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What is Decoding?

o Stimulus Reconstruction (from neural responses)

* Subset of decoding

his schoolhouse was a low building of one

* | will use “decoding” and “reconstruction”
interchangeably (until it gets me into trouble)
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Example: EEG/MEG Reconstruction of Speech Envelope
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Decoding # Encoding

 Encoding = predicting neural responses
from stimulus features, e.g., via TRF

o “Stimulus features”? the SkyIS the limit large room rudely constructed of logs

e Jypically harder than reconstruction, since
stimulus dimension « response dimension

e For this reason: stimulus features that \/ww\v/\

can be seen to be encoded = excellent
candidates for decoding henes ‘yw—

"Temporal response functions”
(TRFs)

 Why bother looking at encoding? It often
tells us more about the brain

Example: MEG Prediction of Voxel Responses



Decoding: easier vs. harder

eaSier hard er Original spectrogram

Reconstructed spectrogram

his schoolhouse was a low building of one

Human STG
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Example: EEG/MEG Reconstruction of Speech Envelope ‘ Mesgarani et al., PNAS 2014




Decoding: Brain Machine Interface

 Decoding of “motor intent”

 Shamefully ignored here ®



Static vs. Continuous Decoding

 Decoding of static stimulus not
emphasized today
(but please interject if interested!)

 Examples: image / visual object,
semantic object

e Strongly related to temporal decoding

 Emphasis here on decoding of
continuous/natural speech

 Applications + Data Richness

visual
tactile

nugksteact tachpmeric

violent J violent
communal visyal=
' " avstract PC3

num

PC1

communal

Superiorx._, i

Anterior —'



Static vs. Continuous Decoding

» Decoding of static stimulus not tactilGH |
emphasized today DURRTIRC P tacHlgNEre J violent
(but please interject if interested!) COMMURAL:~ locationptracy '

PC1

communal

 Examples: image / visual object,
semantic object

e Strongly related to temporal decoding

 Emphasis here on decoding of
continuous/natural speech
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* Applications + Data Richness .

The revolution will not be controlled: natural stimuli in speech neuroscience

Liberty S. Hamilton®® and Alexander G. Huth“®




Reconstruction Examples

 Speech envelope

Representative Grand
subject average

Ding & Simon, PNAS 2012



Reconstruction Examples

e Speech envelope broadband

temporal
envelope

e Speech envelope-onsets

onset
envelope

Fiedler et al., J Neural Engineering 2017



Reconstruction Examples
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Reconstruction Examples

e Speech envelope
e Speech envelope-onsets

 Multiple speech envelopes from
Individual speakers in mixture
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Reconstruction Examples

e Speech envelope
e Speech envelope-onsets

 Multiple speech envelopes from
Individual speakers in mixture

e Acoustic envelope of mixture of
multiple speakers
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Reconstruction

 Speech envelope

e Speech envelope-onsets

 Multiple speech envelopes from
iIndividual speakers in mixture

Not actually reconstructing anything

Not a stimulus, so can’t reconstruct, but can decode

Decoding the envelope of a perceived auditory stream

Examples
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Ding & Simon, PNAS 2012



Reconstruction Examples

Attended Speech Reconstruction
 Speech envelope
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Ding & Simon, PNAS 2012



Reconstruction Examples

e Speech envelope
e Speech envelope-onsets

 Multiple speech envelopes from
Individual speakers in mixture

e Acoustic envelope of mixture of
multiple speakers

e Focus of selective attention

ECoG (Human STG)

e Spectrogram(s)
Pasley et al., PLoS Biol. 2012



Practical Limitations

* Typically only single trial

decoding performance matters

e More difficult with shorter

durations (or shorter integration

windows)

* Decoding performance depends

strongly on neural SNR
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Ding & Simon, J Neurophysiol 2012



Decoding the Attended Speech Stream: Issues

o Still critical engineering issues in
practice

 What are the actual neural marker(s)
of selective attention?

 Don’'t know the actual speech
streams (not present in the acoustic
stimulus!)

* more...



Reconstructing Imagined Speech
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Can non-stationary, imagined speech be decoded?
> might be aided by contextual knowledge/familiarity

> might be aided by strong rhythmicity

Cervantes Constantino & Simon
Front Syst Neurosci 2018



Neural “Reconstruction”
& Familiarity

Replay

frequency
Control

High

Medium

Hypothesis: contextual knowledge of missing
speech can be controlled by exposure to the speech



Imagined Speech “Reconstruction”

MEG

Reconstruction from Noise
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Cervantes Constantino & Simon, Front Syst Neurosci 2018



Imagined Speech “Reconstruction”

MEG Reconstruction from Noise * Decoding of the
x 1 : missing speech

token improves
0.8 . | |
S with prior
experience
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 Performance is a
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Cervantes Constantino & Simon, Front Syst Neurosci 2018



Speech Features as Language

 Many non-acoustic speech
features are perceptually
highly salient

e phonemes
e words & word boundaries
e semantic features

 phrasal features



Decoding Language-based Features?

 Most investigations, so far,
predictive of responses: via TRF

Di Liberto et al., Curr Biol 2015
Teoh & Lalor, bioRxiv 2020
e words & word boundaries Brodbeck et al., Curr Biol 2018

Word onset

e phonemes
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Decoding Language-based Features?

 Most investigations, so far,
predictive of responses: via TRF

Di Liberto et al., Curr Biol 2015
Teoh & Lalor, bioRxiv 2020
* words & word boundaries Brodbeck et al., Curr Biol 2018

e phonemes

e semantic features



Decoding Language-based Features?
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e semantic features



Decoding Language-based Features?

 Most investigations, so far,

predictive of responses: via TRF

e phonemes
e words & word boundaries
e semantic features

 phrasal features
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Ding et al., Nat Neurosci 2016



Decoding Understanding

* Detection of understanding
e language comprehension Ding et al., Nat Neurosci 2016

* Implied poetic meter Teng et al., Curr Biol 2020

e arithmetic



What Can We Decode?

* |[t's amazing that non-invasive decoding
can be done at all

* There are lots of things we can decode
e But also, not enough

* Will we see (create) a “killer app” for
decoding via Cognitive Hearing?

(cough, cough, BMI)



Thank you



