

### I. Introduction and Motivation

Consider the general state-space model with additive noise:

| $\int \boldsymbol{x}_t = f(\boldsymbol{x}_t) + \boldsymbol{w}_t ,$ | $\boldsymbol{w}_t \sim N(\boldsymbol{0}, \boldsymbol{Q})$ | <b>i.</b> 2 |
|--------------------------------------------------------------------|-----------------------------------------------------------|-------------|
| $\mathbf{y}_t = g(\mathbf{x}_t) + \mathbf{v}_t$ ,                  | $\boldsymbol{v}_t \sim N(\boldsymbol{0}, \boldsymbol{R})$ | i.          |

- Functional forms of f(.) and g(.) determined by expert domain knowledge A Gaussian assumption on observation noise  $v_t$  is mostly consistent with
- empirical histograms of measurement uncertainty.
- However, process noise  $w_t$  heavily depends on how the latent process evolves over time in the specific task/experiment. **i.i.d** and **Gaussian assumptions** for process noise  $w_t$  are violated in real
  - world applications!

### **Application in Auditory Neuroscience:** estimating the **Temporal Response Function (TRF)** as a *time-varying filter*



State-space model for estimating the TRF:

|   | $\mathbf{x}_t$        | = | $\alpha x_{t-1} + w_t$                                                    | , |
|---|-----------------------|---|---------------------------------------------------------------------------|---|
| ł | $\boldsymbol{\tau}_t$ | = | $\boldsymbol{G}\boldsymbol{x}_t$ ,                                        |   |
|   | $y_t$                 | = | $\boldsymbol{s}_t^{\mathrm{T}} \boldsymbol{	au}_t + \boldsymbol{	au}_t$ , |   |

 $\alpha$  : scalar close to unity **G** : a fixed dictionary matrix  $\boldsymbol{\tau}_t$ : TRF at time t  $y_t$ : extracted auditory response (1-dim)

**Goal:** estimate  $x_{1:T}$  and covariance matrices Q and R

**Example:** *synthetic* TRF heat map motivated by real data:



- TRF components can be associated with attentive behavior and determine how speech features are processed in the brain.
- The components mostly exhibit a *repetitive behavior* including periods of *increasing*, remaining *constant*, and *decreasing*.
- This behavior can be best explained by a *multi-modal density* for the process noise  $w_t$  rather than a Gaussian density!

# **Estimation of State Space Models with Gaussian Mixture Process Noise**

Sina Miran<sup>1,4</sup>, Jonathan Z. Simon<sup>1,2,4</sup>, Michael C. Fu<sup>3,4</sup>, Steven I. Marcus<sup>1,4</sup>, Behtash Babadi<sup>1,4</sup>



### III. Proposed Model and Parameter Estimation

To approximate an overall multi-modal density for  $w_t$ , consider a Gaussian mixture with *M* components and parameter set  $\Theta = \{p_{1:M}, \mu_{1:M}, \Sigma_{1:M}\}$ 

define a switching Gaussian process for  $w_t$ :



in window k for  $1 \le k \le K$ 

$$\begin{cases} P(z_k = m) = p_m, \\ w_t \sim N(\boldsymbol{\mu}_{z_k}, \boldsymbol{\Sigma}_{z_k}), \end{cases}$$

- been studied using *Gaussian sum filters/smoothers* and *particle methods*.
- **However**, estimation of mixture parameters has not been well-established!

**Goal:** estimate  $\Theta$  from observations  $y_{1:T}$ 

**Estimation:** Use **Expectation Maximization (EM)** with latent variables  $x_{1:T}$ ,  $z_{1:K}$ 

$$Q(\Theta|\widehat{\Theta}^{(\ell)}) = E_{x,z}\{\log P(y_{1:T,}x_{1:T}, z_{1:K}|\Theta)\} = \sum_{k=1}^{K} \sum_{m=1}^{M} E_x\{\widehat{c}_{k,m}^{(\ell)}(\log p_m + \log \pi_{k,m})\} + c_0$$
  
$$\pi_{k,m} = P(x_{(k-1)W+1:kW} \mid x_{(k-1)W}, z_k = m, \Theta), \qquad \widehat{c}_{k,m}^{(\ell)} = \frac{\widehat{p}_m^{(\ell)}\widehat{\pi}_{k,m}^{(\ell)}}{\sum_{m'=1}^{M} \widehat{p}_{m'}^{(\ell)}\widehat{\pi}_{k,m'}^{(\ell)}}$$

$$\widehat{\Theta}^{(\ell)} = \mathbb{E}_{\boldsymbol{x}, \boldsymbol{z}} \{ \log \mathbb{P}(\boldsymbol{y}_{1:T, \boldsymbol{x}_{1:T}, \boldsymbol{z}_{1:K} | \boldsymbol{\Theta}}) \} = \sum_{k=1}^{K} \sum_{m=1}^{M} \mathbb{E}_{\boldsymbol{x}} \{ \widehat{\epsilon}_{k, m}^{(\ell)} (\log p_{m} + \log \pi_{k, m}) \} + c_{0}$$
$$\pi_{k, m} = \mathbb{P}(\boldsymbol{x}_{(k-1)W+1:kW} \mid \boldsymbol{x}_{(k-1)W}, \boldsymbol{z}_{k} = m, \boldsymbol{\Theta}), \qquad \widehat{\epsilon}_{k, m}^{(\ell)} = \frac{\widehat{p}_{m}^{(\ell)} \widehat{\pi}_{k, m}^{(\ell)}}{\sum_{m'=1}^{M} \widehat{p}_{m'}^{(\ell)} \widehat{\pi}_{k, m'}^{(\ell)}}$$

- $\hat{\epsilon}_{k,m}^{(\ell)}$  is constant w.r.t.  $\Theta$  and  $\hat{\pi}_{k,m}^{(\ell)}$  defined Similar to  $\pi_{k,m}$  but for  $\widehat{\Theta}^{(\ell)}$
- The expectation w.r.t. *x* does not have a closed form!

**E Step:** perform *particle smoothing* to obtain  $N_s$  sample paths for the densities  $oldsymbol{x}_{(k-1)W:kW}|oldsymbol{y}_{1:T},\widehat{\Theta}^{(\ell)}$  each with probability  $\lambda_{
u}^{(n)}$ 

**M** Step: use the particle representations to approximate the expectations and update the parameter estimates as below

$$\begin{split} \hat{p}_{m}^{(\ell+1)} &= \frac{1}{K} \sum_{k} \sum_{n} \lambda_{k}^{(n)} \hat{\epsilon}_{k,m}^{(\ell,n)} \ ,\\ \hat{\mu}_{m}^{(\ell+1)} &= \frac{1}{T \hat{p}_{m}^{(\ell+1)}} \sum_{k} \sum_{n} \lambda_{k}^{(n)} \hat{\epsilon}_{k,m}^{(\ell,n)} \sum_{j} \boldsymbol{u}_{k,j}^{(n)} \\ \hat{\Sigma}_{m}^{(\ell+1)} &= \frac{1}{T \hat{p}_{m}^{(\ell+1)}} \sum_{k} \sum_{n} \lambda_{k}^{(n)} \hat{\epsilon}_{k,m}^{(\ell,n)} \sum_{j} \left( \boldsymbol{u}_{k,j}^{(n)} - \hat{\mu}_{m}^{(\ell+1)} \right) \left( \boldsymbol{u}_{k,j}^{(n)} - \hat{\mu}_{m}^{(\ell+1)} \right)^{\mathrm{T}} \end{split}$$

where  $\boldsymbol{u}_{k,j}^{(n)} = \boldsymbol{x}_{(k-1)W+j}^{(n)} - f\left(\boldsymbol{x}_{(k-1)W+j-1}^{(n)}\right)$ 

The steps are repeated until convergence.

## Electrical & Computer Engineering<sup>1</sup>, Biology<sup>2</sup>, Business School<sup>3</sup>, and Institute for Systems Research<sup>4</sup>, University of Maryland College Park

Consider K non-overlapping windows of length W samples (T = KW), and

$$\begin{array}{c} & W \\ \leftarrow & \bullet \\ + & \bullet \\ & \bullet \\ & T_{K} \end{array} \end{array}$$

 $z_k \in \{1, \dots, M\}$  determines the Gaussian component deriving the process noise

$$1 \le k \le K, 1 \le m \le M$$
$$(k-1)W + 1 \le t \le kW$$

State estimation in state-space models under Gaussian mixture densities has

$$\widehat{\Theta} = \operatorname*{argmax}_{\Theta} \operatorname{P}(\boldsymbol{y}_{1:T} | \Theta)$$

### **IV. Simulation Results**





## process noise for a wide range of SNRs:

### V. Summary and Future Work

Provided a framework for estimating a multi-modal process noise density in statespace model, which results in a more robust state inference. Future work includes: • In large state dimensions, particle smoothing is computationally intensive need scalable alternatives



State RMSE improvement over Gaussian model due to a richer representation for



Application to recorded MEG data in auditory experiments