
Measuring the Dynamics of Neural Responses in 
Primary Auditory Cortex 

We review recent developments in the measurement of the dynamics of the response 
properties of auditory cortical neurons to broadband sounds, which is closely related to 
the perception of timbre. The emphasis is on a method that characterizes the spectro-
temporal properties of single neurons to dynamic, broadband sounds, akin to the drifting 
gratings used in vision. The method treats the spectral and temporal aspects of the 
response on an equal footing. 

Kev Words: auditory corte.x, spatial frequency, temporal frequency, ,eparabiliry, 
ripples 

INTRODUCTION 

A Timbre 

We classify everyday natural sounds by their loudness (related to the 
intensity of the sound), their pitch (the perceived tonal height) and their 
timbre (the quality of the sound; that which is neither loudness nor pitch). 
The perception of timbre, which will be the main focus of tbis paper, is 
what allows us to tell the difference between two vowels spoken with the 
same pitch, or the difference between a clarinet and an oboe playing the 
same note. When hearing several musical instruments simultaneously, we 
can usually tell which instruments are playing by identifying the different 
timbres present in the mixed sound. Additionally, the perception of timbre 
is quite robust in the presence of noise and echoes ( or reverberations), 
or even severe degradation such as during a telephone conversation, in 
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which the sound is severely band-passed. Timbre perception is therefore 
an essential attribute of our sense of hearing. 

To understand how we extract these different aspects of a sound, we 
must unravel whallhe auditory representation is along the neural pathway. 
The approach presented here takes the point of view that the principles 
used by neural systems are universal, once the stimulus has reached 
beyond the sensory epithelium (whether the cochlea's basilar membrane 
or the retina). In particular the ideas presented here are frequently guided 
by considering the basilar membrane as a spatial axis, analogous to a 
one-dimensional retina, and then using the methods of visual gratings 
(drifting and otherwise), to study and characterize cells in the auditory 
cortex. 

B Auditory Cortex 

A few general organizational features have long been recognized in 
Primary Auditory Cortex (AI), the location of which is shown in Figure 1. 
Firsl is a spatially ordered tonolopic axis, along which cell responses 
are tuned from low to high frequencies;Pl this is alternatively called a 
cochlcotopic axis, which reflects the activity along the cochlea. Note 
thaI lhere are many fietds in the auditory cortical area (the Anterior 
Auditory Field is shown in Figure 1), most of which display a tonotopic 
organization. 

Second, perpendicular to lhe tonotopic axis, cells are arranged in 
alternating bands according to binaural properties: bands of cells are 
alternatively excited or inhibited by stimulation of the ipsilateral ear 
(the contralateral ear usually produces an excitatory response)J21 The 
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tonotopic and binaural dominance organization is analogous to the 
retinotopic and ocular dominance columns of visual cortex. Other 
parameters have also been used to describe characteristics that change 
systematically along isofreguency lines. Using combinations of two 
pure tones, one can measure the Response Area (RA), also known 
as frequency-threshold curve, i.e. the response threshold of a cell as 
a function of the tone frequency presented. It has been shown that 
most RAs are topographically organized along the isofrequency lines 
according to the symmetry of their excitatory and inhibitory sidebands.l3l 
Other parameters have also been shown to change systematically in cat, 
such as threshold,f4] bandwidthlS] and frequency modulation direction 
selectivityP·61 

These properties of AI cells are derived using pure tones (or clicks) 
akin to using dots of light (or flashes) to study cells in the visual pathway. 
Below we explain how to use the auditory version of drifting gratings[71 to 
characterize response properties of cells to dYllamic bl'Oadband sounds. 
This is necessary to gain insight to how timbre is encoded. Anol her 
advantage of the method presented here is that it allows liS to determine the 
temporal and spectral properties of a cell at the same lime. In particular, 
one can study whether and to what extent the response field varies as 
a function of time, thereby characterizing the cell with a full speclro-
temporal response field. 

II BACKGROUND 

A Response Field 

Traditionally, cells along the auditory pathway have heen characterized hy 
. their RA, or tuning curve. Determined using pure tones and by modifying 
the frequency of the stimulus while adjusting its intensity, the RA is 
the frequency-intensily combinations that elicit a threshold response, 
whether the sustained activity level or the strength of the onset response. 
In this paper, we use the Response Field (RF), a function measured 
using broadband sounds. As illustrated in Figure 2, it roughly rellects 
the range of frequencies that influence the discharge properties of the 
neuron under study. It is given in the form of a function, with positive 

• . .. -~--... -.. - .. --.. C--~--.~.--... --. -.. ..~~~_ ... __ .. _ _~-----'y(llue§ describing excitation (p~ortional to the RF's amplitude) and 
FIGURE 1 The posll1on of the Pnmary AudItory Cortex (AI) m the ferret bram. fhe .;. .;. ;~- ... --.. --.. -~--,.-.--... ----
location of the Anterior Auditory Field (AAF) is shown for illustration purposes. On negatlve values descnbmg mhlbltIOn. In general, the RF IS a spectro-
the rightlhe tonntople axis is overlaid for both AI and AAF. temporal function, as opposed to the RA which typically describes only 
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FIGURE 2 Two idealized RFs at a given time. One RF (unbroken line) is centered 
on low frequcllcie~ and is asymmetric, and the other (broken line) is centered on high 
frequencies and is symmetric. 
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FIGURE 3 The spectrum of faal spoken by one of the authors, with the spectral 
envelope superimposed on it. 

static properties (but see Nelken etat.r81 and Sutter et al.l91 ). The definition 
of RF will be made more precise later. 

13 Natural Sounds 

Natural sounds, such as environmental sounds, music and speech, are 
classified along several perceptual axes. We typically describe a sound 
by its loudness, its pitch and its timbre. Pitch is what changes when we 
pronounce the same vowel with different tonal heights, e.g. the pitch of 
a female voice is typically higher than the pitch of a male voice. Timbre 
is what changes when, keeping the same tonal height, we pronounce 
different vowels (e.g. jah/, jehj. jihj). Figure 3 illustrates the spectral 
profile or envelope of a sound. The envelope of a sound can be viewed 
as a low-order polynomial fit of the (time-windowed) spectrum of the 
sOHnd. A common method for the extraction of the envelope is the Linear 
Predictive Method (LPC);llOl we will not go into thedetailsofLPChcre+_ 
instead referring the reader to the intuitive notion of envelope illustrated 
in Figure 3. 
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The percept of timbre has been typically ascribed to the extraction of 
the envelope of the spectrum, but it also includes the temporal variations 
in the spectral envelope (for instance, the sound of a piano note played 
backwards sounds more like that of a wind organ, even though the 
amplitude of the Fourier transform of a sound and its time-reversed 
version are identical). Therefore, the study of how timbre is encoded must 
include temporal as well as spectral properties of the system. For speech, 
the temporal variations in timbre involve time-scales of about 10Hz, so 
that this dimension oftilne is different from the temporal frequencies that 
make up sounds. It is the extraction of the dynamic spectral envelope by 
the auditory cortex that we are concerned with. Because we are interested 
in timbre, we use pitch less, dynamic, broadband sounds as stimuli. 

C Auditory Pathway (Monaural) 

The auditory pathway up to primary auditory cortex, ignoring structures 
usually considered dedicated to hinaural aspects of sounds (such as lo-
calization) can be minimally described as follows. The vibrations of the 
tympanic membrane are mechanically transformed into a travelling wave 
in the cochlea, with a profile that depends on the frequency content of 
the acoustic spectrum. The vibrations of the basilar memhrane are trans-
formed by inner hair cells into patterns of neural activity in the auditory 
nerve. For practical purposes, we can think of the nasilar membrane as 
a collection of 1/3 octave filters, performing a time-windowed Fourier 
transform, with a time characteristic of about 30 ms. The auditory nerve 
projects to the Cochlear Nucleus, which contains a variety of cells with 
different properties. These cells project to the Lateral Lemniscus, then 
to the Inferior Colliculus, then to the Medial Geniculate Body in the 
Thalamus, and finally to the Auditory Cortex. As with all other sensory 
modalities, there are strong back projections for most forward projections. 

Neurons at different stages of the auditory pathway respond to different 
time-scales. Neurons in the mammalian auditory nerve phase-lock to a 
pure tone up to frequencies of about 4 kI Iz: that is, they tend to fire at a 
specific phase of the tonal input, even if they lire in a sustained fashion at 
the maximum rate of about 200 spikes/second.[ll] In the cochlear nucleus 
certain cells (so-called lockers) can phase-lock to tones for frequencies 
up to about 2 kHz,!12,13J By the Inferior Colliculus, most cells phase-
lock to variations in the stimulus up to ahout 200 lIz with some cells 
going up to 800 Hz.l 14, 15] Finally, at the level of cortex, we have found 
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lhal phase-locking to variations in the stimulus is usually on the order of 
10 Hz with a maximum of about 70 Hz.!16l Characterizing single units 
and their temporal features may ignore other potential coding strategies 
hased 011 population activity. In the eat's cochlea, 3000 inner hair cells 
innervate 50,000 auditory fibers,fl71 and by the auditory cortex, activity 
has been distributed over several millions of neurons. 

Another important aspect of the organization of the auditory pathway 
is thaI cells tend to be organized in a tonotopic manner at each step: the 
frequency decomposition performed by the basilar membrane is along an 
axis which is logarithmic. Up through AI, cells that are equally spaced 
along a certain axis (which depends on the structure) respond best to 
sounds that are linearly spaced on a logarithmic frequency axis. 

III PRINCIPLES 

A Guiding Principles 

The guiding principle behind our research program is that cells behave like 
a I inear system with respect to the spectral envelope. The proof of linearity 
is that when cells are presented with a sound made of up the sum of several 
spectral envelopes, the response, as measured assuming a rate code, is 
the sum of the responses to the individual envelopes. A response linear 
in frequency and time is characterized by a two-dimensional impulse 
response (or time-dependent response field) or equivalently, its Fourier 
transform, a two-dimensional transfer function. The extraction of this 
two-dimensional response field, a function of frequency and time, is the 
object of this paper. 

It is helpful to remember that because the cochlea performs in some 
sense a time-windowed Fourier transform of the incoming waveform 
along its length, it is constructive to treat the frequency axis as a spatial 
axis, not the Fourier transform of the time axis. Since the frequencies are 
mapped logarithmicully along the cochlear axis, the natural unit along the 
spectral axis is x = log(!). Much research on which the present work is 
based has dealt with the spectral, time-independent aspect of the response 
fields and linearity.1 181 

B Response Field and Linearity 

Initially ignoring the dimension of time (or taking a delta function for 
the temporal impulse), the response of a cell with a response field 
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R F(x), to a sound with a spectral envelope S(x), is given by y = 
f S(x)· RF(x)dx. 1 Incorporating time (or allowing for more realistic 
temporal Impulse Response functions), we first limit our study to the 
case in which the temporal and spectral properties that characterize 
the cells' responses are independent one from the other (separable), 
The response of a cell is then characterized by two functions, R F(x), 
which describes the spectral properties, and I R(t), which descrihes the 
temporal properties of the cell. Then, the response of a cell is described 
by y(t) = (/' S(x, 1) . RF(x)dx) * I R(t), where * is the convolution 
operator. We will see that we can characterize certain cells ill ihis way. 

In the general situation, cells must be characterized hy a full spectro-
temporal description, i.e. a Spectro-Temporal Response Field, STUF(x, t). 
In this case the response is given hy y(/) = f Sex, t) *1 ST1W{x, t) dx, 
where the *1 means convolution in the f direction (with multiplication 
in the x direction). 

In the following, it is useful to consider the Fourier transform of the lWO-

dimensional impulse response function, STRF( -x, I), called the transfer 
function, T(Q, w), where we define T(Q, w) .r~l,wIST RF(-x, 1)J. 
The coordinate dual to x is Q, and thc coordinate dual to t is w.2 

C Spectro-Temporal Response Field 

Our general problem can be formulated as follows: Sex, t) is the spectro-
temporal envelope of the sound. Given the STRF(x, t) of a neuron, we 
can measure its response to any S(x, n. We obtain this STRF from 
measurements of the neuron's response to a complete set of basis 
functions SQw(x, I). A simple sct of hasis fUIlctions is SQw(x, t) 
sin 2rr(Q . x + w . t) where S 0 corresponds to a Ilat envelope of 
fixed loudness (I.e. noise). Any orthogonal basis will do, hut the lise of a 
sinusoidal basis allows us to use the standard methods of Fourier analysis. 
Furthermore, because of non-Iinearities discussed helow, the sinusoidal 
basis is robust against distortion. We use the sinusoidal basis functions, 
and call them 'ripples'. For this reason Q is called ripple frequency (in 
cycles/octave) and w is called ripple velocity (in cycles/second, or Hertz). 

The most prominent non-linear distortions are half-wave rectification 
and compression. The half-wave rectification is due to the impossibility of 
negative spike rates (assuming the steady-state response to a flat spectrum 
to be zero, as will be seen to be the case); the distortion of a sinusoid due to 
firing rate half-wave rectification does not affect the phase of the response, 
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FIGURE 4 Spectro-Icmporal envelope of a ripple, moving downward in frequency 
with w = 3 Hz and Q 0.6 cycles/octave. 

and its effect on the amplitude of the first Fourier component is a constant 
factor (independent of Q and w). The distortion due to compression does 
not affect the phase of the response. 

D Transfer Functions 

By measuring the response YQw(t) of a cell to a ripple of specific ripple 
frequency Q and ripple velocity lV, we can obtain the transfer function 
T(Q, w) at one point in Q-UJ space. 

)'Qm(t) = f f dx 'dt'STRF(X f
,t')Sin2rr(Qx'+lV(t ttl) 

= 1m f f dx' dt'ST R F(x', t')e2j1f(Qx' +w(tt'» 

= 1m [e2}1fWI f f dx'dt'ST RF(x', t')e2i7[(QX
r
-WI

1

}] 

1m [e2jJTllI
! Fn.w[ST R F( -x', t')]] 

= hn[e2jrrw(T(Q, w)] 

= Im[e2j1fwtIT(Q, w)lei¢>(D.w)] 

= IT(Q, w)1 sin(2rrwt + <P(Q, w)]. (1) 

In this way, we derive the amplitude IT(Q, w)1 and phase <P(Q, w) of 
the complex transfer function T(Q, w) by measuring the amplitude and 
phase of the (real) response of the cell. By the definition of the transfer 
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FIGURE 5 The Q--w plane. The value of the transfer function at a point in quadrant 1 
is the complex conjugate of the value at the corresponding retlccted point in quadrant 
3 (and similarly for the quadrant pair 2 & 4). The ripple in Figure 4 corresponds to a 
pair of points in quadrants 1 and 3. 

fUllction, it follows that the inverse Fourier transform of T (Q, w) is the 
STRF of the cell: ST R F(x, t) r:::1.tlTQw]. 

Because STRF(x, t) is real, but T (Q, w) is complex, there is a complex 
conjugate symmetry, 

T(n, w) T*(-Q, -w), (2) 

which holds for the Fourier transform of any real function of x and t. 

E Full Separability 

Many cells possess transfer functions that arc fully separable, i.e. the 
ripple transfer function factorizes into a function of Q and a function 
of waver all quadrants: T(Q, w) F(Q) . C(lli). This implies that 
SIRF(x, t) is spectrum-time separahle: ST RF(x, I) R F(x) . ll?(t). 
In this case, we only need to measure the transfer funclion for all Q at 
an arbitrary lV, and for all w at an arbitrary Q. Then F(Q) and C(w) are 
each complex-conjugate symmetric (because R F(x) and J l?U) are real), 
and we need only consider the positive values of each. This dramatically 
decreases the number of measurements needed La characterize the STRF. 

F Quadrant Separability 

For cells that are not fully separable, we have found that they are still 
quadrant separable,f16] i.e. the transfer function T (Q, w) can be written 
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as t he product of two independent functions: 

Q > 0, w > 0, 
Q < 0, w > 0, 

(3) 

where the subscript 1 indicates the Q > 0, w > 0 quadrant, and the 
subscript 2 the Q < 0, w > 0 quadrant. Note that by reality of the STRF, 
the transfer function in quadrants 3 (Q < 0, W < 0) and 4 is complex 
conjugate to quadrants 1 and 2 respectively. In this case, the STRF is 
lIot separable in spectrum and time, but is the linear superposition of two 
functions, one with support only in quadrant 1 (and 3), and one with 
support only in quadrant 2 (and 4). 

G Confirming Separability 

Separability is measured by comparing the measured transfer function 
takcn along parallel lines of constant Q or constant w. If the sections 
of the transfer function differ only by a constant amplitude and phase 
factor, thcn that section is independent of the perpendicular variable and 
thercfore the transfer function is separable. If in addition the section of 
the transfer function is complex-conjugate symmetric about zero, then 
the transfer function is fully separable. Otherwise the transfer function is 
merely quadrant-separable. 

I-I Confirming Linearity 

The method we use to characterize cortical cells depends on their being 
linear, so linearity must be assessed. To this end, we measure (as described 
above) the transfer function of a cell with single ripples, and then measure 
the extent to which we can predict the response of the cell to a linear 
combination of ripples. Confirmation of linearity comes from measuring 
the response of the cell to linear combinations of ripples, thereby verifying 
the degree of linearity of the response. 

Predicting the response of the cell to linear combinations of ripples for 
which the transfer function was not measured directly, but only inferred 
via separability, verifies both linearity and separability simultaneously. 

Characterizing the Response 

The functions F(Q) and G(w) are unconstrained theoretically. 
Physiologically, however, there are constraints on the type of functions 
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they may be. For instance, because F(Q) is the Fourier transform of 
RF(x) which is localized around a center frequency (fill in frequency 
space, Xm in logarithmic frequency space), the phases of F(Q) must 
constructively interfere at X m , and the amplitude of F(Q) must be band 
limited. See, e.g. Figure 2 for examples of RFs, each of whieh is band 
limited and centered at a different X m . 

1 Amplitude of the response The amplitude of the ripple frequency 
transfer function F(Q) reaches a maximum at Q IIl ~ (2B W)-I, where 
B W is the excitatory bandwidth of the RF in octaves, and then decreases: 
at higher ripple frequencies the modulations of the ripple's spectral 
envelope cancel when integrated against the (more slowly varying) RF; at 
ripple frequencies lower than Qnz, the energy in the ripple's spectrum is 
fairly constant over the width of the RF, including any negative sidebands, 
and therefore integrates to a smaller magnitude. Similarly, the amplitude 
of the ripple velocity transfer function G (w) has a maximum at Will ~ 

(2B WI )-1, where B WI is the temporal excitatory width of the lR. Because 
under anesthesia the steady state response to any sound with a constant 
envelope has a rate of zero in cortex, we get G(O) = I dt / R(t) = o. 

2 Phase of the response Because neurons in the auditory pathway arc 
tonotopically arranged, each cell has a frequency around which the RF 
is centered which is independent of the ripple frequency Q. Since the 
derivative of the phase of F(Q) gives the mean frequency of the response 
for that ripple frequcncy,3 the phase of the transfer function is linear (plus 
a constant). Similarly, because IR is causal, there is a group delay, and 
hecause of the biological nature of the neural process, the delay is roughly 
independent of ripple velocity, which gives a constant derivative of the 
phase of G(w). 

Therefore the phase of the transfer function <I>q (Q, w) (sec Eq. (1», 
q = [1, 2 } (for each quadrant), can be wri tten as cp'l (Q, w) = 2rr Qx:!, -
2rrwTd + Xq , where x;f, = log .I;~{ is the mean frequency around which 
the RF is centered, and Td is the delay of the IR, defined as the mean of the 
envelope of the IR.4 Xq is a constant phase angle. Tonotopy guarantees 
that XI~' ~ XI;' but depending on the precise inputs of the neuron, 
they may not agree completely, so that we can have different Xill for 
upward and downward moving sounds. Similarly, T,l ~ T}, hut equality 
is not required. The reality of the response enforces complex-conjugate 
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FIGURE 6 The phase of the transfer function can be described by 6 parameters over 
most of the relevant regions of the S1-w plane. 

Phase t Phase 

" Slope 2ltX~ I 
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Slope = -21t'td 
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FIGURE 7 Phase Curves. The slope is constant for most of the curves, after (left) 
2Jf W 1::: has been removed from the corresponding quadrants, corresponding to a center 
frequency that is independent of the ripple frequency, and (right) after 2rr S1x,:, has been 
removed, corresponding to a delay that is independent of ripple velocity. At very small 
ripple frequencies (long ripple periodicity), center frequency is less meaningful, and 
similarly for small ripple velocity and delay, respectively. At large ripple velocity the 
slope asymptotes to the signal-front delay, but when this occurs Ihe small amplitude of 
the transfer function makes it difficult to measure the phase (see Dong and Atick f21 ] 

lIml Papoulis[l91). 

symmetry of the transfer functions, allowing for these six independent 
parameters to describe the phase everywhere in the Q-w plane. A 
convenient convention is to define constant phase angles e and ¢ such 
that X I ;:;:; ¢ e, X2 = -¢ - e. With lhe complex-conjugate symmetry, 
and if the STRF is separable, ¢ is the symmetry parameter of the RF and 
o is the symmetry parameter of the IR (in Figure 2, ¢ 90° for the left 
cell and (/> ;:;:; 0° for the right cell). Even in the non-separable case, we 
will still call ¢ the RF symmetry and ¢ the IR polarity. If one restricts 
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measurements to one quadrant plus the w-axis (recall from ahove thal 
the transfer function vanishes on the Q-axis), one can measure X in that 
quadrant and, on the axis, the average of Xl and X 2, i.e. (j. There is an 
ambiguity in fixing e and ¢ that allows us to restricl e to lie bel ween 0° 
and 180c , while ¢ ranges the full -180° to + 1800

• 

The phase curve does not truly have a discontinuity across the axis. For 
very small ripple frequencies, the response becomes more independent of 
the best frequency of the cell, allowing the slope to change continuously 
from its constant value to O. At large ripple frequency the slope may 
also diverge from its constant value, but at these ripple frequencies the 
amplitude is small and so the particular values of the phase do nol 
contribute. Similarly, the phase of G(w) is constant over its intermediate 
range but changes continuously to ¢ on the Q-axis. Since the amplitude 
is zero on that axis, this is not so important. 

IV ANALYTICAL METHODS 

A The Ripple Stimulus 

The auditory stimulus we use has a sinusoidal profile at any instant in 
time. Since it would be hard to generate noise and then shape it with 
filters, we generate ripples over a range of 5 octaves by taking 101 
tones with logarithmically spaced (temporal) frequencies and random 
(temporal) phases. The amplitude Sex, t) of each lone of frequency I, 
with x = log2 (f/Io), 10 the lower edge of the spectrum, is then adjllsted 
as 

sex, t) L(1 + tJ.A sin(2n(Q· X + w t) + <1>)), (4) 

for a linear modulation. L is the overall base of the stimulus and is 
adjusted to a level typically 10-15 dB ahove the lower threshold of the 
cell as determined with pure tones at the tonal best frequency. The overall 
level of a single-ripple stimulus is calculated from the level of its single 
frequency components: thus, a flat ripple of level L I dB is composed of 
101 components, each at LI 1OIog(10l) "'" Ll - 20 dB. 

Five parameters arc sufficient to characterize the ripple stimulus: 

1. The ripple frequency Q in cycles/octave. 
2. The ripple velocity w in Hz, so thai a positive vallie of wand Q 

corresponds to a ripple whose envelope travels towards the low 
frequencies. 
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rJG~RE ~ L.eft; A: til~le slice of the stimulus; 101 tones equally spaced along the 
loganl~mlc aXIS. rh~s npple has a npple frequency n of 0.4 cyc/oct with zero phase, 
amI a lmear modulatlOn of 50%, agalllst an arbitrary intensity axis (see Eq. (4». Right: 
tile .spectral profile c!langes as a fu~ction of time, giving a moving ripple, here with 
positive frequency (smce the phase lllcreases as a function of time). 

3. The level or hase loudness of the ripple. 
4. The amplitude of the modulation !:lA of the ripple around the base. 
5. The ripple's initial phase. 

Sinel: lill: LOlles thaI make up a ripple are logarithmically spaced, its pitch 
is indeterminate. 

B Data Analysis 

In this section, we show the data analysis we apply with the help of a 
simulation, but to keep the graphs one-dimensional we assume that in 
Figures 9 and 10, I R(t) o(t). 

We use two paradigms to obtain the transfer function of a cell. First, 
we choose a ripple frequency and present the cell with ripples of varying 
ripple velocities (typically, - 24 Hz to 24 Hz in cortex). Then, for a 
fixed ripple velocity, we present the cell with ripples of varying ripple 
frequencies (typically, from 1.6 to 1.6 eye/oct). 

As indicated for a 4 Hz ripple in Figure 9, the response of a cell as a 
function of time is modulated at the same (temporal) frequency as that 
of the stimulus. Therefore, we just have to extract the phase and the 
amplitude of the response. The resulting transfer function for the same 
two cells is shown in Figure 10. We have presented ripples to the idealized 
cells shown in panel B. The amplitude of the response as a function of 

102 

I r\z\z\t\L\J 
o 

o 125 

2 Octaves 

250 
Time (ms) 

5 

375 500 

FIGURE 9 The top panel represents the spectral envelope of the stimulus al a given 
instant against an arbitrary intensity axis. For the two cells represented in the middle 
panel (with I R(t) = 8(1)), one (unbroken) with the RF centered on low frequencies 
(xm "" 1, asymmetric with ¢ = 90"), and the other (hroken) with the RF centered on 
high frequencies (xm = 4, symmetric with ¢ 0°), [he expected responses !o a 4 Hz 
ripple is shown in the bottom panel (unbroken and broken, respectively), against some 
measure of the response, for instance spikes/sec or the intrat-'Cllular potential. In our 
case, the actual response is half-wave reclified, and measured in the form of a spike 
count, so that the bottom panel should really be seen as a spiking probahility that can 
be measured by measuring the response of the cell to many presentations of the same 
stimulus. 

ripple frequency is shown in panel C, whereas lhe phase of the response 
is shown in the bottom paneL Note that the phase intercept ¢ is (}O for the 
symmetric cells and 90° for the anlisymmetric cell. 

In the corresponding Q-w space, the ripple of Figure 8 corresponds 
to a pair of points. Therefore, 10 measure the complete ripple response 
transfer function of a cell we need to measure its response to all possible 
ripples, as shown in Figure 11. Note that since cells in cortex respond 
only to transient stimuli, it is not necessary to present the stimuli along 
the w = ° axis. 

C Separability 

We have shown previously[16,22l that within each quadrant, actual ripple 
transfer functions are separable;5 for two fixed values of n, the transfer 
function as a function of w only changes between the two hy an overall 
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FIGURE 10 The sounds with the spectrum shown in A (ripples with ripples frequencies 
of () (flat spectrum), 0.4 and 0.8 cycles/octave) are presented at various phases to the 
two cells in n, as in Figure 9. The amplitude (for instance in spikes/sec) (Cl and phase 
(D) of the hest fit to the response are shown. 

scale factor and an overall phase. The same is true when Q and ware 
reversed. Hence, one is required only to study two lines in Q-w space. 
Therefore we only need to sample a line in each direction within each 
quadrant, as shown in Figure 12. 

Without separability, whether full or quadrant, it would be extremely 
difficult to characterize a cell by its transfer function. Experimentally, 
given the time required to measure one point of the transfer function, 
measuring the transfer function at the points indicated in Figure 12 
is feasible, whereas measuring the transfer function at all the points 
indicated in Figure 11 is not. 

D Linearity 

Linearity is confirmed by comparing the response to combinations of 
ripples with the response predicted by summing the responses to the 
individual ripples, i.e. the values of the transfer function. A combination 
of ripples is computed such that its base loudness is the same as the 
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FIGURE 11 To measure the complete ripple transfer function, we have to measure the 
response of the cell to all the ripples represented by large circles ahove. The smallest 
circles correspond to redundant ripples, as inspection of Eq. (2) and Figurc 5 shows. 

.... 

FIGURE 12 Since we found experimentally that cells have separable lransfer functions 
within eaeh quadrant, it is enough to measure Ihe transfer function along two orthogonal 
lines in each quadrant. 
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individual ripples', and the amplitude of the modulation is scaled as 
in Eq. (4). As an example, to present the combination of two ripples 
(whose properties are described by subscripts 1 and 2), we compute 
B = BI sin(2n(Q! ·x + WI' t) + tPd + B2 sin(2n(Q2'x + W2' t) + tP2)' 
For a modulation of t.A, the envelope is (in the manner of Equation 
4) L· (l + t.A· B/max(B)), where L is the base intensity level. The 
sOllnd is generated from the envelope using 101 tones over 5 octaves with 
logarithmically spaced (temporal) frequencies and random (temporal) 
phases. 

V EXPERIMENT AND RESULTS 

A Experimental Details 

Data were collected from domestic ferrets (Mustela putorius). The 
ferrets were anesthetized with sodium pentobarbital and anesthesia 
was maintained throughout the experiment by continuous intravenous 
infusion of either pentoharbital or ketamine and xylazine, with dextrose 
(in Ringer's solution) to maintain metabolic stability. The ectosylvian 
gyrus, which includes the primary auditory cortex, was exposed by 
craniotomy and the dura reflected. The contralateral ear canal (meatus) 
was exposed and partly resected, and a cone-shaped speCUlum containing 
a miniature speaker was sutured to the meatal stump. For details on the 
surgery see Shamma et alPI 

All stimuli were computer synthesized, gated, and then fed through a 
common equalizer into the earphone. Calibration of the sound delivery 
system (to obtain a flat frequency response up to 20 kHz at the level of 
the eardrum) was performed in situ using a 1/8-in probe microphone. 

Action potentials from single units were recorded using glass-insulated 
tungsten microelectrodes with 5-6 MQ lip impedances. Neural signals 
were fed through a window discriminator and the time of spike occurrence 
relative to stimulus delivery was stored on a computer, which also 
controlled stimulus delivery, and created raster displays of the responses. 
In each animal, electrode penetrations were made orthogonal to the 
cortical surface. In each penetration, cells were typically isolated at depths 
of 350--600 ~Lm corresponding to cortical layers III and IVPl 
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B Obtaining the Transfer Functions 

As explained above, we measure the cells' transfer functions by 
presenting first, at a fixed ripple frequency, ripples of various velocities. 
Then, for a fixed ripple velocity, we present ripples of varying ripple 
frequencies. 

1 Spectral cross-section of the transfer fUllction A typical example 
of the analysis is shown in Figure 13. Ripples were presented at R Hz, 
for ripples frequencies from -1.6 eye/oct to 1.6 eye/oct in steps of 
0.2 eye/oct, with the ripple starting to move at I = 0 IllS, but being 
acoustically turned on starting at 50 ms with a linear ramping over 
8 ms. Each action potential is denoted by a dot on the raster plot in A. 
One can see the onset response to the ripple at ahout 70 ms (50 ms + 
delay due to the ramping up of the stimulus, + latency of the response). 
Each ripple is presented 15 times. Once the onset activity has died away, 
the cell goes into a sort of steady-state response. For each ripple frequency, 
we compute a period histogram starling at 120 ms (this excludes the onset 
response). Four of those histograms are shown in panel n. To assess the 
strength and phase of the phase-locked response, we divide the histogram 
into 16 equal bins. The amplitude and phase of the response is then 
evaluated by performing a Fourier transform of the data, and extracting 
the phase of T(Q, 11! = 8 Hz) from the first component of the Fourier 
transform, and the amplitude from 

IAC1(Q)1 
T(Q,1II 8Hz) AC!(!J)· -;====== (5) 

where ACi(Q) is the ith component of the Fourier transform. If the 
modulation of the response were that of a purely linear system, the 
higher coefficients ACi (Q) would be negligible. But because of the half-
wave rectification and other non-linearities, they usually arc significant. 
Therefore we weight AC I (Q) by the RMS of the other coefficients of the 
ACj (Q) to assess linearity. 

The magnitude and phase of the transfer function is shown in panel C. 
In D, we have inverse Fourier transfomled separately the transfer function 
in quadrant 1 and 2, or equivalently for down- and up-moving ripples, 
after removing the constant (temporal) phase factor 2n WfJ + f), where 
w = H Hz. In this case, the up- and down-moving RFs match very well 
with each other and with the RF obtained with a two-lone paradigm.PI 

107 



70dB 

D 

] 0 
;.& 
~ 5 RF (positive Freqsj 
O=_-~~",d· 

Octaves 

FIGURE IJ Datu analysis lIsing ripples of fixed velocity and varying frequencies. A: 
Rasler plot of responses. Each point represents an action potential, and each paradigm 
is presented 15 times. B: Period histogram for 4 ripple freqnencles. Note how the 
position of the peak of the best Ilt changes lint'arly with ripple frequency. C: Magnitude 
and phase of lhe period histogram fits. D: Separate inverse Fourier transforms for 
positive and negative ripple frequencies of C, obtaining a slice of the RF. Also given 
for comparison is the response area as determined by the two-tone paradigm. 131 

Note that the period histograms shown in panel n correspond to periods 
starting at 120 ms, so as to eliminate the effect of the onset response, 
whereas the second graph in panel C shows phases sent back to 0 ms, at 
which point in time the phase of the ripples presented were all 0 degrees. 

2 Temporal aoss-section of the transfer function An example of 
the extraction of the temporal cross-section of the transfer function 
for the same cell as in Figure 13 is shown in Figure 14. Ripples are 
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FIGURE 14 Data analysis using ripples affixed frequency and varying velocities. A: 
Raster plot of responses. Each point represents an action potential, and each paradigm 
is presented 15 times. B: Period histogram for 4 ripple velocities. Notc how the peak of 
the best fit changes linearly with ripple velocity (the (J Hz case can he used to estimate 
noise). C: Magnitude and phase ofthe period histogram fits. D: Separate inverse Fourier 
transforms for positive and negative ripple velocities of C, obtaining a slice of the 1R. 

presented at 0.4 cycj oct, for ripple velocities from~ 24 Hz to 24 Hz 
in steps of 4 liz, with the ripple starting to move at tOms, being 
acoustically turned on starting at 50 ms with a linear ramping over 
8 ms. Each action potential is denoted by a dot on the raster plot in A. 
One can see the onset response to the ripple at ahout 70111S (50 ms + 
delay due to the ramping up of the stimulus, + latency of the response). 
Each ripple is presented 15 times. Once the onset activity dies away, 
the cell goes into a steady-state response. For each ripple frequency, we 
compute a period histogram starting at 120 111S (so that the onset respollse 
is excluded). Four of those histograms are shown in panel H. To assess 
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the strength and phase of the phase-locked response, we divide the period 
into 16 equal bins. The amplitude and phase of the response is then 
evaluated by performing a Fourier transform of the data, and extracting 
the phase of T(Q = 004 eye/oct, w) from the first component of the 
Fourier transform, and the amplitude from 

IAC1(W)1 
T(Q = OAcyc/oct, 111) = AC] (w)· "-r====== 

IACj(w)12 
(6) 

If the modulation of the response were that of a purely linear system, the 
higher coefficients ACj(w) would be negligible. But because of the half-
wave rectification and other non-linearities, they usually are significant. 
Therefore we weight A C I (w) by the RMS of the other coefficients of 
ACi (w) to assess linearity. 

The magnitude and phase of the transfer function is shown in panel C. 
In D, we have inverse Fourier transformed separately the transfer function 
in quadrant 1 and 2, or equivalently for down- and up-moving ripples, 
after removing the constant (spectral) phase factor 2rrQxm + tj;, where 
Q = 004 eye/oct. In this case, the up- and down-moving IRs match very 
well with each other. 

C Quadrant Separability 

RF(x) and I R(t), as illustrated in panels D of Figures 13 and ]4, 
arc linear combinations of the transfer function evaluated along cross-
sections of the Q-w plane. Constancy of R F(x) computed for different 
10 is equivalent to proportionality of T (Q, w) for different w (and 
similarly for RF(x), Q, and T(Q, w». This was the requirement given 
above to verify quadrant separability. This has all been verified for many 
cells in the I1rst quadrant. f161 While it is theoretically possible for the 
remaining independent quadrant to be nonseparable, it seems unlikely in 
ferrets, humans, and most mammals (possible exceptions might include 
sonar-llsing animals, which could require further specialization). We are 
currently verifying separability in the second quadrant 

Shown in Figure 15 are examples of the positive-frequency RF and 
positive-frequency IR for two cells, as computed at the different sections 
indicated. 
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FIGURE 15 Left: The positive-frequency RF computed at cOllstant ripple velocity for 
3 different ripple velocities. The shapes should he the same if the syslem is separable. 
Right: The positive-frequency IR at conslant ripple frcquency for 3 different ripple 
frequencies. The shapes shou III be the same if the system is separahle. 

D Quadrant Linearity 

Linearity has been verified by presenting cells with a combination of 
ripples from different quadrants.l16.22,231 As shown in Figure 16 for one 
cell, the correlation between the predicted and the measured response 
is (as in most cases) very good. Note that the predicted n:sponse is 
shown in its non-half-wave rectified version: as cells do not have negative 
firing rates, and the pentobarbital anesthetic has reduced the spontaneous 
activity to zero, the comparison should be made between the actual 
response and the half-wave rectified version of the predicted response. 

The correlation coefficient p in Figure 16 is the cross-correlation 
between the measured and the predicted response. We have previously 
presented the correlation between prediction and response within II single 
quadrant for 55 cells and found 84% of the cells with p > 0.6.1221 

"The error bars on the measured response show the variability of cortical 
cells' responses from sweep to sweep. Disparity is maximal between the 
prediction and the actual spike count where both are small. 

E Fllll-Quadrant Separability and Linearity 

The remainder of Ihis discussion describes logical extensions that are 
currently under study. Thus far we have only verified separability 
in a single qnadranl. In vision, some cortical simple cells are fully 
separable,[241 but all are at least quadrant separahle.125] We have found 
both types in the auditory cortex as well; Figure 17 shows examples of 
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FIGURE 17 Predictions of responses to complex dynamic spectra using Ihe STRF. 
A The predicted response is computed by a convolution (along the time dimension) 
of the STRF with the spectrogram. The stimulus shown is composed of two ripples 
(OAeye/oct at 12 and ~4 Hz). The predicted waveform is shown jUXU1poscd to the 
actual response (crosses) over one period of the stimulus, in spikes/hin Slimmed over 
30 sweeps. B Another example: [he stimulus consists of a comhination or ripplt:s with 
ripple frequencies 0.2 eye/oct at 4 Hz, 0.4 eyc/oct at 8 Hz, ... 1.2 eye/oct at 2411z, in 
cosine phase, resulting in an I'M-like stimulus. In this Ketaminc/Xylazine preparation, 
the spontaneous activity was non-zero. 

each. A fully separable cell has an STRF that is a simple product of an 
RF and an IR, as in A A quadrant separable cell, as in B, does not, since 
it has different responses for upward and downward moving ripples (as 
can be seen by inspection of its ST R F (x, t): it is not symmelric about 
xm). The separability of a cell does not affecllhe linearity of responses 
to ripple combinations. 

F Response Characteristics 

The transfer function for a specific cell is typically luned to a characteristic 
ripple frequency and velocity. The population of cells shows a wide 
range of characteristic ripple frequencies and velocities. Characteristic 
ripple velocities are mostly in the 8~ 16 Hz range, rarely exceeding 
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30 Hz, and characteristic ripple frequencies are mostly in the 0.4--0.8 
cycles per octave range, rarely exceeding 2 cycles per octave (in this 
anesthetized preparation). The slope of the transfer function as a function 
or ripple frequency, XIII' corresponds to the center frequency of the spectral 
envelope, which ranges from 200 Hz to at least 24 kHz (above which 
our acoustic delivery system is inadequate). The slope of the transfer 
function as a function of ripple velocity, rd, corresponds to the center 
of the temporal envelope, which ranges roughly from 10 ms to 60 ms. 
The RF symmetry cp, which describes the effects of lateral inhibition and 
excitation, ranges roughly from -900 to +90" (out of a possible -180° 
to + 180°), clustered around 0°. The IR polarity (}, which describes the 
polarity of the temporal response, ranges roughly from 45° to 135° (out 
of a possible 0° to 180°). 

VI CONCLUSIONS 

The emphasis in this review has been on presenting a technique to describe 
neural response patterns of units in the cortex. More precisely, we use 
moving ripples to characterize the response fields of auditory cortical 
neurons, although this is a general method that can be used anywhere 
responses are shown to be substantially linear for broadband stimuli. 

Practically, we find that because of linearity of cortical responses with 
respect to spectral envelope, we can use the ripple method to characterize 
auditory cortical cell responses to dynamic, broadband sounds. The 
linearity of lhe cortical unit responses is quantified by the correlation 
coefficient between the predicted and the measured responses curves. 
While at this point we do not have statistics to quantify the linearity 
of response to ripples moving in both directions, linearity within one 
quadrant (to down-moving ripples) has heen extensively quantified,[22j 
and we have no reason to expect linearity is any different for ripples 
moving in both directions. The separability of cells makes the ripple 
method practical, because of the time needed to characterize a cell. One 
advantage of the method is the simultaneous probing of spectral and 
temporal characteristics. Temporal processing is becoming more and 
more recognized as an essential part of cortical function, and the ripple 
method places it on an equal footing with spectral processing. A caveat 
is that, thus far, the method only has been applied to the steady state (i.e. 
periodic) response of cells. 
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We find that response fields in AI tend to have characteristic shapes 
both spectrally and temporally. Specifically, AI cells are tuned to moving 
ripples, i.e., a cell responds well only to a small set of moving ripples 
around a particular spectral peak spacing and velocity. We find cortical 
cells with all center frequencies, all spectral symmetries, bandwidths, 
latencies and temporal impulse response symmetries. One way to interpret 
this result is that AI decomposes the input spectrum into different 
spectrally and temporally tuned channels. Another equivalent view is 
that a population of such cells, tuned around different moving ripple 
parameters, can effectively represent the input spectrum at multiple scales. 
For example, spectrally narrow cells will represent the fine features of the 
spectral profile, whereas broadly tuned cells represent the coarse outlines 
of the spectrum. Similarly, dynamically sluggish cells will respond to the 
slow changes in the spectrum, whereas fast cells respond to rapid onsets 
and transitions. In this manner, AI is able to encode multiple different 
views of the same dynamic spectrum. From this, we conclude that the 
primary auditory cortex performs multi-dimensional, multi-scale wavelet 
transform of the auditory spectrum. 

Pitch is very important to the auditory system. The spectral ripple 
responses presented here do not have pitch, since they arc synthetized 
with logarithmically spaced carrier tones. We have not yet examined 
unit responses to a ripple spectra with harmonically related carrier tones. 
Consequently, all our unit responses are due to the envelope or spectral 
profile of the broadband stimulus, and are not dependent on the carrier 
tones. It is quite possible that the pilch of a hannonic series of tones 
will affect the responses. It is also possible that sufficiently narrowly 
tuned cells might directly encode the harmonic spacing in a spectrum in a 
systematic manner to encode the pitch as was discussed in detail in Wang 
and ShammaJ261 This is work in progress. 

The suggestion that cortical cells are linear might appear far-fetched 
given the non-linear response to pure tones, such as rate vs. intensity 
functions with threshold, saturation, and nonmonotonic behavior (Brugge 
and Merzenich[271; Nelken et aJ.!8J). Nevertheless, we find that the non-
linearity observed with broadband ripple spectra is substantially smaller 
than with tonal stimuli, when it comes to predicting the response of 
a cell to a combination of stimuli, knowing the response to individual 
ones. Furthermore, just as measuring linear systems response properties 
with tones, such as bandwidth, rate-level functions, tuning quality factor 
and other measures is considered meaningful, characteristics of the 
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ripple responses prove useful, and relate to the properties measured with 
tones,f18.16j Investigations currently under way in the Inferior Colliculus 
will shed light on the mechanisms that allow cells to exhibit a linear 
behavior in auditory cortex, so many synapses away from the auditory 
nerve. 
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I This is the standard convention used in hearing and vision in defining the Response 
Field; it is related to the Spectral Impulse Respollse function, which is RF(-x). 

2 The coordinate dnal to t is w, not f. This is because the spectro-temporal 
representation we are using is inspired by the cochlea's time-windowed Fourier 
transform on the original (acoustic) input signal. The time coordinate t used at 
higher levels ill the auditory pathway is much coarser than the aconstic time, roughly 
corresponding to a lahelling of "which" cochlear time-window is being referred to. 

J This is completely analogous to the derivative of the phase of the Fonrier transform of 
a signal, dt/l/dw, giving the characteristic delay (for that frequency) or the derivative 
of the angular frequency of a dispersioll relation, d(l!/dk, ~iving the group velocity 
(for that wave number). See, e.g. Papoulis[!9] and Cohen.[2 I 

4 The envelope E(I) of a function with localized support can be defined as tile modulus 
of the fUllction plus j times irs Hilbert transform. The meall of the envelope is then 
compnted as (I) = f dltE(1)2. See, e.g. Cohen,l20] 

S Strictly speaking, we have shown it only for the first quadrant, i.c. for down-moving 
ripples. 
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