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Speech recognition is remarkably robust to the listening background, even when the energy of background sounds strongly overlaps with
that of speech. How the brain transforms the corrupted acoustic signal into a reliable neural representation suitable for speech recogni-
tion, however, remains elusive. Here, we hypothesize that this transformation is performed at the level of auditory cortex through
adaptive neural encoding, and we test the hypothesis by recording, using MEG, the neural responses of human subjects listening to a
narrated story. Spectrally matched stationary noise, which has maximal acoustic overlap with the speech, is mixed in at various intensity
levels. Despite the severe acoustic interference caused by this noise, it is here demonstrated that low-frequency auditory cortical activity
is reliably synchronized to the slow temporal modulations of speech, even when the noise is twice as strong as the speech. Such a reliable
neural representation is maintained by intensity contrast gain control and by adaptive processing of temporal modulations at different
time scales, corresponding to the neural � and � bands. Critically, the precision of this neural synchronization predicts how well a listener
can recognize speech in noise, indicating that the precision of the auditory cortical representation limits the performance of speech
recognition in noise. Together, these results suggest that, in a complex listening environment, auditory cortex can selectively encode a
speech stream in a background insensitive manner, and this stable neural representation of speech provides a plausible basis for
background-invariant recognition of speech.

Introduction
Speech recognition is robust with respect to various listening
backgrounds. The slow temporal modulations (�16 Hz) that
constitute the speech envelope (Rosen, 1992) contribute to ro-
bust speech recognition in two important ways. First, they reflect
the syllabic and phrasal rhythm of speech (Greenberg et al., 2003)
and, in quiet listening environments, lead to high intelligibility
with even very coarse spectral information (Shannon et al., 1995).
Accordingly, it has been proposed that cortical activity synchro-
nized to the speech envelope underlies the parsing of speech into
basic processing units (e.g., syllables) (Giraud and Poeppel,
2012). Second, in complex auditory scenes, slow temporal mod-
ulations provide cues to group features belonging to the same
sound stream (Shamma et al., 2011), and therefore selective neu-
ral synchronization to a speech stream has been hypothesized as a
mechanism to segregate the speech stream from the listening
background (Schroeder and Lakatos, 2009; Shamma et al., 2011).
Both the segregation of speech from background and the parsing
of speech into perceptual units are prerequisites for robust speech
recognition. Therefore, if cortical synchronization to the speech

envelope is causally involved in these processes, it must reliably
occur in any listening environment that does not extinguish
speech intelligibility. This critical prediction is tested in this
study.

An acoustic background interferes with speech in two ways:
via energetic masking and informational masking (Brungart,
2001; Scott et al., 2004). Recently, it has been shown that cortical
synchronization to speech is robust to strong informational
masking caused by an interfering speech stream (Kerlin et al.,
2010; Ding and Simon, 2012b; Mesgarani and Chang, 2012).
Here, we further test whether it is also robust to energetic mask-
ing caused by spectrotemporal overlap between the energy of
speech and any acoustic background. Strong energetic masking
caused by (e.g., stationary noise) can produce severe degradation
in speech encoding at the level of the auditory nerve (Delgutte,
1980) and brainstem (Anderson et al., 2010), but how these de-
graded neural representations are rescued by the higher level au-
ditory system is not well understood.

The current study investigates the cortical encoding of speech
embedded in spectrally matched stationary noise, the most classic
example for energetic masking (Festen and Plomp, 1990). The
neural recordings were obtained using MEG from subjects listen-
ing to a spoken narrative mixed with noise at different signal-to-
noise ratios (SNRs). Spectrally matched stationary noise reduces
the intensity contrast of the speech and distorts the spectrotem-
poral modulations (Fig. 1A,B). Under such strong acoustic in-
terference, psychoacoustic studies suggest that robust speech
recognition arises from listeners’ insensitivity to stimulus inten-
sity contrast (Stone et al., 2011) and selective processing of the
temporal modulations with rates less corrupted by noise
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(Jorgensen and Dau, 2011). Here, we test whether these compu-
tational strategies are indeed implemented in the human brain,
via, for example, neural adaptation to the mean and variance of
stimulus intensity (Robinson and McAlpine, 2009) and stimulus-
dependent neural encoding of temporal modulations (Escabí et
al., 2003; Woolley et al., 2006; Lesica and Grothe, 2008).

Materials and Methods
Subjects. Eleven right-handed (Oldfield, 1971) young adults (7 females)
between 20 and 31 years old participated in the experiment. All reported
normal hearing. One subject was excluded because of the lack of auditory
responses to both tones and speech. Subjects were paid for their partici-
pation. The experimental procedures were approved by the University of
Maryland institutional review board. Written informed consent was ob-
tained from each subject before the experiment.

Stimuli and procedure. The stimuli were taken from the beginning of a
narration of the story Alice’s Adventures in Wonderland (http://librivox.
org/alices-adventures-in-wonderland-by-lewis-carroll-4/). The sound
recording was low-pass filtered �4 kHz and divided into twelve 50-s
duration sections, after long speaker pauses (� 300 ms) were shortened
to 300 ms. A spectrally matched stationary noise was generated based on
a 12-order linear predictive model estimated from the speech recording

and mixed into speech with one of six SNRs,
that is, quiet (no noise added in), �6 dB, �2
dB, �3 dB, �6 dB, and �9 dB. The intensity of
speech, measured by root mean square, was the
same for all sections and the intensity of noise
was varied to create different SNRs.

All the sections were presented sequentially
and then repeated twice (3 trials total). The
noise was frozen over trials (i.e., the same
speech and noise mixture was used for every
trial within a condition). Although each in-
stance of frozen noise contained its own dis-
tinctive spectrotemporal features, any effects of
those features were diluted over the 50 s dura-
tion of the stimulus. The subjects were asked a
comprehension question after each section and
also rated intelligibility of speech (in percent-
age) during the first presentation of each sec-
tion. All stimuli were presented identically to
both ears, and the subjects were required to
close their eyes while listening.

The SNR either only decreased or only in-
creased every two sections. For the decreasing SNR order (N � 5), no
noise was added to the first two sections; noise 6 dB weaker than speech
was added to the following two sections, and then the noise level kept
increasing over the remaining sections. The increasing SNR order (N �
5), in contrast, started with the lowest SNR (i.e., �9 dB) and finished with
the quiet condition. The story continued naturally under either presen-
tation order. As a result, the speech material used to create the speech-
noise mixture was the same for the �2 dB SNR condition in the
decreasing SNR order (the second condition) and the �6 dB SNR con-
dition in the increasing SNR order (also the second condition). In Figure
2A, because the waveforms of the neural reconstruction were shown, the
subjects were grouped separately based on stimulus presentation order.
The SNR order affects neither speech intelligibility (SNR � order, two-
way repeated-measures ANOVA) nor the neural reconstruction of
speech (SNR � order � trial, three-way repeated-measures ANOVA),
and therefore was not distinguished in any analyses and figures other
than Figure 2A. In summary, each SNR condition consisted of two 50 s
duration sections, each repeated 3 times. In the MEG analysis, responses
from the two sections with the same SNR were concatenated.

Before the main experiment, 100 repetitions of a 500 Hz tone pip were
presented to elicit the M100 response, which is a reliable auditory re-
sponse measured 100 ms after the onset of a tone pip and whose neural

Figure 1. Speech embedded in spectrally matched stationary noise. A, The auditory spectrogram (top) and the broadband temporal envelope (bottom) of speech embedded in noise, at 4 SNRs.
The background noise causes severely degradation to the spectro-temporal features of speech (in this illustration but not in the experiment, the same speech segment is used in every SNR condition).
B, The contrast index characterizes the spectro-temporal contrast of the stimulus at each SNR. The shaded blue area covers the fifth to 95th percentile of the contrast index calculated for stationary
noise alone, and the SNR condition Q indicates a quiet background. The intensity contrast of the stimulus decreases continuously with SNR. C, Subjectively rated intelligibility of speech (bars), and
percentage of comprehension questions correctly answered (�). The intelligibility remains unaffected by SNR until �3 dB SNR.

Figure 2. Neural reconstruction of the temporal envelope of speech. A, The red and orange waveforms are the envelopes
reconstructed from the neural responses in two sample SNR conditions. The dashed gray waveform is the envelope of the under-
lying speech in each stimulus. The neural construction matches the speech envelope well at both SNRs. The neural reconstructions
illustrated are averaged over trials and subjects (N � 5, for the increasing and decreasing SNR conditions, respectively). B,
Correlation between the single-trial neural reconstruction and the envelope of the underlying speech, as a function of SNR. The
correlation is averaged over trials. Error bar indicates SEM over subjects. The 95th percentile of chance level reconstruction accuracy
is shaded (permutation test). C, Relationship between the neural reconstruction accuracy and speech intelligibility, at �3 dB SNR.
Each subject is shown by a red cross. The neural and behavioral results are highly correlated, with the regression line shown by the
dashed line.
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source is easy to localize within auditory cortex (Lütkenhöner and
Steinsträter, 1998). The neuromagnetic signal was recorded using a 157-
channel whole-head MEG system (KIT), with 1 kHz sampling rate. A 200
Hz low-pass filter and a notch filter at 60 Hz were applied online, and
environmental noise was removed offline. The neural recordings were
filtered offline between 1 and 9 Hz and down-sampled to 40 Hz. More
details of the recording procedure are as described previously (Ding and
Simon, 2012a).

Stimulus characterization. The auditory spectrogram of the stimulus
was calculated using a subcortical auditory model (Yang et al., 1992) and
expressed in linear amplitude scale. In the frequency by time auditory
spectrogram, the frequency channels were logarithmically spaced and
each time bin in the spectrogram was 5 ms in duration. In each frequency
channel, the energy fluctuation over time is referred to as the narrow-
band envelope. The broadband envelope of stimulus was defined as the
sum of the auditory spectrogram over frequency. The spectrotemporal
contrast of a stimulus was characterized using a contrast index, the coef-
ficient of variation of the auditory spectrogram, an extension of the fluc-
tuation index (Nelken et al., 1999). The coefficient of variation is the SD
of the amplitude of the auditory spectrogram over the 50 s stimulus
divided by the mean. It is zero for a sound with its energy constant over
time and frequency and grows as the contrast (i.e., depth) of the spectro-
temporal modulations increases.

Neural reconstruction of stimulus. The temporal envelope of the
speech-noise mixture, or the speech only, was reconstructed by linearly
integrating MEG activity over time and sensors. The reconstructed
speech envelope is expressed as follows:

Ê�t� � �k�0 � � � 500 ms Mk�t � ��Dk���,

where Mk(t) is the MEG signal from a sensor k and Dk(t) is the linear
decoder for the same sensor. The envelope to reconstruct, E(t), is either
the envelope of the actual stimulus (the speech-noise mixture) or the
envelope of the underlying speech (embedded in the stimulus). The de-
coder Dk(t) was optimized using boosting with 10-fold cross-validation
(David et al., 2007) to maximize the correlation between Ê(t) and E(t). To
reduce computational complexity, the MEG sensors in each hemisphere
were compressed into 3 components using denoising source separation
(de Cheveigné and Simon, 2008). Both hemispheres were used unless
otherwise specified.

Intertrial correlation analysis. The phase locking of the neural response
was investigated in narrow frequency bands (2 Hz wide) by calculating
the intertrial correlation of the neural response. The intertrial correlation
measures the reliability of neural responses when the same speech noise
mixture is repeated, and is a reflection of the strength of phase-locked
neural activity. Unlike the neural reconstruction analysis, which exam-
ines how accurately the speech envelope is encoded, the intertrial corre-
lation analysis is sensitive to any phase-locked response elicited by the
speech-noise mixture. The analysis is made possible by the use of frozen
noise from trial to trial. The major component of MEG response was
extracted using the first denoising source separation component (de
Cheveigné and Simon, 2008) and applied to this analysis. The phase-
locking spectrum of the neural response to speech has a low-pass shape
(i.e., the precision of neural phase locking decreases over frequency)
(Ding and Simon, 2012a). To estimate the low-pass cutoff frequency, the
phase-locking spectrum is modeled using a sigmoidal function as follows:

1 � 1/exp� � �� f � fT��.

The slope parameter � and location parameter fT are fitted in the
least-squares sense. In this model, because a sigmoidal function is
bounded between 0 and 1, at each SNR the maximal intertrial correlation
is normalized to 1 and the minimum is normalized to 0.

Temporal response function. The temporal response function (TRF)
was obtained by deconvolving the continuous neural response evoked by
the continuous speech stream, giving a waveform that can be interpreted
as the response resulting from a unit power increase of the stimulus
(Ding and Simon, 2012a). A TRF was estimated based on each MEG
sensor, and the MEG data were averaged over trials in the TRF analysis.
To estimate the TRF, a spectro-TRF is first estimated using boosting with

10-fold cross validation (David et al., 2007), using the procedure de-
scribed by Ding and Simon (2012b). The TRF is obtained by summing
the spectro-TRF over frequency. The M50TRF was determined as the
response peak between 0 and 80 ms, which has a magnetic field topogra-
phy negatively correlated with that of the M100. The M100TRF was de-
termined as the response peak between 80 and 180 ms, which has a
magnetic field positively correlated with that of the M100 (Ding and
Simon, 2012b).

Neural source analysis. The neural sources of the M50TRF, M100TRF,
and M100 (evoked by a tone pip) were modeled by an equivalent-current
dipole (ECD) in each hemisphere, based on a spherical head model (Ding
and Simon, 2012b). The median correlation between the fitted ECD
magnetic field and the measured magnetic field is �90% in both hemi-
spheres and for all the M50TRF, M100TRF, and M100. Comparing the
ECD positions of different peaks in TRF, we included only ECDs success-
fully capturing the measured magnetic field, characterized by a �80%
correlation between the ECD magnetic field and the measured magnetic
field. Only one subject was excluded this way. After the ECD positions
were determined, the moment of the dipole was estimated using the
least-squares method (Mosher et al., 2003). For the dipole moment, the
polarity of the M100TRF is defined as negative, to be consistent with
the polarity of the N1 peak of EEG. The TRF linearly projected to the
ECD location was used to analyze the amplitude and latency of the
M50TRF and M100TRF (Ding and Simon, 2012b).

Time-dependent speech reconstruction. In the stimulus reconstruction
analysis, the decoder Dk(t) integrates MEG activity over a 500 ms time
period. The length of the period, however, can also be varied to investi-
gate which time intervals carry more information. During this varying
integration window analysis, however, the autocorrelation of the speech
envelope must be taken into consideration. For example, the response at
time t � 50 ms, M(t � 50), should contain no information of the stim-
ulus at a future time t, E(t). Nevertheless, if M(t � 50) encodes informa-
tion of the stimulus at time t � 100 ms, which is correlated with E(t), then
from M(t � 50) some information about E(t) can be reconstructed,
implicitly through E(t � 100). Therefore, in the integration window
analysis, we partialled out the autocorrelation of the envelope using an
extended model as follows:

E�t� � �k�1 � � � T Mk�t � �� Dk���

� �1 � � � T E�t � �� DA��� � 	�t�,

where 	(t) is the unexplained residual. Dk(t) and DA(t), the decoder and
the regressor for speech autocorrelation, are estimated simultane-
ously using boosting (David et al., 2007). The length of the time
period integrated by the decoder, T, varies from 50 to 1000 ms,
whereas the maximal time range where the autocorrelation of speech
is considered, T*, is set to 500 ms. In this case, the reconstructed
neural response, Ê*�t� � 	k	1���T Mk�t � �� Dk��� is a recon-
struction of the component in speech envelope that cannot be pre-
dicted by its own history because of the rhythm of speech (i.e., the
unpredictable information at a given moment).

Results
Noise robust cortical reconstruction of speech
The stimulus consists of a narrated story that is divided into 50 s
duration sections. Each is presented either in quiet (alone) or
with added spectrally matched stationary noise (6 SNR levels
ranging from �9 to �6 dB). A contrast index is used to charac-
terize how the background noise reduces the intensity contrast
(i.e., the depth of the spectrotemporal modulations) of the stim-
ulus. As shown in Figure 1B, the intensity contrast of the speech-
noise mixture decreases monotonically with decreasing SNR,
until finally reaching the intensity contrast of stationary noise
alone, at �9 dB SNR. The intelligibility of the stimulus starts to
decrease at �2 dB and essentially disappear at �9 dB.

To investigate how the cortical representation of speech is
affected by noise, we attempted to reconstruct the temporal en-
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velope of the underlying speech (as opposed to the actual stimu-
lus including noise), from the cortical response to the noisy
stimuli (Fig. 2A). The accuracy of the reconstruction reflects how
precisely cortical activity is synchronized to the speech envelope,
even in the presence of background noise. It remains unaffected
by the background noise until the noise is 9 dB stronger than
speech, whereupon it drops. Above �9 dB, the stable neural re-
construction results do not follow the variable contrast index
(Fig. 1B), and suggest a stable neural representation of speech
maintained by contrast gain control.

At the intermediate SNR of �3 dB, the subjectively rated
speech score varies broadly over subjects, with a median of 55%.
At this SNR, individual speech scores are strongly correlated with
the accuracy of neural reconstruction (Fig. 2C). The correlation
coefficient is 0.79 
 0.15 (mean 
 SEM; the SEM is consistently
used in the paper to describe subject variations and is calculated
using bootstrap), significantly positive (p � 0.005, bootstrap).
When the two hemispheres are analyzed separately, the recon-
struction in each hemisphere is also correlated with speech intel-
ligibility (mean correlation coefficient: 0.81, no significant
difference between hemispheres, p � 0.41, bootstrap). At higher
and lower SNR conditions, the speech scores clump near ceiling
(median, �90%) or floor (�10%) values, respectively (Fig. 1C),
precluding analogous computations there.

To investigate whether the successful neural reconstruction of
the underlying clean speech is a result of the neural encoding of
the actual stimulus, we also reconstructed the envelope of the
actual noisy stimulus from cortical activity. This reconstruction,
although naively more straightforward, is less accurate than the
reconstruction of the underlying speech for SNRs between �6 dB
and �3 dB (p � 0.01, paired t test). Therefore, we see that audi-
tory cortex predominantly synchronizes to the underlying speech
rather than the physically presented sound mixture. The mecha-
nisms underlying this robust neural representation are analyzed
in the following sections.

Modulation sensitivity
Speech and noise each have a distinct modulation spectrum (the
power spectrum of the temporal envelope), with the noise pos-
sessing more energy at higher modulation rates. Therefore, when
noise is introduced, the energy of the stimulus envelope spreads
into higher modulation rates (Fig. 3A). Consequently, if cortical
activity were simply following the temporal modulations of the
stimulus, it would also spread into higher frequencies. This con-

jecture, however, can be ruled out (Fig. 3B). Indeed, at the higher
frequencies (e.g., near 7 Hz), the most reliable phase-locked re-
sponse, measured by intertrial response correlation, is seen with a
quiet acoustic background, and the response spectrum pro-
gressively shifts toward lower frequencies as more noise is
introduced. It is worth emphasizing that Figure 3B shows the
phase-locking of the measured neural response rather than
the reconstructed speech, and therefore is sensitive to both the
phase-locked response to speech and the phase-locked re-
sponse to the frozen background noise.

The cutoff frequency of response spectrum (Fig. 3C, estimated
by fitting each spectrum to a sigmoidal function) decreases
monotonically from 8.7 
 0.4 Hz to 7.0 
 0.5 Hz as the SNR
decreases from infinity (quiet background) to �6 dB. Between
�6 dB and �6 dB, the cutoff frequency decreases 0.72 
 0.29 Hz
every 6 dB (linear regression). Therefore, as the noise level rises,
the auditory system reduces its sensitivity to fast temporal mod-
ulations, allowing it disregard the increasingly stronger fast mod-
ulations introduced by the noise.

Temporal integration
An alternative measure of how the neural phase-locking depends
on SNR and frequency is to analyze the response phase locking as
a function SNR, at each frequency (Fig. 4A). At very low frequen-
cies (e.g., 2 Hz), the response is not affected by noise until the
lowest SNR of �9 dB. At higher frequencies (e.g., 6 and 8 Hz),
however, the response degrades immediately and continuously
with SNR. The SNR range within which intertrial correlation
remains stable is further probed using a one-way ANOVA test. At
2 Hz, the intertrial correlation is not significantly affected by SNR
from the quiet condition to �6 dB SNR (p � 0.5) but is affected
by SNR if the �9 dB SNR is included (p � 0.01). Similarly, at 4
and 6 Hz, respectively, the intertrial correlation is stable until �2
and �6 dB (p � 0.5), but not any lower SNRs (p � 0.01). The
stability of neural phase locking at lower, but not higher, frequen-
cies suggests that the long-term temporal integration is impor-
tant in maintaining a noise-robust neural representation.

To confirm the role of long-term integration in encoding
speech envelope, we again applied the neural reconstruction
analysis, but with a varying length time integration window. In
the analysis shown in Figure 2, the reconstruction of the stimulus

Figure 3. Neural encoding of temporal modulations. A, The power spectrum of the stimulus
envelope, at different SNRs. Each spectrum is normalized based on its power density at 0.1 Hz,
to emphasize changes in shape rather than scale. The modulation spectrum of speech in quiet
background (yellow) has the sharpest low-pass shape, and background noise increases the
proportion of the stimulus power in higher modulation rates. B, The phase-locking spectrum of
the neural response, which quantifies the reliability of the neural response at each frequency
under identical stimulus presentations using intertrial response correlation. The spectrum is
consistently low-pass in shape but with a cutoff frequency that decreases with poorer SNR. C,
The cutoff frequency of the phase-locking spectrum (not reliably estimable at �9 dB SNR)
decreases with SNR. Error bars indicate SEM over subjects.

Figure 4. Stability of cortical synchronization to speech depends on long-term temporal
integration. A, The phase locking of neural activity as a function of SNR. When SNR decreases
from�6 to�6 dB, the neural phase locking at very low frequencies (e.g., 2 Hz) is stable but the
neural phase locking at higher frequencies (e.g., 8 Hz) immediately and continuously decreases,
with intermediate trends of decrease at intermediate frequencies. B, Correlation between the
actual speech envelope and the envelope reconstructed based on the MEG response using
temporal integration windows of different sizes. The reconstruction accuracy is stable��6 dB
SNR only when the temporal integration window is �200 ms. The largest change in
reconstruction accuracy (�), which occurs at �6 dB SNR when the window size increases
from 100 to 200 ms.
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at each time moment is based on the response in a 500 ms time
window starting from that moment. When this window size is
allowed to vary, the reconstruction results show a strong depen-
dency on the integration time (Fig. 4B). At the poorer SNRs (e.g.,
�3 to �9 dB), the decoding results improve substantially when
the window of integration is allowed to increase in size from 100
to 200 ms. In the �6 dB to 6 dB SNR range, the reconstruction
accuracy is affected by SNR if the integration window is �200 ms
(p � 0.003, one-way ANOVA) but not affected by SNR if the
window is 
200 ms (p � 0.07, one-way ANOVA). This demon-
strates the importance of long-term (� 100 ms) integration in
decoding speech in a strong noise background.

TRF
To explicitly characterize how the spectrotemporal features of the
stimulus are encoded cortically as a function of time, and by
cortical area, for each MEG sensor we estimate a TRF, which
characterizes the time course of neural activity evoked by a unit
power increase of the stimulus (Ding and Simon, 2012b). Al-
though the neural reconstruction integrates responses over a
specified duration, the TRF describes the neural response at each
time lag between the stimulus and the response through decon-
volution. In the TRF analysis, the intensity contrast of the stim-
ulus is normalized separately for each SNR condition, to focus on
stimulus-dependent response properties separate from the (dra-
matic) contrast gain control. With the stimulus thus normalized,
an SNR-independent TRF amplitude would demonstrate a neu-
ral representation independent of the mean and variance (i.e.,
contrast) of the stimulus intensity.

The instantaneous TRF power, averaged over all MEG sen-
sors, is shown in Figure 5A, top. The onset latency of the TRF (the
earliest time point when the TRF amplitude passes the 99th per-
centile of the prestimulus TRF amplitude) is prolonged as the
noise level rises (Fig. 5A, bottom). This latency elongation is sta-
tistically significant because the relationship between onset la-
tency and SNR, when fitted by a line, has a significantly negative
slope (p � 0.001, bootstrap). The earliest two components of the
TRF, called the M50TRF and M100TRF, are extracted and further
analyzed.

A bilateral equivalent current dipole (ECD) based neural
source localization shows that the ECD source location of the
M100TRF is consistent with the ECD source location of the M100

evoked by a tone pip (no significant difference, p � 0.3, paired t
test), whereas the ECD position of the M50TRF is on average 11
mm more anterior than that of the M100 in both hemispheres
(p � 0.02 for the right hemisphere, p � 0.003 for the left hemi-
sphere, paired t test). The ECD position of the M50TRF is also on
average 10 mm (13 mm) more anterior than that of the M100TRF

in the left (right) hemisphere (statistically significant in the right
hemisphere only, p � 0.02, paired t test). The TRFs at the ECD
position of M50TRF and M100TRF are shown (stacked vertically by
SNR condition) in Figure 5B. The TRFs are averaged over the two
hemispheres because very similar results are seen in each. The
amplitude of the M50TRF decreases continuously with SNR,
whereas the amplitude of the M100TRF is insensitive to SNR until
the SNR decreases to �9 dB. A linear regression analysis shows
that, in between �6 dB and 6 dB SNR, the amplitude of the
M50TRF decreases 1.0 
 0.2 dB (significantly negative, p � 0.001,
bootstrap), whereas the amplitude of the M100TRF changes 0.0 

0.2 dB (not significantly) each 1 dB SNR change. The same re-
gression analysis reveals that the latency of the M50TRF increases
with decreasing SNR, with a change of 3.0 
 0.6 ms/dB.

Temporal modulations within frequency channels
In auditory cortex, temporal modulations in different carrier fre-
quency channels, called the narrowband envelopes, are repre-
sented by different neural populations, at least in tonotopically
organized areas. These different populations, however, cannot be
resolved using the current neural recording technique, and their
responses are mixed in the MEG recording as a large-scale re-
sponse following the broadband envelope of speech (Ding and
Simon, 2012a). In the analyses above, the noise-robust neural
representation contrasts the noise-sensitive broadband envelope.
There is a possibility, however, that only the broadband envelope
is vulnerable to noise, whereas the narrowband envelopes, which
cortical neurons actually encode, are more robust. If this were the
case, the noise-robust neural representation would naturally arise
from the extraction of narrowband envelopes that occur in the
cochlea rather than central mechanisms, such as contrast gain
control and changes in modulation sensitivity. To rule out this
possibility and to draw a possible link between the large-scale
neural representation of the broadband envelope and the local
neural network level representation of narrowband envelopes, in
the following, we examine how the narrowband envelopes of
speech are degraded by noise and whether the degradation is
similar to the degradation to the broadband envelope.

As is shown by Figure 6A, as the level of the background noise
rises, the narrowband envelopes in all carrier frequency channels
are weakened, and the loss in power is more severe at lower mod-
ulation rates. This effect is consistent with what is observed for
the broadband envelope although quantitatively weaker. There-
fore, the fact that the neural response is not weakened by noise at
low frequencies (Fig. 3B) cannot be the result of only selective
encoding of the narrowband envelopes in some carrier frequency
channels but requires contrast gain control within frequency
channels.

The background noise reduces the dynamic range of the nar-
rowband envelopes of speech and also distorts its shape. The
shape distortion is quantified using the correlation between the
envelope of a speech-noise mixture and the envelope of the orig-
inal clean speech. As is shown in Figure 6B, the noise-induced
distortion in the narrowband envelope is more severe than the
distortion in the broadband envelope, for the stationary noise
used in the current study. Furthermore, the noise-induced dis-
tortion is more severe at higher modulation rates, for both the

Figure 5. SNR-dependent temporal response function. A, The instantaneous TRF power,
summed over sensors. The TRFs from all SNR conditions are stacked vertically. The latency at
which the TRF amplitude surpasses the noise floor is shown in the bottom. The TRF onset is
significantly delayed by noise. B, The TRFs at the neural sources of the M50TRF and M100TRF

(top). The amplitude of the M50TRF decreases when the level of noise increases (compare with
the stimulus contrast index illustrated in Fig. 1B), whereas the amplitude of the M100TRF re-
mains stable until �9 dB SNR. Error bars indicate SEM over subjects.
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broadband and narrowband envelopes. Therefore, within carrier
frequency channels, reducing sensitivity to faster modulations is
still a valid strategy to maintain a robust neural representation of
speech. In summary, spectrally matched stationary noise affects
the narrowband envelope and the broadband envelope of speech
in qualitatively similar ways. Consequently, neural computations
suggested in the current study, such as contrast gain control and
adaptive processing of temporal modulations, are likely to reflect
computational processes occurring in local neural networks,
rather than mechanisms, such as selective encoding of certain
carrier frequency channels.

Discussion
By recording from human subjects listening to continuous
speech corrupted by a noise background, this study demonstrates
a background-insensitive neural representation of speech in au-
ditory cortex. The neural entrainment to very slow temporal
modulations (�4 Hz) of speech remains stable until the noise
background is more than twice as strong as the speech (�9 dB
SNR). The neural entrainment to relatively faster temporal mod-
ulations (4 – 8 Hz), however, appears to be more sensitive to
noise. Mechanistically, two distinct types of acoustic degradation
caused by noise background (i.e., the compression of stimulus
dynamic range and the distortion of fast temporal modulations)
are separately compensated for in the auditory system by contrast
gain control and a shift in modulation sensitivity.

Background invariant neural representations of speech
Here, we demonstrate that the neural synchronization to speech
in human auditory cortex is resilient to the strong energetic
masking of stationary noise. Previous studies have shown that the
neural synchronization is also resilient to the strong informa-
tional masking of a competing speech stream (Ding and Simon,
2012b; Mesgarani and Chang, 2012). Considering these results
together, it is now demonstrated that the cortical encoding of the
slow modulations of speech is robust to both energetic and infor-
mational masking, the two broad categories of acoustic interfer-
ence to speech, and therefore likely to occur in any listening
condition that allows speech recognition. This indicates that au-
ditory scene analysis (e.g., the segregation of an auditory object
from the acoustic background) is generally achieved at the level of
auditory cortex (Griffiths and Warren, 2004; Bar-Yosef and

Nelken, 2007; Shinn-Cunningham, 2008; Fishman and
Steinschneider, 2010; Shamma et al., 2011), and the auditory
object of the listener’s interest is selectively represented.

This robust neural encoding of slow temporal modulations is
only achievable by complex neural computations, including what
can be characterized as contrast gain control and long-term tem-
poral integration, as will be discussed in the following.

Contrast gain control in auditory cortex
The dynamic range of speech is severely compressed by acoustic
degradation caused by background noise and, for example, rever-
beration. The loss of dynamic range, however, has little effect on
speech recognition, especially if the shape of the temporal mod-
ulations is maintained (Stone et al., 2011), indicating an auditory
representation insensitive to dynamic range. Indeed, in single-
neuron studies with nonspeech stimuli, neural adaptation to the
mean and/or variance of sound intensity has been observed and
stronger gain control effects are seen along the ascending audi-
tory pathway (Dean et al., 2005; Robinson and McAlpine, 2009;
Watkins and Barbour, 2009; Wen et al., 2009; Zilany et al., 2009;
Rabinowitz et al., 2011).

In this study, a hierarchy of contrast gain control is seen in
auditory cortex. The early M50TRF component is significantly
weakened as the dynamic range of the stimulus is compressed by
background noise, reflecting incomplete contrast gain control.
The neural source location of the M50TRF is approximately con-
sistent with core auditory cortex because it is more anterior to the
neural sources of the M100 and M100TRF (Ding and Simon,
2012b; Hertrich et al., 2012), which are themselves localized to
posterior auditory cortex (Lütkenhöner and Steinsträter, 1998;
Ding and Simon, 2012b). The sensitivity to stimulus contrast has
been seen for the MEG auditory steady-state response to 40 Hz
amplitude modulations, which also has short latency and local-
izes to core auditory cortex (Ross et al., 2000). The auditory
steady-state response is substantially weakened by a reduction of
the stimulus modulation depth (Ross et al., 2000) or an increase
of the level of background noise, regardless of the subjects’ atten-
tional state (Okamoto et al., 2011). These MEG results are also
consistent with animal studies, which demonstrate that neurons
in core auditory cortex show contrast gain control but are still
sensitive to the modulation depth of the stimulus (Malone et al.,
2010; Rabinowitz et al., 2011).

In contrast, almost complete contrast gain control is seen in
the long latency M100TRF component, localized to posterior as-
sociation auditory cortex (Ding and Simon, 2012a, 2012b). When
the subjects actively listen to noise-corrupted speech, the ampli-
tude of the M100TRF remains unaffected for all SNRs ��9 dB.
Similarly, for subjects engaged in a syllable discrimination task,
the EEG N1 response to isolated syllables (latency near 100 ms) is
also stable to background noise, at least for positive SNRs
(Whiting et al., 1998; Kaplan-Neeman et al., 2006). This robust-
ness, however, is not observed during passive listening and there-
fore may require attention. For example, the EEG N1 response to
isolated syllables (Cunningham et al., 2001) or pure tones
(Billings et al., 2009) is significantly weakened by background
noise during passive listening. Similarly, the auditory steady-state
response evoked by slow amplitude modulations (e.g., at 4 Hz),
which has latency near 100 ms, also diminishes when the stimulus
modulation depth decreases, during passive listening (Rees et al.,
1986). In summary, neural adaptation to the dynamic range of
stimulus enhances along the ascending auditory pathway, even
from the shorter latency (�50 ms) response from core auditory

Figure 6. Noise-induced changes for the broadband and narrowband envelopes. A, Noise-
induced changes in the power spectrum of the envelopes. B, Noise-induced changes in the
shape of the temporal modulations. The changes in narrowband envelopes are shown by
the solid lines as an average over carrier frequency channels between 160 Hz and 3600 Hz. The
shaded area covers the fifth and the 95th percentile of the change in individual carrier frequency
channels. The noise-induced change in the broadband envelope is shown by the dashed lines.
The narrowband and the broadband envelopes are affected by the background noise in similar
ways, showing both noise-induced reduction in modulation power and distortions in shape.
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cortex to the longer latency (�100 ms) response from association
auditory cortex.

Encoding of slow temporal modulations and
long-term integration
As the SNR decreases, the very low-frequency (�4 Hz) neural
responses remain robust ��6 dB, whereas the higher frequency
(4 – 8 Hz) neural responses are continuously degraded (Fig. 4A).
This suggests that, in noisy environments, occurrences of stressed
syllables, reflected by very slow (� 4 Hz) temporal modulations
(Greenberg, 1999), are more reliably encoded in cortex than
faster linguistic structures, such as unstressed syllables and pho-
nemes. This selective neural encoding of very slow temporal
modulations can facilitate speech recognition in noise as the very
slow temporal modulations of speech are less distorted by noise
(Fig. 6B). More importantly, psychoacoustic and modeling stud-
ies have suggested that intelligibility of speech relies more on the
very slow modulations in the presence of stationary noise
(Füllgrabe et al., 2009; Jorgensen and Dau, 2011).

The stable neural encoding in low (1– 4 Hz) but not higher
(4 – 8 Hz) frequency ranges may be related to the intrinsic prop-
erties of cortical neural circuits because � (1– 4 Hz) and � (4 – 8
Hz) have been classified as distinct frequency bands for cortical
oscillations. The current results are consistent with the hypothe-
sis that � band activity is more strongly related to cognitive con-
trol of auditory processing whereas � band activity is more closely
tied to the physical properties of the sensory stimulus (Schroeder
et al., 2008; Schroeder and Lakatos, 2009).

The robust neural synchronization to slow, but not fast,
rhythms of speech reflects a change in the modulation transfer
function (i.e., cortical sensitivity to temporal modulations at dif-
ferent modulation rates). As SNR decreases, the cutoff frequency
of the stimulus spectrum increases while the cutoff frequency of
the response spectrum decreases. This clearly indicates a loss of
sensitivity to the noise-corrupted higher modulation rates (e.g.,
5–10 Hz). Similar changes of modulation sensitivity have been
shown in individual neurons from anesthetized animals: Neu-
rons in midbrain of both songbirds and gerbils are more sensitive
to higher modulation rates when stimulated by animal vocaliza-
tions than when stimulated by noise (Woolley et al., 2006; Lesica
and Grothe, 2008). In mammalian auditory cortex, the temporal
sensitivity of neurons can be further modulated by top-down
attention (Fritz et al., 2007).

Parsing of continuous speech and intelligibility
The neural synchronization to slow temporal modulations �4
Hz is more robust to noise than speech intelligibility and there-
fore is more likely to reflect the perception of the prosody of
speech, which is more robust than the recognition of phonemes
(Woodfield and Akeroyd, 2010). Even though the neural syn-
chronization to slow modulations is more robust to noise than
intelligibility and therefore not a good indicator of how intelligi-
bility is affected by noise, it does predict how well individual
subjects recognize speech in noise (Fig. 2C). This indicates that,
for the same noisy speech stimulus, subjects with a more faithful
auditory cortical representation of speech can understand it bet-
ter (for a discussion at the brainstem level, see Ruggles et al.,
2012). This correlation is especially informative because speech
recognition is a very complex process, involving extensive corti-
cal areas beyond auditory cortex (Scott et al., 2004). The relatively
high correlation (�0.8, between auditory encoding accuracy and
speech scores) indicates, for speech recognition in noise, a major

bottleneck lies in auditory processing (i.e., ability to extract
speech information from the acoustic background).

In conclusion, this study demonstrates that the cortical en-
trainment to the very slow rhythm of speech (� 4 Hz) is robust to
background noise. This indicates that, although the acoustic fea-
tures of speech are severely corrupted by background noise, a
nearly noise-invariant neural representation of the prosody of
speech is formed in auditory cortex, through complex neural
computations that include contrast gain control and adaptive
neural encoding of temporal modulations. Furthermore, the pre-
cision of cortical entrainment, which is variable over listeners,
provides a neural correlate of how well each listener can under-
stand speech in noise.
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Lütkenhöner B, Steinsträter O (1998) High-precision neuromagnetic study
of the functional organization of the human auditory cortex. Audiol Neu-
rootol 3:191–213. CrossRef Medline

Malone BJ, Scott BH, Semple MN (2010) Temporal codes for amplitude
contrast in auditory cortex. J Neurosci 30:767–784. CrossRef Medline

Mesgarani N, Chang EF (2012) Selective cortical representation of attended
speaker in multi-talker speech perception. Nature 485:233–236. CrossRef
Medline

Mosher JC, Baillet S, Leahy RM (2003) Equivalence of linear approaches in
bioelectromagnetic inverse solutions. Paper presented at IEEE Workshop
on Statistical Signal Processing, September 28 –October 1, St. Louis.

Nelken I, Rotman Y, Bar Yosef O (1999) Responses of auditory-cortex neu-
rons to structural features of natural sounds. Nature 397:154 –157.
CrossRef Medline

Okamoto H, Stracke H, Bermudez P, Pantev C (2011) Sound processing
hierarchy within human auditory cortex. J Cogn Neurosci 23:1855–1863.
CrossRef Medline

Oldfield RC (1971) The assessment and analysis of handedness: the Edin-
burgh inventory. Neuropsychologia 9:97–113. CrossRef Medline

Rabinowitz NC, Willmore BD, Schnupp JW, King AJ (2011) Contrast gain
control in auditory cortex. Neuron 70:1178 –1191. CrossRef Medline

Rees A, Green G, Kay R (1986) Steady-state evoked responses to sinusoidally
amplitude-modulated sounds recorded in man. Hearing Res 23:123–133.
CrossRef Medline

Robinson BL, McAlpine D (2009) Gain control mechanisms in the auditory
pathway. Curr Opin Neurobiol 19:402– 407. CrossRef Medline

Rosen S (1992) Temporal information in speech: acoustic, auditory and
linguistic aspects. Philos Trans R Soc Lond B Biol Sci 336:367–373.
CrossRef Medline

Ross B, Borgmann C, Draganova R, Roberts LE, Pantev C (2000) A high-
precision magnetoencephalographic study of human auditory steady-
state responses to amplitude-modulated tones. J Acoust Soc Am 108:679 –
691. CrossRef Medline

Ruggles D, Bharadwaj H, Shinn-Cunningham BG (2012) Why middle-aged
listeners have trouble hearing in everyday settings. Curr Biol 22:1858.
CrossRef Medline

Schroeder CE, Lakatos P (2009) Low-frequency neuronal oscillations as in-
struments of sensory selection. Trends Neurosci 32:9 –18. CrossRef
Medline

Schroeder CE, Lakatos P, Kajikawa Y, Partan S, Puce A (2008) Neuronal
oscillations and visual amplification of speech. Trends Cogn Sci 12:
106 –113. CrossRef Medline

Scott SK, Rosen S, Wickham L, Wise RJ (2004) A positron emission tomog-
raphy study of the neural basis of informational and energetic masking
effects in speech perception. J Acoust Soc Am 115:813– 821. CrossRef
Medline

Shamma SA, Elhilali M, Micheyl C (2011) Temporal coherence and atten-
tion in auditory scene analysis. Trends Neurosci 34:114 –123. CrossRef
Medline

Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M (1995) Speech
recognition with primarily temporal cues. Science 270:303–304. CrossRef
Medline

Shinn-Cunningham BG (2008) Object-based auditory and visual attention.
Trends Cogn Sci 12:182–186. CrossRef Medline
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