Cortical Encoding of Auditory Objects at the Cocktail Party

Jonathan Z. Simon University of Maryland

Computational Audition Workshop, June 2013

Introduction

- Auditory Objects
- Magnetoencephalography (MEG)
- Neural Representations of Auditory Objects in Cortex: Decoding
- Neural Representations of Auditory Objects in Cortex: Encoding

Auditory Objects

- What is an auditory object?
 - perceptual construct (not neural, not acoustic)
 - commonalities with visual objects
 - several potential formal definitions

Auditory Object Definition

- Griffiths & Warren definition:
 - corresponds with something in the sensory world
 - object information separate from information of rest of sensory world
 - abstracted: object information generalized over particular sensory experiences

Ding & Simon, PNAS (2012)

Experiments

Magnetoencephalography (MEG)

- •Direct electrophysiological measurement
 - not hemodynamic
 - •real-time
- •No unique solution for distributed source
- Measures spatially synchronized cortical activity
- •Fine temporal resolution (~ 1 ms)
- •Moderate spatial resolution (~ 1 cm)

Magnetic MEG orientation Dipolar recording of magnetic Field scalp surface field EEG Projection skull CSF tissue current _ flow

Photo by Fritz Goro

Magnetoencephalography (MEG)

Magnetic MEG orientation Dipolar recording of magnetic Field scalp surface field EEG Projection skull CSF tissue current _ flow

Photo by Fritz Goro

- Direct electrophysiological measurement
 - not hemodynamic
 - •real-time
- •No unique solution for distributed source
- Measures spatially synchronized cortical activity
- Fine temporal resolution (~ 1 ms)
- Moderate spatial recolution (~ 1 cm)

Phase-Locking in MEG to Slow Temporal Modulations

Ding & Simon, J Neurophysiol (2009) Wang et al., J Neurophysiol (2012)

Phase-Locking in MEG to Slow Temporal Modulations

MEG activity is precisely phase-locked to temporal modulations of sound

Ding & Simon, J Neurophysiol (2009) Wang et al., J Neurophysiol (2012)

MEG Responses to Speech Modulations

MEG Responses Predicted by STRF Model

Neural Reconstruction of Speech Envelope

Neural Reconstruction of Speech Envelope

2 s

Ding & Simon, J Neurophysiol (2012) Zion-Golumbic et al., Neuron (in press) Reconstruction accuracy comparable to single unit & ECoG recordings

Speech Stream as an Auditory Object

- corresponds with something in the sensory world
- information separate from information of rest of sensory world
 e.g. other speech streams or noise
- abstracted: object information generalized over particular sensory experiences
 e.g. different sound mixtures

Neural Representation of an Auditory Object

- neural representation is of something in sensory world
- when other sounds mixed in, neural representation is of auditory object, not entire acoustic scene
- neural representation invariant under broad changes in specific acoustics

Unselective vs. Selective Neural Encoding

Unselective vs. Selective Neural Encoding

Identical Stimuli!

Identical Stimuli!

Single Trial Speech Reconstruction

Single Trial Speech Reconstruction

Overall Speech Reconstruction

Distinct neural representations for different speech streams

-

Gain-Control Models

Gain-Control Models

Gain-Control Models

Gain-Control Models Object-Based correlation 2 attended backarounc -8 -5 8 5 ()Speaker Relative Intensity (dB) Stimulus- Based correlation .2 attended background -8 -5 5 8 0

Speaker Relative Intensity (dB)

Stream-based not stimulus-based
Neural representation is invariant to acoustic changes.

Neural Representation of an Auditory Object

- ✓ neural representation is of something in sensory world
- ✓ when other sounds mixed in, neural representation is of auditory object, not entire acoustic scene
- ✓ neural representation invariant under broad changes in specific acoustics

Forward STRF Model

Spectro-Temporal Response Function (STRF)

Forward STRF Model

STRF Results

STRF separable (time, frequency)
300 Hz - 2 kHz dominant carriers
M50_{STRF} positive peak
M100_{STRF} negative peak

STRF Results

time (ms)

STRF Results

- STRF separable (time, frequency)
 300 Hz 2 kHz dominant carriers
 M50_{STRF} positive peak
 M100_{STRF} negative peak
- •M100_{STRF} strongly modulated by attention, *but not M50_{STRF}*

Neural Sources

- •M100_{STRF} source near (same as?) M100 source: PT
- •M50_{STRF} source is anterior and medial to M100 (same as M50?): HG

Cortical Object-Processing Hierarchy

- •M100_{STRF} strongly modulated by attention, but not M50_{STRF}.
- •M100_{STRF} invariant against acoustic changes.
- •Objects well-neurally represented at 100 ms, but not 50 ms.

Not Just Speech

Elhilali et al., PLoS Biology (2009)

Neural Enhancement for Foreground/Background

Competing Tone Streams

Competing Tone Streams

Competing Tone Streams

Summary

- Cortical representations of speech found here:
 - consistent with being *neural* representations of auditory (*perceptual*) objects
 - ✓ meet 3 formal criteria for auditory objects
- Object representation fully formed by 100 ms latency (PT), but not by 50 ms (HG)
- Not special to speech

Acknowledgements

Grad Students

Francisco Cervantes Marisel Villafane Delgado Kim Drnec Krishna Puvvada

Past Grad Students

Nayef Ahmar Claudia Bonin Maria Chait Nai Ding Victor Grau-Serrat Ling Ma Raul Rodriguez Juanjuan Xiang Kai Sum Li Jiachen Zhuo

Funding NIH R01 DC 008342

Undergraduate Students

Abdulaziz Al-Turki Nicholas Asendorf Sonja Bohr Elizabeth Camenga Corinne Cameron Julien Dagenais Katya Dombrowski Katya Dombrowski Kevin Hogan Kevin Kahn Andrea Shome Madeleine Varmer Ben Walsh

Collaborators' Students

Murat Aytekin Julian Jenkins David Klein Huan Luo

Collaborators

Catherine Carr Alain de Cheveigné Didier Depireux Mounya Elhilali Jonathan Fritz Cindy Moss David Poeppel Shihab Shamma

Past Postdocs

Dan Hertz Yadong Wang

Thank You

Reconstruction of Same-Sex Speech

Speech in Noise: Stimuli

Speech in Noise: Results

Speech in Noise: Results

Speech in Noise: Results

