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I. Introduction and Motivation III. Proposed Model and Parameter Estimation  IV. Simulation Results 

V. Summary and Future Work 

• To approximate an overall multi-modal density for 𝒘𝑡, consider a Gaussian 
mixture with 𝑀 components and parameter set Θ = {𝑝1:𝑀, 𝝁1:𝑀, 𝚺1:M} 

•  Consider 𝐾 non-overlapping windows of length 𝑊 samples (𝑇 = 𝐾𝑊), and 
define a switching Gaussian process for 𝒘𝑡: 
 
 

 
• 𝑧𝑘 ∈ {1, … ,𝑀} determines the Gaussian component deriving the process noise 

in window 𝑘 for 1 ≤ 𝑘 ≤ 𝐾 
 

 
Ρ 𝑧𝑘 = 𝑚 = 𝑝𝑚 ,          1 ≤ 𝑘 ≤ 𝐾, 1 ≤ 𝑚 ≤ 𝑀

𝒘𝑡 ~ 𝑁 𝝁𝑧𝑘 , 𝚺𝑧𝑘  ,      𝑘 − 1 𝑊 + 1 ≤ 𝑡 ≤ 𝑘𝑊
 

 

• State estimation in state-space models under Gaussian mixture densities has 
been studied using Gaussian sum filters/smoothers and particle methods. 

• However, estimation of mixture parameters has not been well-established! 
 

Goal: estimate Θ from observations 𝒚1:𝑇                        Θ = argmax
Θ

P(𝒚1:𝑇|Θ ) 
 

Estimation: Use Expectation Maximization (EM) with latent variables 𝒙1:𝑇 , 𝑧1:𝐾 
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• 𝜖 𝑘,𝑚
(ℓ)

 is constant w.r.t. Θ and 𝜋 𝑘,𝑚
(ℓ)

 defined Similar to 𝜋𝑘,𝑚 but for Θ (ℓ) 

• The expectation w.r.t. 𝒙 does not have a closed form! 
 

E Step: perform particle smoothing to obtain 𝑁𝑠 sample paths for the densities 

𝒙 𝑘−1 𝑊:𝑘𝑊|𝒚1:𝑇 , Θ 
(ℓ) each with probability 𝜆𝑘

(𝑛)
 

 

M Step: use the particle representations to approximate the expectations and 
update the parameter estimates as below 
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The steps are repeated until convergence. 

Ground Truth States (Synthetic Example) Consider the general state-space model with additive noise: 
 

 
𝒙𝑡 = 𝑓 𝒙𝑡 +𝒘𝑡 ,       𝒘𝑡 ~ 𝑁 𝟎,𝑸    i. i. d

𝒚𝑡 = 𝑔 𝒙𝑡 + 𝒗𝑡 ,        𝒗𝑡 ~ 𝑁 𝟎, 𝑹     i. i. d
 

 

• Functional forms of 𝑓(. ) and 𝑔(. ) determined by expert domain knowledge 
• A Gaussian assumption on observation noise 𝒗𝑡 is mostly consistent with 

empirical histograms of measurement uncertainty. 
• However, process noise 𝒘𝑡  heavily depends on how the latent process 

evolves over time in the specific task/experiment. 
              i.i.d and Gaussian assumptions for process noise 𝒘𝑡 are violated in real  
              world applications! 
 

Application in Auditory Neuroscience:  
estimating the Temporal Response Function (TRF) as a time-varying filter  
 
 
 
 
 
 
 
 
 
 
State-space model for estimating the TRF: 
 

    

𝒙𝑡 = 𝛼𝒙𝑡−1 +𝒘𝑡 ,
𝝉𝑡 = 𝑮𝒙𝑡 ,               

𝑦𝑡 = 𝒔𝑡
T𝝉𝑡 + 𝒗𝑡 ,    

 

 

Goal: estimate 𝒙1:𝑇 and covariance matrices 𝑸 and 𝑹 
 

Example: synthetic TRF heat map motivated by real data: 
 
 
 
 
 
 
 
 
 
 

• TRF components can be associated with attentive behavior and determine 
how speech features are processed in the brain. 

• The components mostly exhibit a repetitive behavior including periods of 
increasing, remaining constant, and decreasing. 

• This behavior can be best explained by a multi-modal density for the process 
noise 𝒘𝑡 rather than a Gaussian density! 

 

Provided a framework for estimating a multi-modal process noise density in state-
space model, which results in a more robust state inference. Future work includes: 
• In large state dimensions, particle smoothing is computationally intensive 
             need scalable alternatives 
• Application to recorded MEG data in auditory experiments 

Process Noise Densities 

Example Convergence Plots 

State RMSE improvement over Gaussian model due to a richer representation for 
process noise for a wide range of SNRs:  

𝛼 : scalar close to unity  𝑮 : a fixed dictionary matrix 
𝝉𝑡: TRF at time 𝑡              𝒔𝑡: past envelope lags at time t 
𝑦𝑡: extracted auditory response (1-dim)  
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