Estimation of State Space Models with Gaussian Mixture Process Noise
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Consider the general state-space model with additive noise:

— common

= g(x,) + v, , v, ~N(O,R) iid

* Functional forms of f(.) and g(.) determined by expert domain knowledge
* A Gaussian assumption on observation noise v, is mostly consistent with
empirical histograms of measurement uncertainty.
* However, process noise w; heavily depends on how the latent process
evolves over time in the specific task/experiment.
L, i.i.d and Gaussian assumptions for process noise w; are violated in real
world applications!

Application in Auditory Neuroscience:
estimating the Temporal Response Function (TRF) as a time-varying filter

Temporal Response Function (TRF)

Auditory Brain Response
()

Speech Features

Convolution

« : scalar close to unity G : a fixed dictionary matrix

T;: TRFattime t S;: past envelope lags at time t
y¢+ extracted auditory response (1-dim)

Goal: estimate x4.7 and covariance matrices Q and R

Example: synthetic TRF heat map motivated by real data:
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* TRF components can be associated with attentive behavior and determine
how speech features are processed in the brain.

* The components mostly exhibit a repetitive behavior including periods of
increasing, remaining constant, and decreasing.

* This behavior can be best explained by a multi-modal density for the process
noise w; rather than a Gaussian density!

I11. Proposed Model and Parameter Estimation

* To approximate an overall multi-modal density for w,, consider a Gaussian
mixture with M components and parameter set ©® = {p1.3, U1-m> 1M}

 Consider K non-overlapping windows of length W samples (T = KW), and
define a switching Gaussian process for w;:

W W W

7, €1{1,..,M} determines the Gaussian component deriving the process noise
inwindow kforl <k <K

{P(Zk — m) = Pm
Wy ~ N(ﬂzk; ZZk )

 State estimation in state-space models under Gaussian mixture densities has
been studied using Gaussian sum filters/smoothers and particle methods.
* However, estimation of mixture parameters has not been well-established!

—

Estimation: Use Expectation Maximization (EM) with latent variables x;.7, Z1.x

1<k<K1<m<M
(k—DW+1<t< kW

Goal: estimate O from observations y;.7 ® = argmax P(y;.7|®)
®
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. E,E,?n is constant w.r.t. ® and n,({ ) defined Similar to 7, ,,, but for Q)

* The expectation w.r.t. x does not have a closed form!

E Step: perform particle smoothing to obtain Ng sample paths for the densities
X (k-1)w:kw | Y11, 0 each with probability Agcn)

M Step: use the particle representations to approximate the expectations and
update the parameter estimates as below
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The steps are repeated until convergence.

V. Simulation Results
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State RMSE improvement over Gaussian model due to a richer representation for

process noise for a wide range of SNRs:
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V. Summary and Future Work

Provided a framework for estimating a multi-modal process noise density in state-
space model, which results in a more robust state inference. Future work includes:
* Inlarge state dimensions, particle smoothing is computationally intensive
L) need scalable alternatives
* Application to recorded MEG data in auditory experiments
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