
speakers are of opposite sex, but the neural representations of
segregated speech streams can be similarly demonstrated even for
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Fig. 1. Illustration of object-based neural representations. Here, the audi-
tory scene is illustrated using a mixture of two concurrent speech streams.
(A) If a complex auditory scene is not neurally parsed into separate auditory
objects, cortical activity (Upper, curve) phase locks to the temporal envelope
of the physical stimulus [i.e., the acoustic mixture (Lower, waveform)]. (B) In
contrast, using the identical stimulus (but illustrated here with the unmixed
instances of speech in different colors), for a hypothetical neural represen-
tation of an individual auditory object, neural activity would instead selec-
tively phase lock to the temporal envelope only of that auditory object. (C)
Neural representation of an auditory object should, furthermore, neurally
adapt to an intensity change of its own object (Upper) but should remain
insensitive to intensity changes in another auditory object (Lower). Neither of
these modifications to the acoustic stimulus therefore significantly changes the
neural representation (comparing A and C ).
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Fig. 2. Decoding the cortical representation specific to each speech stream.
(A) Examples of the envelope reconstructed from neural activity (black),
superimposed on the actual envelope of the attended speech when pre-
sented in isolation (gray). (Upper and Lower) Different envelopes are
decoded from neural responses to identical stimuli, depending on whether
the listener attends to one or the other speaker in the speech mixture, with
each resembling the envelope of the attended speech. Here, the signals, 5 s
in duration, are averaged over three trials for illustrative purposes, but all
results in the study are based on single-trial analysis. (B) Two separate
decoders reconstruct the envelope of the attended and background speech,
respectively, from their separate spatial-temporal neural responses to the
speech mixture. The correlation between the decoded envelope and the
actual envelope of each speech stream is shown in the bar graph (averaged
over trials and speakers), with each error bar denoting 1 SEM across subjects
(**P < 0.005, paired permutation test). The separate envelopes reconstructed
by the two decoders selectively resemble that of attended and background
speech, demonstrating a separate neural code for each speech stream.
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rhythm it is synchronized to. Critically, bottom-up neural adaptation
to sound intensity is also investigated. Neural adaptation also
determines whether a neural representation is object-based based
or not, depending on which sound stream (or mixture) the neural
representation adapts to. We do this by analyzing the phase-
locked neural activity when the intensity of the attended speaker
and the background speaker is manipulated separately (Fig. 1C).
These hypothesized, object-specific neural representations are
investigated and revealed, using single-trial neural recordings and
an advanced neural decoding method that parallels state-of-the-
art analysis methods used in functional MRI (fMRI) (23) and
intracranial recording (24, 25).

Results
Deciphering the Spatial-Temporal Code for Individual Speakers. In
the first experiment, listeners selectively listened to one of two
competing speakers of different sex, mixed into a single acoustic
channel with equal intensity. To probe object-specific neural rep-
resentations, we reconstructed the temporal envelope of each of
the two simultaneous speech streams by optimally integrating
MEG activity over time and space (i.e., sensors). Such a recon-
struction of the envelope of each speech stream, rather than the
physical stimulus, can be successful only if the stimulus mixture is
neurally segregated (“unmixed”) and the speech streams of the two
speakers are represented differentially. We first reconstructed the
temporal envelope of the attended speech. Fig. 2A shows repre-
sentative segments of the different envelopes reconstructed by this
decoder, from listeners hearing the identical speech mixture but
attending to different speakers in it. Clearly, the reconstructed
envelope depends strongly on the attentional focus of the listener
and resembles the envelope of the attended speech. At the single-
subject level and the single-trial level, the reconstructed envelope is

more strongly correlated with the envelope of the attended speaker
than of the unattended speaker (P < 0.001, paired permutation
test; Fig. 2B, Left). This attention-dependent neural reconstruction
is seen in 92% of trials (Fig. S1).
We also reconstructed the temporal envelope of the back-

ground speech using a second decoder that integrates neural
activity spatiotemporally in a different way. The result of this
reconstruction is indeed more correlated with the envelope of the
background speech rather than of the attended speech (P < 0.005,
paired permutation test; Fig. 2B, Right). Therefore, by integrating
the temporal and spatial neural responses in two distinct ways, the
attended and background speech can be successfully decoded
separately. On average, the reconstruction for the background
speech is more correlated with the background speech in 73% of
the trials from individual subjects (Fig. S1; significantly above
chance level; P < 0.002, binomial test). In this experiment, the
speakers are of opposite sex, but the neural representations of
segregated speech streams can be similarly demonstrated even for
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Fig. 1. Illustration of object-based neural representations. Here, the audi-
tory scene is illustrated using a mixture of two concurrent speech streams.
(A) If a complex auditory scene is not neurally parsed into separate auditory
objects, cortical activity (Upper, curve) phase locks to the temporal envelope
of the physical stimulus [i.e., the acoustic mixture (Lower, waveform)]. (B) In
contrast, using the identical stimulus (but illustrated here with the unmixed
instances of speech in different colors), for a hypothetical neural represen-
tation of an individual auditory object, neural activity would instead selec-
tively phase lock to the temporal envelope only of that auditory object. (C)
Neural representation of an auditory object should, furthermore, neurally
adapt to an intensity change of its own object (Upper) but should remain
insensitive to intensity changes in another auditory object (Lower). Neither of
these modifications to the acoustic stimulus therefore significantly changes the
neural representation (comparing A and C ).
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Fig. 2. Decoding the cortical representation specific to each speech stream.
(A) Examples of the envelope reconstructed from neural activity (black),
superimposed on the actual envelope of the attended speech when pre-
sented in isolation (gray). (Upper and Lower) Different envelopes are
decoded from neural responses to identical stimuli, depending on whether
the listener attends to one or the other speaker in the speech mixture, with
each resembling the envelope of the attended speech. Here, the signals, 5 s
in duration, are averaged over three trials for illustrative purposes, but all
results in the study are based on single-trial analysis. (B) Two separate
decoders reconstruct the envelope of the attended and background speech,
respectively, from their separate spatial-temporal neural responses to the
speech mixture. The correlation between the decoded envelope and the
actual envelope of each speech stream is shown in the bar graph (averaged
over trials and speakers), with each error bar denoting 1 SEM across subjects
(**P < 0.005, paired permutation test). The separate envelopes reconstructed
by the two decoders selectively resemble that of attended and background
speech, demonstrating a separate neural code for each speech stream.
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rhythm it is synchronized to. Critically, bottom-up neural adaptation
to sound intensity is also investigated. Neural adaptation also
determines whether a neural representation is object-based based
or not, depending on which sound stream (or mixture) the neural
representation adapts to. We do this by analyzing the phase-
locked neural activity when the intensity of the attended speaker
and the background speaker is manipulated separately (Fig. 1C).
These hypothesized, object-specific neural representations are
investigated and revealed, using single-trial neural recordings and
an advanced neural decoding method that parallels state-of-the-
art analysis methods used in functional MRI (fMRI) (23) and
intracranial recording (24, 25).

Results
Deciphering the Spatial-Temporal Code for Individual Speakers. In
the first experiment, listeners selectively listened to one of two
competing speakers of different sex, mixed into a single acoustic
channel with equal intensity. To probe object-specific neural rep-
resentations, we reconstructed the temporal envelope of each of
the two simultaneous speech streams by optimally integrating
MEG activity over time and space (i.e., sensors). Such a recon-
struction of the envelope of each speech stream, rather than the
physical stimulus, can be successful only if the stimulus mixture is
neurally segregated (“unmixed”) and the speech streams of the two
speakers are represented differentially. We first reconstructed the
temporal envelope of the attended speech. Fig. 2A shows repre-
sentative segments of the different envelopes reconstructed by this
decoder, from listeners hearing the identical speech mixture but
attending to different speakers in it. Clearly, the reconstructed
envelope depends strongly on the attentional focus of the listener
and resembles the envelope of the attended speech. At the single-
subject level and the single-trial level, the reconstructed envelope is

more strongly correlated with the envelope of the attended speaker
than of the unattended speaker (P < 0.001, paired permutation
test; Fig. 2B, Left). This attention-dependent neural reconstruction
is seen in 92% of trials (Fig. S1).
We also reconstructed the temporal envelope of the back-

ground speech using a second decoder that integrates neural
activity spatiotemporally in a different way. The result of this
reconstruction is indeed more correlated with the envelope of the
background speech rather than of the attended speech (P < 0.005,
paired permutation test; Fig. 2B, Right). Therefore, by integrating
the temporal and spatial neural responses in two distinct ways, the
attended and background speech can be successfully decoded
separately. On average, the reconstruction for the background
speech is more correlated with the background speech in 73% of
the trials from individual subjects (Fig. S1; significantly above
chance level; P < 0.002, binomial test). In this experiment, the
speakers are of opposite sex, but the neural representations of
segregated speech streams can be similarly demonstrated even for
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Fig. 1. Illustration of object-based neural representations. Here, the audi-
tory scene is illustrated using a mixture of two concurrent speech streams.
(A) If a complex auditory scene is not neurally parsed into separate auditory
objects, cortical activity (Upper, curve) phase locks to the temporal envelope
of the physical stimulus [i.e., the acoustic mixture (Lower, waveform)]. (B) In
contrast, using the identical stimulus (but illustrated here with the unmixed
instances of speech in different colors), for a hypothetical neural represen-
tation of an individual auditory object, neural activity would instead selec-
tively phase lock to the temporal envelope only of that auditory object. (C)
Neural representation of an auditory object should, furthermore, neurally
adapt to an intensity change of its own object (Upper) but should remain
insensitive to intensity changes in another auditory object (Lower). Neither of
these modifications to the acoustic stimulus therefore significantly changes the
neural representation (comparing A and C ).
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Fig. 2. Decoding the cortical representation specific to each speech stream.
(A) Examples of the envelope reconstructed from neural activity (black),
superimposed on the actual envelope of the attended speech when pre-
sented in isolation (gray). (Upper and Lower) Different envelopes are
decoded from neural responses to identical stimuli, depending on whether
the listener attends to one or the other speaker in the speech mixture, with
each resembling the envelope of the attended speech. Here, the signals, 5 s
in duration, are averaged over three trials for illustrative purposes, but all
results in the study are based on single-trial analysis. (B) Two separate
decoders reconstruct the envelope of the attended and background speech,
respectively, from their separate spatial-temporal neural responses to the
speech mixture. The correlation between the decoded envelope and the
actual envelope of each speech stream is shown in the bar graph (averaged
over trials and speakers), with each error bar denoting 1 SEM across subjects
(**P < 0.005, paired permutation test). The separate envelopes reconstructed
by the two decoders selectively resemble that of attended and background
speech, demonstrating a separate neural code for each speech stream.
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rhythm it is synchronized to. Critically, bottom-up neural adaptation
to sound intensity is also investigated. Neural adaptation also
determines whether a neural representation is object-based based
or not, depending on which sound stream (or mixture) the neural
representation adapts to. We do this by analyzing the phase-
locked neural activity when the intensity of the attended speaker
and the background speaker is manipulated separately (Fig. 1C).
These hypothesized, object-specific neural representations are
investigated and revealed, using single-trial neural recordings and
an advanced neural decoding method that parallels state-of-the-
art analysis methods used in functional MRI (fMRI) (23) and
intracranial recording (24, 25).

Results
Deciphering the Spatial-Temporal Code for Individual Speakers. In
the first experiment, listeners selectively listened to one of two
competing speakers of different sex, mixed into a single acoustic
channel with equal intensity. To probe object-specific neural rep-
resentations, we reconstructed the temporal envelope of each of
the two simultaneous speech streams by optimally integrating
MEG activity over time and space (i.e., sensors). Such a recon-
struction of the envelope of each speech stream, rather than the
physical stimulus, can be successful only if the stimulus mixture is
neurally segregated (“unmixed”) and the speech streams of the two
speakers are represented differentially. We first reconstructed the
temporal envelope of the attended speech. Fig. 2A shows repre-
sentative segments of the different envelopes reconstructed by this
decoder, from listeners hearing the identical speech mixture but
attending to different speakers in it. Clearly, the reconstructed
envelope depends strongly on the attentional focus of the listener
and resembles the envelope of the attended speech. At the single-
subject level and the single-trial level, the reconstructed envelope is

more strongly correlated with the envelope of the attended speaker
than of the unattended speaker (P < 0.001, paired permutation
test; Fig. 2B, Left). This attention-dependent neural reconstruction
is seen in 92% of trials (Fig. S1).
We also reconstructed the temporal envelope of the back-

ground speech using a second decoder that integrates neural
activity spatiotemporally in a different way. The result of this
reconstruction is indeed more correlated with the envelope of the
background speech rather than of the attended speech (P < 0.005,
paired permutation test; Fig. 2B, Right). Therefore, by integrating
the temporal and spatial neural responses in two distinct ways, the
attended and background speech can be successfully decoded
separately. On average, the reconstruction for the background
speech is more correlated with the background speech in 73% of
the trials from individual subjects (Fig. S1; significantly above
chance level; P < 0.002, binomial test). In this experiment, the
speakers are of opposite sex, but the neural representations of
segregated speech streams can be similarly demonstrated even for
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Fig. 1. Illustration of object-based neural representations. Here, the audi-
tory scene is illustrated using a mixture of two concurrent speech streams.
(A) If a complex auditory scene is not neurally parsed into separate auditory
objects, cortical activity (Upper, curve) phase locks to the temporal envelope
of the physical stimulus [i.e., the acoustic mixture (Lower, waveform)]. (B) In
contrast, using the identical stimulus (but illustrated here with the unmixed
instances of speech in different colors), for a hypothetical neural represen-
tation of an individual auditory object, neural activity would instead selec-
tively phase lock to the temporal envelope only of that auditory object. (C)
Neural representation of an auditory object should, furthermore, neurally
adapt to an intensity change of its own object (Upper) but should remain
insensitive to intensity changes in another auditory object (Lower). Neither of
these modifications to the acoustic stimulus therefore significantly changes the
neural representation (comparing A and C ).
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Fig. 2. Decoding the cortical representation specific to each speech stream.
(A) Examples of the envelope reconstructed from neural activity (black),
superimposed on the actual envelope of the attended speech when pre-
sented in isolation (gray). (Upper and Lower) Different envelopes are
decoded from neural responses to identical stimuli, depending on whether
the listener attends to one or the other speaker in the speech mixture, with
each resembling the envelope of the attended speech. Here, the signals, 5 s
in duration, are averaged over three trials for illustrative purposes, but all
results in the study are based on single-trial analysis. (B) Two separate
decoders reconstruct the envelope of the attended and background speech,
respectively, from their separate spatial-temporal neural responses to the
speech mixture. The correlation between the decoded envelope and the
actual envelope of each speech stream is shown in the bar graph (averaged
over trials and speakers), with each error bar denoting 1 SEM across subjects
(**P < 0.005, paired permutation test). The separate envelopes reconstructed
by the two decoders selectively resemble that of attended and background
speech, demonstrating a separate neural code for each speech stream.
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Fig. S1. Decoding of the speech representations from single trials. Scatterplots of the correlation coefficients between the decoded envelope and the actual
envelope for individual trials and individual subjects. The attentional focus of listeners is denoted by marker color, and the separate trials are denoted by
marker shapes. Comparing the results of the two decoders, it can be seen that the speech of the attended and background speakers can be decoded separately
from the same response, even on a single-trial basis.
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below. First, informative temporal electrodes were primarily
localized to pSTG. To quantify this, we defined ‘‘informative’’
electrodes as those associated with parameters with high signal-to-
noise ratio in the reconstruction models (t ratio.2.5, p,0.05, false
discovery rate (FDR) correction) Figure 4A shows the anatomical
distribution of informative electrodes pooled across participants
and plotted in standardized anatomical coordinates (Montreal
Neurological Institute, MNI) [23]). The distribution was centered
in the pSTG (x = 270, y = 229, z = 12, MNI coordinates;
Brodmann area 42), and was dispersed along the anterior-
posterior axis.

Second, significant predictive power (r.0) was largely confined to
neural responses in the high gamma band (,70–170 Hz; Figure 4B;
p,0.01, one-sample t tests, df = 14, Bonferroni correction).
Predictive power for the high gamma band (,70–170 Hz) was
significantly better compared to other neural frequency bands
(p,0.05, Bonferroni adjusted pair-wise comparisons between
frequency bands, following significant one-way repeated measures
analysis of variance (ANOVA), F(30,420) = 128.7, p,10210). This is

consistent with robust speech-induced high gamma responses
reported in previous intracranial studies [24–29] and with observed
correlations between high gamma power and local spike rate [30].

Third, increasing the number of electrodes used in the reconstruc-
tion improved overall reconstruction accuracy (Figure 4C). Overall
prediction quality was relatively low for participants with five or fewer
responsive STG electrodes (mean accuracy r = 0.19, N = 6 partici-
pants) and was robust for cases with high density grids (mean accuracy
r = 0.43, N = 4, mean of 37 responsive STG electrodes per
participant).

What neural response properties allow the linear model to find
an effective mapping to the stimulus spectrogram? There are two
major requirements as described in the following paragraphs.
First, individual recording sites must exhibit reliable frequency
selectivity (e.g., Figure 2B, right column; Figures S1B, S2). An
absence of frequency selectivity (i.e., equal neural response
amplitudes to all stimulus frequencies) would imply that neural
responses do not encode frequency and could not be used to
differentiate stimulus frequencies. To quantify frequency tuning at

Figure 2. Spectrogram reconstruction. (A) Top: spectrogram of six isolated words (deep, jazz, cause) and pseudowords (fook, ors, nim) presented
aurally to an individual participant. Bottom: spectrogram-based reconstruction of the same speech segment, linearly decoded from a set of
electrodes. Purple and green bars denote vowels and fricative consonants, respectively, and the spectrogram is normalized within each frequency
channel for display. (B) Single trial high gamma band power (70–150 Hz, gray curves) induced by the speech segment in (A). Recordings are from four
different STG sites used in the reconstruction. The high gamma response at each site is z-scored and plotted in standard deviation (SD) units. Right
panel: frequency tuning curves (dark black) for each of the four electrode sites, sorted by peak frequency and normalized by maximum amplitude.
Red bars overlay each peak frequency and indicate SEM of the parameter estimate. Frequency tuning was computed from spectro-temporal receptive
fields (STRFs) measured at each individual electrode site. Tuning curves exhibit a range of functional forms including multiple frequency peaks
(Figures S1B and S2B). (C) The anatomical distribution of fitted weights in the reconstruction model. Dashed box denotes the extent of the electrode
grid (shown in Figure 1). Weight magnitudes are averaged over all time lags and spectrogram frequencies and spatially smoothed for display.
Nonzero weights are largely focal to STG electrode sites. Scale bar is 10 mm.
doi:10.1371/journal.pbio.1001251.g002
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below. First, informative temporal electrodes were primarily
localized to pSTG. To quantify this, we defined ‘‘informative’’
electrodes as those associated with parameters with high signal-to-
noise ratio in the reconstruction models (t ratio.2.5, p,0.05, false
discovery rate (FDR) correction) Figure 4A shows the anatomical
distribution of informative electrodes pooled across participants
and plotted in standardized anatomical coordinates (Montreal
Neurological Institute, MNI) [23]). The distribution was centered
in the pSTG (x = 270, y = 229, z = 12, MNI coordinates;
Brodmann area 42), and was dispersed along the anterior-
posterior axis.

Second, significant predictive power (r.0) was largely confined to
neural responses in the high gamma band (,70–170 Hz; Figure 4B;
p,0.01, one-sample t tests, df = 14, Bonferroni correction).
Predictive power for the high gamma band (,70–170 Hz) was
significantly better compared to other neural frequency bands
(p,0.05, Bonferroni adjusted pair-wise comparisons between
frequency bands, following significant one-way repeated measures
analysis of variance (ANOVA), F(30,420) = 128.7, p,10210). This is

consistent with robust speech-induced high gamma responses
reported in previous intracranial studies [24–29] and with observed
correlations between high gamma power and local spike rate [30].

Third, increasing the number of electrodes used in the reconstruc-
tion improved overall reconstruction accuracy (Figure 4C). Overall
prediction quality was relatively low for participants with five or fewer
responsive STG electrodes (mean accuracy r = 0.19, N = 6 partici-
pants) and was robust for cases with high density grids (mean accuracy
r = 0.43, N = 4, mean of 37 responsive STG electrodes per
participant).

What neural response properties allow the linear model to find
an effective mapping to the stimulus spectrogram? There are two
major requirements as described in the following paragraphs.
First, individual recording sites must exhibit reliable frequency
selectivity (e.g., Figure 2B, right column; Figures S1B, S2). An
absence of frequency selectivity (i.e., equal neural response
amplitudes to all stimulus frequencies) would imply that neural
responses do not encode frequency and could not be used to
differentiate stimulus frequencies. To quantify frequency tuning at

Figure 2. Spectrogram reconstruction. (A) Top: spectrogram of six isolated words (deep, jazz, cause) and pseudowords (fook, ors, nim) presented
aurally to an individual participant. Bottom: spectrogram-based reconstruction of the same speech segment, linearly decoded from a set of
electrodes. Purple and green bars denote vowels and fricative consonants, respectively, and the spectrogram is normalized within each frequency
channel for display. (B) Single trial high gamma band power (70–150 Hz, gray curves) induced by the speech segment in (A). Recordings are from four
different STG sites used in the reconstruction. The high gamma response at each site is z-scored and plotted in standard deviation (SD) units. Right
panel: frequency tuning curves (dark black) for each of the four electrode sites, sorted by peak frequency and normalized by maximum amplitude.
Red bars overlay each peak frequency and indicate SEM of the parameter estimate. Frequency tuning was computed from spectro-temporal receptive
fields (STRFs) measured at each individual electrode site. Tuning curves exhibit a range of functional forms including multiple frequency peaks
(Figures S1B and S2B). (C) The anatomical distribution of fitted weights in the reconstruction model. Dashed box denotes the extent of the electrode
grid (shown in Figure 1). Weight magnitudes are averaged over all time lags and spectrogram frequencies and spatially smoothed for display.
Nonzero weights are largely focal to STG electrode sites. Scale bar is 10 mm.
doi:10.1371/journal.pbio.1001251.g002
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repeated-measures ANOVA, F1,9 ! 28.5, P " 0.0005),
whereas a similar amount of information was decoded for the
left and right side stimuli.

Spectrotemporal representation of simultaneous speech
signals. Beyond the monaural listening condition analyzed
above, subjects also took part in a dichotic listening experi-
ment. In this condition, on top of the single spoken narrative in
one ear, another spoken narrative was presented simultane-
ously in the opposite ear, resulting in a dichotic listening
condition. In each experimental block, the subjects were first
instructed to listen to the spoken narrative in one ear, and then,
when the stimulus was repeated, to listen to the spoken narra-
tive in the other ear. Therefore, the speech signal in each ear
served as both a target (when attended to) and an interference
signal (when not being attended to). Each experimental block
was presented three times. The STRF was determined sepa-
rately for the stimulus in each ear, under each attentional
condition and for each hemisphere.

The STRF for both attended and unattended speech had a
salient M100-like response (Figs. 3B and 5A), similar to the
STRF for monaural speech. The STRFs obtained from this
dichotic listening condition remained highly separable (Fig. 4).
Frequency # hemisphere # attentional state (attended vs.
unattended) three-way repeated-measures ANOVA showed
that the normalized spectral sensitivity function was not influ-
enced by attentional state and was not different between the
two hemispheres (Fig. 5B).

The M100-like peak was statistically significant for both
attended and unattended speech (test described in METHODS,
P " 0.001). Compared with the M100-like response for mon-
aural stimuli, the M100-like response to dichotic stimuli was
weakened (paired t-test, P "" 0.0001 for both attended re-
sponse and unattended responses) and delayed (paired t-test,
P " 0.002 for attended response and P "" 0.0001 for unat-
tended response). A four-way repeated measures ANOVA
(attentional state # hemisphere # stimulus side # experimen-
tal block) showed that the latency of this peak in each hemi-
sphere was shorter for the contralateral stimulus (F1,239 ! 13.5,
P " 0.006).

In the dichotic listening condition, the neural representation
of speech remained faithful. The predictive power of the STRF

was far above chance level (test described in METHODS, P "
0.001). It was not significantly affected by hemisphere or
which ear was attended to individually but was affected by the
interaction between the two (2-way repeated-measures
ANOVA, F1,39 ! 20.0, P " 0.002). The predictive power was
higher when attention was paid to the contralateral stimulus
(0.17 vs. 0.10) for either hemisphere. A considerable amount of
speech information can be decoded from the MEG responses to
both the attended and the unattended speech. The amount of
information extracted from individual subjects was analyzed
using a three-way repeated-measures ANOVA (attentional
state # hemisphere # stimulus side). More information was
decoded when the stimulus was being attended to (F1,79 ! 23,
P " 0.0009) and in the right hemisphere (F1,79 ! 6.5, P "
0.03).

Attentional modulation during dichotic listening. The am-
plitude of this M100-like response peak (Fig. 6) was substan-
tially modulated by attention. A four-way repeated-measures
ANOVA (with attentional state, hemisphere, stimulus side, and
experimental block number as factors) revealed that the neural
response to attended speech was significantly stronger than the
neural response to unattended speech (F1,239 ! 10.0, P "
0.02). There was a significant interaction among attentional
state, hemisphere, and stimulus side (F1,239 ! 9.1, P " 0.02).
For the speech stimulus in each ear, the attentional effect was
more salient in the contralateral hemisphere (paired t-test, t59 !
3.3, P " 0.002). There was also an interaction between
hemisphere and stimulus side (F1,239 ! 16.2, P " 0.003). The
response to the stimulus on either side was stronger in the
contralateral hemisphere. None of the factors interacted with
experimental block number. Even when only the first experi-
mental block was considered, the attention effect was signifi-
cant (attentional state # hemisphere # stimulus side, 3-way
repeated-measures ANOVA, F1,79 ! 28.1, P " 0.0005, stron-
ger when attended) and the interaction among attentional state,
hemisphere, and stimulus side was significant (F1,79 ! 9.0,

Fig. 6. Amplitude and latency of the M100-like response (grand average).
Error bars represent SE. The response amplitude was universally larger and the
response latency was universally shorter for monaurally presented speech. In
the dichotic condition, the response was stronger for the attended speech than
for the unattended speech.

Fig. 7. Stimulus information encoded in the MEG response. A: the correlation
(grayscale intensity) between the stimulus speech envelope and the envelope
reconstructed from the right hemisphere MEG response. The stimulus enve-
lope most correlated with each reconstructed envelope is marked by a square.
B: stimulus decoding accuracy as a function of the number of stimulus
segments per second for monaural speech. The black and gray curves are the
results from the left and right hemispheres, respectively; solid and dashed
curves are based on the left- and right-side stimuli, respectively. The infor-
mation decoded from the right and left hemispheres was roughly 4 and 1 bit/s,
respectively, for a monaural speech stimulus and is a conservative estimate of
the stimulus information available in the MEG response.
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repeated-measures ANOVA, F1,9 ! 28.5, P " 0.0005),
whereas a similar amount of information was decoded for the
left and right side stimuli.

Spectrotemporal representation of simultaneous speech
signals. Beyond the monaural listening condition analyzed
above, subjects also took part in a dichotic listening experi-
ment. In this condition, on top of the single spoken narrative in
one ear, another spoken narrative was presented simultane-
ously in the opposite ear, resulting in a dichotic listening
condition. In each experimental block, the subjects were first
instructed to listen to the spoken narrative in one ear, and then,
when the stimulus was repeated, to listen to the spoken narra-
tive in the other ear. Therefore, the speech signal in each ear
served as both a target (when attended to) and an interference
signal (when not being attended to). Each experimental block
was presented three times. The STRF was determined sepa-
rately for the stimulus in each ear, under each attentional
condition and for each hemisphere.

The STRF for both attended and unattended speech had a
salient M100-like response (Figs. 3B and 5A), similar to the
STRF for monaural speech. The STRFs obtained from this
dichotic listening condition remained highly separable (Fig. 4).
Frequency # hemisphere # attentional state (attended vs.
unattended) three-way repeated-measures ANOVA showed
that the normalized spectral sensitivity function was not influ-
enced by attentional state and was not different between the
two hemispheres (Fig. 5B).

The M100-like peak was statistically significant for both
attended and unattended speech (test described in METHODS,
P " 0.001). Compared with the M100-like response for mon-
aural stimuli, the M100-like response to dichotic stimuli was
weakened (paired t-test, P "" 0.0001 for both attended re-
sponse and unattended responses) and delayed (paired t-test,
P " 0.002 for attended response and P "" 0.0001 for unat-
tended response). A four-way repeated measures ANOVA
(attentional state # hemisphere # stimulus side # experimen-
tal block) showed that the latency of this peak in each hemi-
sphere was shorter for the contralateral stimulus (F1,239 ! 13.5,
P " 0.006).

In the dichotic listening condition, the neural representation
of speech remained faithful. The predictive power of the STRF

was far above chance level (test described in METHODS, P "
0.001). It was not significantly affected by hemisphere or
which ear was attended to individually but was affected by the
interaction between the two (2-way repeated-measures
ANOVA, F1,39 ! 20.0, P " 0.002). The predictive power was
higher when attention was paid to the contralateral stimulus
(0.17 vs. 0.10) for either hemisphere. A considerable amount of
speech information can be decoded from the MEG responses to
both the attended and the unattended speech. The amount of
information extracted from individual subjects was analyzed
using a three-way repeated-measures ANOVA (attentional
state # hemisphere # stimulus side). More information was
decoded when the stimulus was being attended to (F1,79 ! 23,
P " 0.0009) and in the right hemisphere (F1,79 ! 6.5, P "
0.03).

Attentional modulation during dichotic listening. The am-
plitude of this M100-like response peak (Fig. 6) was substan-
tially modulated by attention. A four-way repeated-measures
ANOVA (with attentional state, hemisphere, stimulus side, and
experimental block number as factors) revealed that the neural
response to attended speech was significantly stronger than the
neural response to unattended speech (F1,239 ! 10.0, P "
0.02). There was a significant interaction among attentional
state, hemisphere, and stimulus side (F1,239 ! 9.1, P " 0.02).
For the speech stimulus in each ear, the attentional effect was
more salient in the contralateral hemisphere (paired t-test, t59 !
3.3, P " 0.002). There was also an interaction between
hemisphere and stimulus side (F1,239 ! 16.2, P " 0.003). The
response to the stimulus on either side was stronger in the
contralateral hemisphere. None of the factors interacted with
experimental block number. Even when only the first experi-
mental block was considered, the attention effect was signifi-
cant (attentional state # hemisphere # stimulus side, 3-way
repeated-measures ANOVA, F1,79 ! 28.1, P " 0.0005, stron-
ger when attended) and the interaction among attentional state,
hemisphere, and stimulus side was significant (F1,79 ! 9.0,

Fig. 6. Amplitude and latency of the M100-like response (grand average).
Error bars represent SE. The response amplitude was universally larger and the
response latency was universally shorter for monaurally presented speech. In
the dichotic condition, the response was stronger for the attended speech than
for the unattended speech.

Fig. 7. Stimulus information encoded in the MEG response. A: the correlation
(grayscale intensity) between the stimulus speech envelope and the envelope
reconstructed from the right hemisphere MEG response. The stimulus enve-
lope most correlated with each reconstructed envelope is marked by a square.
B: stimulus decoding accuracy as a function of the number of stimulus
segments per second for monaural speech. The black and gray curves are the
results from the left and right hemispheres, respectively; solid and dashed
curves are based on the left- and right-side stimuli, respectively. The infor-
mation decoded from the right and left hemispheres was roughly 4 and 1 bit/s,
respectively, for a monaural speech stimulus and is a conservative estimate of
the stimulus information available in the MEG response.
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repeated-measures ANOVA, F1,9 ! 28.5, P " 0.0005),
whereas a similar amount of information was decoded for the
left and right side stimuli.
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0.02). There was a significant interaction among attentional
state, hemisphere, and stimulus side (F1,239 ! 9.1, P " 0.02).
For the speech stimulus in each ear, the attentional effect was
more salient in the contralateral hemisphere (paired t-test, t59 !
3.3, P " 0.002). There was also an interaction between
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Decoding the Attended Speech Stream: Issues

• Still critical engineering issues in 
practice


• What are the actual neural marker(s) 
of selective attention?


• Don’t know the actual speech 
streams (not present in the acoustic 
stimulus!)


• more…



Can non-stationary, imagined speech be decoded?

‣ might be aided by contextual knowledge/familiarity

‣ might be aided by strong rhythmicity

Twas thenight be fore Christ mas when se Nota crea ture was e ven amou se The sto ckings were care in ho pes that Sai ntNi chola s would s oon be there all thru the hou stirring not hung by the chim ney with 

A 

B 

Reconstructing Imagined Speech

Cervantes Constantino & Simon 
Front Syst Neurosci 2018



Twas%the%night%before%Christmas,%when%all%through%the%house%
not%a%creature%was%s6rring,%not%even%a%mouse.%
The%stockings%were%hung%by%the%chimney%with%care,%
in%hopes%that%St.%Nicholas%soon%would%be%there.%%
!!
The%children%were%nestled%all%snug%in%their%beds,%
while%visions%of%sugar%plums%danced%in%their%heads.%
And%Mama%in%her%'kerchief,%and%I%in%my%cap,%
had%just%seDled%our%brains%for%a%long%winter's%nap.%%
%%
When%out%on%the%lawn%there%arose%such%a%claDer,%
I%sprang%from%my%bed%to%see%what%was%the%maDer.%
Away%to%the%window%I%flew%like%a%flash,%
tore%open%the%shuDer,%and%threw%up%the%sash.%%
%%
The%moon%on%the%breast%of%the%newGfallen%snow%
gave%the%lustre%of%midday%to%objects%below,%
when,%what%to%my%wondering%eyes%should%appear,%
but%a%miniature%sleigh%and%eight%6ny%reindeer.%%
%%
With%a%liDle%old%driver,%so%lively%and%quick,%
I%knew%in%a%moment%it%must%be%St.%Nick.%
More%rapid%than%eagles,%his%coursers%they%came,%
and%he%whistled%and%shouted%and%called%them%by%name.%%
%%
“Now%Dasher!%Now%Dancer!%Now,%Prancer%and%Vixen!%
On,%Comet!%On,%Cupid!%On,%Donner%and%Blitzen!%
To%the%top%of%the%porch!%To%the%top%of%the%wall!%
Now%dash%away!%Dash%away!%Dash%away%all!”%%
%%
As%dry%leaves%that%before%the%wild%hurricane%fly,%
when%they%meet%with%an%obstacle,%mount%to%the%sky%
so%up%to%the%houseGtop%the%coursers%they%flew,%
with%the%sleigh%full%of%toys,%and%St.%Nicholas%too.%%
!!
!

!
!

And%then,%in%a%twinkling,%I%heard%on%the%roof%
the%prancing%and%pawing%of%each%liDle%hoof.%
As%I%drew%in%my%head%and%was%turning%around,%
down%the%chimney%St.%Nicholas%came%with%a%bound.%%
%%
He%was%dressed%all%in%fur,%from%his%head%to%his%foot,%
and%his%clothes%were%all%tarnished%with%ashes%and%soot.%
A%bundle%of%toys%he%had%flung%on%his%back,%
and%he%looked%like%a%peddler%just%opening%his%pack.%%
%%
His%eyesGGhow%they%twinkled!%His%dimples,%how%merry!%
His%cheeks%were%like%roses,%his%nose%like%a%cherry!%
His%droll%liDle%mouth%was%drawn%up%like%a%bow,%
and%the%beard%on%his%chin%was%as%white%as%the%snow.%
%%
The%stump%of%a%pipe%he%held%6ght%in%his%teeth,%
and%the%smoke%it%encircled%his%head%like%a%wreath.%
He%had%a%broad%face%and%a%liDle%round%belly,%
that%shook%when%he%laughed,%like%a%bowl%full%of%jelly.%%
%%
He%was%chubby%and%plump,%a%right%jolly%old%elf,%
and%I%laughed%when%I%saw%him,%in%spite%of%myself.%
A%wink%of%his%eye%and%a%twist%of%his%head%
soon%gave%me%to%know%I%had%nothing%to%dread.%%
%%
He%spoke%not%a%word,%but%went%straight%to%his%work,%
and%filled%all%the%stockings,%then%turned%with%a%jerk.%
And%laying%his%finger%aside%of%his%nose,%
and%giving%a%nod,%up%the%chimney%he%rose.%%
%%
He%sprang%to%his%sleigh,%to%his%team%gave%a%whistle,%
And%away%they%all%flew%like%the%down%of%a%thistle.%
But%I%heard%him%exclaim,%'ere%he%drove%out%of%sight,%
"Happy%Christmas%to%all,%and%to%all%a%good%night!"%

Neural “Reconstruction”  
& Familiarity

Hypothesis: contextual knowledge of missing 
speech can be controlled by exposure to the speech



Imagined Speech “Reconstruction”
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Imagined Speech “Reconstruction”
•Decoding of the 
missing speech 
token improves 
with prior 
experience


•Performance is a 
considerable 
fraction of that for 
clean speech

Reconstruction from Noise
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Speech Features as Language

• Many non-acoustic speech 
features are perceptually  
highly salient


• phonemes


• words & word boundaries


• semantic features


• phrasal features



Decoding Language-based Features?

• Most investigations, so far, 
predictive of responses: via TRF


• phonemes


• words & word boundaries


• semantic features


• phrasal features

Di Liberto et al., Curr Biol 2015
Teoh & Lalor, bioRxiv 2020
Brodbeck et al., Curr Biol 2018

MEG

expected due to the temporal relationship between the two vari-
ables: the time of maximum rising slope precedes the time of
maximum amplitude, and is thus earlier compared with specific
time points in the neural response. The presence of analogous
peaks in the TRFs to both acoustic representations might indi-
cate that they jointly arise from a single, more complex underly-
ing neural response type, reflecting both onset and continuous
acoustic properties [48]. On the other hand, spatially, the two
response peaks to acoustic onsets were localized posterior
to the corresponding acoustic envelope peaks (d = 8 mm,
p = 0.002; d = 10 mm, p < 0.001), which might instead indicate
that the two responses stem from partially distinct neural
populations [49].

Responses to Two Concurrent Speakers Reflect
Acoustic, but Not Lexical, Information in Unattended
Speech
The variables that significantly predicted responses to a single
speaker were used to model acoustic and lexical processing in
a version of the cocktail-party paradigm [18, 19]. Participants

listened to a single-channel acoustic mixture of a male and a
female speaker, attending to one and ignoring the other. This
made it possible to test whether the lexical processing observed
for a single speaker is restricted to the attended speech stream
or whether it occurs also for the unattended stream. Figure 3
shows the predictive power of groups of predictors modeling
relevant processing stages and TRFs for the full model fitted to
the two-speaker data.
Responses were significantly modulated by acoustic features

of both the attended and the unattended speaker (tmax = 11.83
and 16.67, both p < 0.001; lateralization tmax = 4.17, p = 0.041
and tmax = 5.28, p = 0.001). The relative amplitudes of the TRF
peaks to acoustic onsets were consistent with previous results
[33, 47, 50], with an earlier (!70 ms) peak predominantly reflect-
ing the raw acoustic mixture, and a later (!150 ms) peak pre-
dominantly reflecting acoustic energy in the attended speech.
Responses to the acoustic envelope almost exclusively reflected
processing of the acoustic mixture, suggesting that auditory
stream segregation may be predominantly reflected in onset
processing.
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Figure 3. Brain Responses to Two Concurrent Speakers
Details analogous to Figure 2. The three columns display results for the model components for: the attended speech stream (left), the actual acoustic stimulus

mixture (middle), and the unattended speech stream (right). The upper part of the figure displays results for acoustic features, the lower part for lexical processing.

3980 Current Biology 28, 3976–3983, December 17, 2018

expected due to the temporal relationship between the two vari-
ables: the time of maximum rising slope precedes the time of
maximum amplitude, and is thus earlier compared with specific
time points in the neural response. The presence of analogous
peaks in the TRFs to both acoustic representations might indi-
cate that they jointly arise from a single, more complex underly-
ing neural response type, reflecting both onset and continuous
acoustic properties [48]. On the other hand, spatially, the two
response peaks to acoustic onsets were localized posterior
to the corresponding acoustic envelope peaks (d = 8 mm,
p = 0.002; d = 10 mm, p < 0.001), which might instead indicate
that the two responses stem from partially distinct neural
populations [49].

Responses to Two Concurrent Speakers Reflect
Acoustic, but Not Lexical, Information in Unattended
Speech
The variables that significantly predicted responses to a single
speaker were used to model acoustic and lexical processing in
a version of the cocktail-party paradigm [18, 19]. Participants

listened to a single-channel acoustic mixture of a male and a
female speaker, attending to one and ignoring the other. This
made it possible to test whether the lexical processing observed
for a single speaker is restricted to the attended speech stream
or whether it occurs also for the unattended stream. Figure 3
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dominantly reflecting acoustic energy in the attended speech.
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Decoding Language-based Features?

• Most investigations, so far, 
predictive of responses: via TRF


• phonemes


• words & word boundaries


• semantic features
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Decoding Language-based Features?

• Most investigations, so far, 
predictive of responses: via TRF


• phonemes


• words & word boundaries


• semantic features


• phrasal features

Broderick et al., Curr Biol 2018
Brodbeck et al., NeuroImage 2018

dissimilarity TRF is sensitive to variations in the intelligibility of
acoustically identical speech. Moreover, in the audiovisual
speech condition, there was a significant negative correlation
across subjects between the self-reported intelligibility ratings
(which varied broadly) and the amplitude of the TRF negativity
averaged over the interval 250–500 ms (Figure 3D; the more
intelligible, the larger the negativity; r = !0.5, p < 0.02).

No Evidence of Contextual Semantic Processing for
Unattended Speech
Over 60 years ago, it was first noted that, when attending to one
of two dichotically presented speech streams, people have a
very limited ability to report on the content of the speech in the
unattended ear [28], a phenomenon known as the cocktail party
effect. Ever since then, researchers have sought to explain this

Figure 3. Assessing the Effect of Comprehension on the Electrophysiological Index of Semantic Dissimilarity
(A) Topographic maps of the semantic dissimilarity TRF averaged over all trials and all subjects for audiovisual speech in !9 dB of acoustic background noise

display a centro-parietal negativity between"400 and 600 ms. This negativity is significantly reduced in the average TRF for audio-only speech in the same level

of background noise, which was much less intelligible.

(B) Grand-average TRFwaveforms for audiovisual and audio-only speech over two selectedmidline electrodes. Thick lines indicate a response that is statistically

less than zero across subjects (p < 0.05, running t test, FDR corrected). Black lines below the waveforms indicate that the TRFs for audiovisual speech are

statistically more negative than those for audio-only speech across subjects (p < 0.05, running t test, FDR corrected).

(C) A cross-validation procedure was used to predict EEG responses to natural speech using a semantic dissimilarity TRF trained on other data. EEG prediction

accuracy for audiovisual speech was significantly greater than that for audio-only speech (p < 0.01, t test).

(D) Across subjects, the amplitude of the semantic dissimilarity TRF overmidline parietal scalp was significantly correlatedwith self-reported intelligibility rating of

audiovisual speech (p < 0.02, Pearson’s correlation).

(E) Topographicmaps of the semantic dissimilarity TRF averaged over all trials and all subjects for attended speech in a dichotic cocktail party paradigm display a

centro-parietal negativity between "300 and 600 ms. This negativity is not apparent in the average TRF for unattended speech.

(F) Grand average TRF waveforms for attended and unattended speech over two selected midline electrodes. Thick lines indicate a response that is statistically

less than zero across subjects (p < 0.05, running t test, FDR corrected). Black lines below the waveforms indicate that the TRFs for attended speech are sta-

tistically more negative than those for unattended speech across subjects (p < 0.05, running t test, FDR corrected).

(G) A cross-validation procedure was used to predict EEG responses to natural speech using a semantic dissimilarity TRF trained on other data. EEG prediction

accuracy for attended speech was significantly greater than that for unattended speech (p < 1 3 10!6, t test).

(H) Across subjects, the latency of the peak in the global field power (GFP) [24] of the semantic dissimilarity TRF was significantly negatively correlated with the

number of questions answered correctly on the attended speech (p < 5 3 10!5, Pearson’s correlation).

806 Current Biology 28, 803–809, March 5, 2018
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corrected) and the response was highly consistent across listeners 
(Fig. 1c). Given that the phrasal- and sentential-rate rhythms were 
not conveyed by acoustic fluctuations at the corresponding frequen-
cies (Fig. 1b), cortical responses at the phrasal and sentential rates 
must be a consequence of internal online structure building processes.  
Cortical activity at all the three peak frequencies was seen bilater-
ally (Fig. 1c). The response power averaged over sensors in each  
hemisphere was significantly stronger in the left hemisphere at the 
sentential rate (P = 0.014, paired two-sided t test), but not at the 
phrasal (P = 0.20, paired two-sided t test) or syllabic rates (P = 0.40, 
paired two-sided t test).

Dependence on syntactic structures
Are the responses at the phrasal and sentential rates indeed separate 
neural indices of processing at distinct linguistic levels or are they 
merely sub-harmonics of the syllabic rate response, generated by 
intrinsic cortical dynamical properties? We address this question by 
manipulating different levels of linguistic structure in the input. When 
the stimulus is a sequence of random syllables that preserves the 
acoustic properties of Chinese sentences (Fig. 1 and Supplementary 
Fig. 2), but eliminates the phrasal/sentential structure, only syllabic 
(acoustic) level tracking occurs (P = 1.1 × 10−4 at 4 Hz, paired one-
sided t test, FDR corrected; Fig. 2a). Furthermore, this manipulation 
preserves the position of each syllable in a sentence (Online Methods) 
and therefore further demonstrates that the phrasal- and sentential-
rate responses are not a result of possible acoustic differences between 
the syllables in a sentence. When two adjacent syllables and mor-
phemes combine into verb phrases, but there is no four-element sen-
tential structure, phrasal-level tracking emerges at half of the syllabic 
rate (P = 8.6 × 10−4 at 2 Hz and P = 2.7 × 10−4 at 4 Hz, paired one-sided 
t test, FDR corrected; Fig. 2b). Similar responses are observed for 
noun phrases (Supplementary Fig. 3).

To test whether the phrase-level responses segregate from the sen-
tence level, we constructed longer verb phrases that were unevenly 
divided into a monosyllabic verb followed by a three-syllable noun 
phrase (Fig. 2c). We expect that the neural responses to the long 
verb phrase to be tagged at 1 Hz, whereas the neural responses to the 
monosyllabic verb and the three-syllable noun phrase will present as 
harmonics of 1 Hz. Consistent with our hypothesis, cortical dynam-
ics emerged at one-fourth of the syllabic rate, whereas the response 
at half of the syllabic rate is no longer detectable (P = 1.9 × 10−4, 1.7 
× 10−4 and 9.3 × 10−4 at 1, 3 and 4 Hz, respectively, paired one-sided 
t test, FDR corrected).

Dependence on language comprehension
When listening to Chinese sentences (Fig. 1a), listeners who did not 
understand Chinese only showed responses to the syllabic (acoustic) 
rhythm (P = 3.0 × 10−5 at 4 Hz, paired one-sided t test, FDR corrected; 
Fig. 2d), further supporting the argument that cortical responses 
to larger, abstract linguistic structures is a direct consequence of  
language comprehension.

If aligning cortical dynamics to the time course of linguistic constit-
uent structure is a general mechanism required for comprehension, 
it must apply across languages. Indeed, when native English speakers 
were tested with English materials (Fig. 1a), their cortical activity also 
followed the time course of larger linguistic structures, that is, phrases 
and sentences (P = 4.1 × 10−5, syllabic rate; Fig. 2e; P = 3.9 × 10−3, 
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Figure 1 Neural tracking of hierarchical linguistic structures.  
(a) Sequences of Chinese or English monosyllabic words were presented 
isochronously, forming phrases and sentences. (b) Spectrum of stimulus 
intensity fluctuation revealed syllabic rhythm, but no phrasal or sentential 
modulation. The shaded area covers 2 s.e.m. across stimuli. (c) MEG-
derived cortical response spectrum for Chinese listeners and materials 
(dark red curve, grand average; light red curves, individual listeners;  
N = 16, 0.11-Hz frequency resolution). Neural tracking of syllabic, 
phrasal and sentential rhythms was reflected by spectral peaks at 
corresponding frequencies. Frequency bins with significantly stronger 
power than neighbors (0.5 Hz range) are marked (*P < 0.001, paired  
one-sided t test, FDR corrected). The topographical maps of response 
power across sensors are shown for the peak frequencies.
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Figure 2 Tracking of different linguistic structures. Each panel shows 
syntactic structure repeating in the stimulus (left) and the cortical 
response spectrum (right; shaded area indicates 2 s.e.m. over listeners,  
N = 8). (a) Chinese listeners, Chinese materials: syllables were 
syntactically independent and cortical activity encoded only acoustic and 
syllabic rhythm. (b,c) Additional tracking emerged with larger linguistic 
structures. Spectral peaks marked by a star (black, P < 0.001; gray,  
P < 0.005; paired one-sided t test, FDR corrected). (d) English listeners, 
Chinese materials from Figure 1: acoustic tracking only, as there was 
no parsable structure. (e,f) English listeners, English materials: syllabic 
rate (4/1.28 Hz) and sentential and phrasal rate responses to parsable 
structure in stimulus.



Decoding Understanding

• Detection of understanding


• language comprehension


• implied poetic meter


• arithmetic

Ding et al., Nat Neurosci 2016

Teng et al., Curr Biol 2020



What Can We Decode?

• It’s amazing that non-invasive decoding 
can be done at all


• There are lots of things we can decode


• But also, not enough


• Will we see (create) a “killer app” for 
decoding via Cognitive Hearing? 


(cough, cough, BMI)



Thank you


