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A visual scene is perceived in terms of visual objects. Similar ideas
have been proposed for the analogous case of auditory scene
analysis, although their hypothesized neural underpinnings have
not yet been established. Here, we address this question by re-
cording from subjects selectively listening to one of two competing
speakers, either of different or the same sex, using magneto-
encephalography. Individual neural representations are seen for
the speech of the two speakers, with each being selectively phase
locked to the rhythm of the corresponding speech stream and
from which can be exclusively reconstructed the temporal enve-
lope of that speech stream. The neural representation of the
attended speech dominates responses (with latency near 100 ms)
in posterior auditory cortex. Furthermore, when the intensity of
the attended and background speakers is separately varied over
an 8-dB range, the neural representation of the attended speech
adapts only to the intensity of that speaker but not to the intensity
of the background speaker, suggesting an object-level intensity gain
control. In summary, these results indicate that concurrent auditory
objects, even if spectrotemporally overlapping and not resolvable at
the auditory periphery, are neurally encoded individually in auditory
cortex and emerge as fundamental representational units for top-
down attentional modulation and bottom-up neural adaptation.
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In a complex auditory scene, humans and other animal species
can perceptually detect and recognize individual auditory

objects (i.e., the sound arising from a single source), even if strongly
overlapping acoustically with sounds from other sources. To ac-
complish this remarkably difficult task, it has been hypothesized
that the auditory system first decomposes the complex auditory
scene into separate acoustic features and then binds the features, as
appropriate, into auditory objects (1–4). The neural representa-
tions of auditory objects, each the collective representation of all
the features belonging to the same auditory object, have been
hypothesized to emerge in auditory cortex to become fundamental
units for high-level cognitive processing (5–7). The process of
parsing an auditory scene into auditory objects is computationally
complex and cannot as yet be emulated by computer algorithms
(8), but it occurs reliably, and often effortlessly, in the human
auditory system. For example, in the classic “cocktail party prob-
lem,” where multiple speakers are talking at the same time (9),
human listeners can selectively attend to a chosen target speaker,
even if the competing speakers are acoustically more salient (e.g.,
louder) or perceptually very similar (such as of the same sex) (10).
To demonstrate an object-based neural representation that

could subserve the robust perception of an auditory object, several
key pieces of evidence are needed. The first is to demonstrate
neural activity that exclusively represents a single auditory object
(4, 7). In particular, such an object-specific representation must be
demonstrated in a range of auditory scenes with reliable percep-
tion of that auditory object, and especially in challenging scenarios
in which the auditory object cannot be easily segregated by any
basic acoustic features, such as frequency or binaural cues. For this
reason, we investigate the existence of object-specific auditory
representations by using an auditory scene consisting of a pair of

concurrent speech streams mixed into a single acoustic channel. In
this scenario, the two speech streams each form a distinct per-
ceptual auditory object but they overlap strongly in time and fre-
quency, and are not separable using spatial cues. Therefore, any
neural representation of an auditory object (i.e., in this case,
a single stream of speech) would not emerge without complex
segregation and grouping processes.
Second, the neural processing of an auditory object must also

be adaptive and independent (2, 4). In particular, the neural
processing of each auditory object should be modulated based on
its own behavioral importance and acoustic properties, without
being influenced by the properties of other auditory objects or
the stimulus as a whole. Building on the well-established phe-
nomena of feature-based top-down attentional modulation (11–
14) and feature-based bottom-up neural adaptation to sound
intensity (15), we investigate here whether such top-down and
bottom-up modulations occur separately for individual auditory
objects (i.e., in an object-based manner). Specifically, using this
speech segregation paradigm, we ask the listeners to attend to
one of the two speakers while manipulating separately the in-
tensity of the attended and background speakers. If an observed
neural representation is object-based, not only must it be en-
hanced by top-down attention but it must adapt to the intensity
change of that speech stream alone, without being affected by the
intensity change of the other stream or of the mixture as a whole.
In this study, we investigate whether a robust neural repre-

sentation of an auditory object can be observed in the brain, and
when and where it might emerge. In the experiment, the subjects
selectively listened to one of two concurrent spoken narratives
mixed into a single acoustic channel, answering comprehension
questions about the attended spoken narrative after each 1-min
stimulus. The neural recordings were obtained using magneto-
encephalography (MEG), which is well suited to measure spa-
tially coherent neural activity synchronized to speech rhythms
(i.e., the slow temporal modulations that define the speech en-
velope) (16–19). Such spatially coherent phase-locked activity is
strongly modulated by attention (20–22) and has been hypoth-
esized to play a critical role in grouping acoustic features into
auditory objects (3).
Specifically, we hypothesize that in cortical areas with an ob-

ject-based representation, neural activity should phase lock to
the rhythm of a single auditory object, whereas in cortical areas
in which object-based representations are not yet formed, or
formed only weakly, the neural response should phase lock to the
envelope of the entire physical stimulus (i.e., the speech mixture)
(both examples are illustrated in Fig. 1 A and B). In other words,
what is encoded in the neural response, whether a single speech
stream or the mixture, can be easily distinguished by which sound’s
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rhythm it is synchronized to. Critically, bottom-up neural adaptation
to sound intensity is also investigated. Neural adaptation also
determines whether a neural representation is object-based based
or not, depending on which sound stream (or mixture) the neural
representation adapts to. We do this by analyzing the phase-
locked neural activity when the intensity of the attended speaker
and the background speaker is manipulated separately (Fig. 1C).
These hypothesized, object-specific neural representations are
investigated and revealed, using single-trial neural recordings and
an advanced neural decoding method that parallels state-of-the-
art analysis methods used in functional MRI (fMRI) (23) and
intracranial recording (24, 25).

Results
Deciphering the Spatial-Temporal Code for Individual Speakers. In
the first experiment, listeners selectively listened to one of two
competing speakers of different sex, mixed into a single acoustic
channel with equal intensity. To probe object-specific neural rep-
resentations, we reconstructed the temporal envelope of each of
the two simultaneous speech streams by optimally integrating
MEG activity over time and space (i.e., sensors). Such a recon-
struction of the envelope of each speech stream, rather than the
physical stimulus, can be successful only if the stimulus mixture is
neurally segregated (“unmixed”) and the speech streams of the two
speakers are represented differentially. We first reconstructed the
temporal envelope of the attended speech. Fig. 2A shows repre-
sentative segments of the different envelopes reconstructed by this
decoder, from listeners hearing the identical speech mixture but
attending to different speakers in it. Clearly, the reconstructed
envelope depends strongly on the attentional focus of the listener
and resembles the envelope of the attended speech. At the single-
subject level and the single-trial level, the reconstructed envelope is

more strongly correlated with the envelope of the attended speaker
than of the unattended speaker (P < 0.001, paired permutation
test; Fig. 2B, Left). This attention-dependent neural reconstruction
is seen in 92% of trials (Fig. S1).
We also reconstructed the temporal envelope of the back-

ground speech using a second decoder that integrates neural
activity spatiotemporally in a different way. The result of this
reconstruction is indeed more correlated with the envelope of the
background speech rather than of the attended speech (P < 0.005,
paired permutation test; Fig. 2B, Right). Therefore, by integrating
the temporal and spatial neural responses in two distinct ways, the
attended and background speech can be successfully decoded
separately. On average, the reconstruction for the background
speech is more correlated with the background speech in 73% of
the trials from individual subjects (Fig. S1; significantly above
chance level; P < 0.002, binomial test). In this experiment, the
speakers are of opposite sex, but the neural representations of
segregated speech streams can be similarly demonstrated even for
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Fig. 1. Illustration of object-based neural representations. Here, the audi-
tory scene is illustrated using a mixture of two concurrent speech streams.
(A) If a complex auditory scene is not neurally parsed into separate auditory
objects, cortical activity (Upper, curve) phase locks to the temporal envelope
of the physical stimulus [i.e., the acoustic mixture (Lower, waveform)]. (B) In
contrast, using the identical stimulus (but illustrated here with the unmixed
instances of speech in different colors), for a hypothetical neural represen-
tation of an individual auditory object, neural activity would instead selec-
tively phase lock to the temporal envelope only of that auditory object. (C)
Neural representation of an auditory object should, furthermore, neurally
adapt to an intensity change of its own object (Upper) but should remain
insensitive to intensity changes in another auditory object (Lower). Neither of
these modifications to the acoustic stimulus therefore significantly changes the
neural representation (comparing A and C ).
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Fig. 2. Decoding the cortical representation specific to each speech stream.
(A) Examples of the envelope reconstructed from neural activity (black),
superimposed on the actual envelope of the attended speech when pre-
sented in isolation (gray). (Upper and Lower) Different envelopes are
decoded from neural responses to identical stimuli, depending on whether
the listener attends to one or the other speaker in the speech mixture, with
each resembling the envelope of the attended speech. Here, the signals, 5 s
in duration, are averaged over three trials for illustrative purposes, but all
results in the study are based on single-trial analysis. (B) Two separate
decoders reconstruct the envelope of the attended and background speech,
respectively, from their separate spatial-temporal neural responses to the
speech mixture. The correlation between the decoded envelope and the
actual envelope of each speech stream is shown in the bar graph (averaged
over trials and speakers), with each error bar denoting 1 SEM across subjects
(**P < 0.005, paired permutation test). The separate envelopes reconstructed
by the two decoders selectively resemble that of attended and background
speech, demonstrating a separate neural code for each speech stream.
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the more challenging scenario where the two speakers are of the
same sex (Fig. S2). Consequently, these results demonstrate that
the neural representation in auditory cortex goes beyond encoding
just the physically presented stimulus (the speech mixture) and
shows selective phase locking to auditory objects (Fig. S3).

Robustness to the Intensity of Either Speaker.When the intensity of
either of the two competing speaker changes, up to 10 dB, hu-
man listeners can still understand either speaker with more than
50% intelligibility (10). Intensity gain control may contribute to
this robustness in speech perception. Here, we address whether
intensity gain control occurs globally for an auditory scene or
separately for each auditory object. In a second Varying-Loudness
experiment, the intensity level of one speech stream, either the
attended or the background, is kept constant, whereas the other is
reduced (up to 8 dB). Under this manipulation, the intensity ratio
between the attended and background speakers [i.e., the target-to-
masker ratio (TMR)] ranges between −8 dB and 8 dB.
To distinguish how different intensity gain control mechanisms

would affect the neural representation of each speech stream, we
simulate possible decoding outcomes (SI Methods). The MEG
activity is simulated by the sum of activity precisely phase locked
to each speech stream and interfering stimulus-irrelevant back-
ground activity. The strength of the phase-locked activity is
normalized by either the strength of whole stimulus, for a global
gain control mechanism, or the strength of the encoding auditory
object, for an object-based gain control mechanism. The simulated
decoding outcomes under different gain control mechanisms are
shown in Fig. 3A.
The neural decoding from actual MEG measurements is

shown in Fig. 3B. For the decoding of the attended speech, the
decoded envelope is significantly more correlated with the en-
velope of the attended speech [P < 0.004, F(1,71) = 25.8, at-
tentional focus × TMR two-way repeated measures ANOVA],
and this correlation is not affected by TMR. The result is con-
sistent with the object-based gain control model rather than with
the global gain control model. Similarly, the neural decoding of
the background speech is also affected by the attentional focus
[P < 0.02, F(1,71) = 14.65, higher correlation with the back-
ground speech, two-way ANOVA], without interaction between
attention and TMR. Consequently, the neural representation of
a speech stream is stable both against the intensity change of that
stream and against the intensity change of the other stream,
consistent with the hypothesized object-specific gain control
(compare the examples shown in Fig. 1C).

Spatial Spectrotemporal Response Function and Neural Sources. The
decoding analysis above integrates neural activity, spatiotempo-
rally, to reveal an object-specific neural representation optimally.
To characterize the neural code that the decoder extracts in-
formation from, we analyze the neural encoding process via the
spectrotemporal response function (STRF) for each MEG sensor
(26, 27). The linear STRF and the linear decoder are, respectively,
the forward and backward models describing the same relation-
ship between the stimulus and neural response. Nevertheless, only
the forward STRF model can reveal the timing and spatial in-
formation of the neural encoding process.
The STRF functionally describes how the spectrotemporal

acoustic features of speech are transformed into cortical responses.
It deconvolves the neural activity evoked by the continuous enve-
lope of speech. In this STRF model, the encoding of each speech
stream is modeled using the auditory spectrogram (28) of the
unmixed speech signal with unit intensity. The STRF shows the
neural response to sound features at different acoustic (i.e., carrier)
frequencies (as labeled by the y axis). At any given frequency, the
horizontal cross-section of the STRF (e.g., Fig. 4A) characterizes
the time course of the neural response evoked by a unit power
increase of the stimulus at that frequency for one MEG sensor.

The MEG STRF contains two major response components
(Fig. S4): one with latency near 50 ms, here called the M50STRF,
and the other with latency near 100 ms, here called the
M100STRF. This indicates that two major neural response com-
ponents continuously follow the temporal envelope of speech,
with delays of 50 ms and 100 ms, respectively. Because an STRF
is derived for each MEG sensor, the neural source locations of
the M50STRF and M100STRF can be estimated based on the
distribution over all sensors of the strength of each component
(i.e., the topography of the magnetic fields at each latency). An
equivalent current dipole (ECD)-based neural source analysis
reveals that the M50STRF and M100STRF responses arise from
different neural sources (SI Methods), with the source of
M100STRF being 5.5 ± 1.5 mm and 7.1 ± 2.0 mm more posterior
in the left and right hemispheres, respectively (Fig. 4B; P < 0.005
for both hemispheres, paired t test). The ECD location of the
neural source of the M100STRF peak is consistent with that ob-
served for the M100 response to tone pips, localized to the su-
perior temporal gyrus and roughly in the planum temporale (29).
The amplitudes of the M50STRF and M100STRF are further an-

alyzed in the neural source space, based on the STRF at the ECD
location of each component. The amplitude of the M100STRF is
much stronger for the attended speech than for the background
speech [Fig. 4A; P < 0.007, F(1,87) = 11.85, attentional focus ×
hemisphere × speaker, three-way repeated-measures ANOVA].
The amplitude of the M50STRF is, in contrast, not significantly
modulated by either attention or TMR. The latency of the M50STRF
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Fig. 3. Decoding the attended speech over a wide range of relative in-
tensity between speakers. (A) Decoding results simulated using different
gain control models. The x axis shows the intensity of the attended speaker
relative to the intensity of the background speaker. The red and gray curves
show the simulated decoding results for the attended and background
speakers, respectively. Object-based intensity gain control predicts a speaker
intensity invariant neural representation, whereas the global gain control
mechanism does not. (B) Neural decoding results in the Varying-Loudness
experiment. The cortical representation of the target speaker (red sym-
bols) is insensitive to the relative intensity of the target speaker. The
acoustic envelope reconstructed from cortical activity is much more cor-
related with the attended speech (red symbols) than the background speech
(gray symbols). Triangles and squares are results from the two speakers,
respectively.
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and M100STRF is also modulated by attention [P < 0.03, F(1,87) > 7
for both peaks, three-way repeated-measures ANOVA] and is, on
average, 11 and 13 ms shorter, respectively, when attended.
The temporal profile of the STRF in the Varying-Loudness

experiment is shown in Fig. 4C, which is extracted by applying
singular value decomposition to the STRF. The M100STRF is
significantly modulated by attention [P < 0.03, F(1,143) = 9.4,
attentional focus × hemisphere × speaker × TMR, four-way
repeated-measures ANOVA], whereas the M50STRF is not.
Neither response component is affected by TMR (compare the
examples shown in Fig. 1C). The invariance of the M50STRF and
M100STRF to the intensity of both the attended and background
speech streams provides further evidence for the hypothesized
object-specific gain control.

Discussion
This study investigates whether a multisource auditory scene,
perceptually represented in terms of auditory objects, is neurally
represented in terms of auditory objects as well. From subjects
selectively listening to one of two spectrotemporally overlapping
speech streams, we do observe neural activity selectively syn-
chronized to the speech of a single speaker (as is illustrated in
Fig. 1B). Furthermore, in an ecologically valid listening setting,
this selective representation of an individual speech stream is
both modulated by top-down attention and normalized by the
intensity of that sound stream alone (as is illustrated in Fig. 1C).
In sum, this meets all the criteria of an object-based represen-
tation, [e.g., those specified by Griffiths and Warren (4)]: The
observed neural representation is selective to the sound from
a single physical source, is minimally affected by competing
sound sources, and is insensitive to perceptually unimportant
acoustic variations of the stimulus (e.g., changes in intensity).

Temporal Coherence, Attention, and Object-Based Representations.
The object-specific representations seen here are precisely syn-
chronized to the temporal envelope of speech. In speech and

natural sounds in general, the temporal envelope synchronizes
various acoustic features, including pitch and formant structures.
Therefore, they provide important cues for perceptual auditory
grouping (30) and are critical for robust speech recognition. For
example, major speech segregation cues, such as pitch, are not
sufficient for speech recognition, whereas acoustic features nec-
essary for speech recognition (e.g., the spectrotemporal envelope)
are not easily distinguishable between speakers. A solution to this
dilemma would be to group acoustic features belonging to the
same auditory object, both speech segregation and intelligibility-
relevant cues, through temporal coherence analysis, and then to
process selectively the attended auditory object as a whole (3). In
other words, the auditory cortex selects the attended speech
stream by amplifying neural activity synchronized to the coherent
acoustic variations of speech (i.e., the envelope). This idea is
highly consistent with the large-scale synchronized and object-
specific activity seen in this study.
At the neuronal mechanistic level, it is plausible that the low-

frequency, phase-locked neural activity binds features belonging
to the same object by regulating the excitability of neurons, such
that a given neural network will be more responsive when pro-
cessing features from the corresponding auditory object (22).
Furthermore, such a rhythmic regulation of neuronal excitability
may also contribute to the segmentation of continuous speech
into perceptual units (e.g., syllables) (16).

Hierarchical Processing of Auditory Objects in Auditory Cortex.Of the
two major neural response components that track the speech en-
velope, the M100STRF is much more strongly modulated by at-
tention than the M50STRF. These two neural response components
track the speech envelope with different latencies and are gener-
ated from distinct neural sources. Based on their positions relative
to the neural source of the M100 (29), the centers of neuronal
current generating the M50STRF and M100STRF are dominantly
from Heschl’s gyrus and the planum temporale, respectively (31).
The latency and source location of the two components demon-
strate a hierarchy of auditory processing (32, 33), and the repre-
sentation of the attended object becomes dominant from shorter to
longer latency activity and from core to posterior auditory cortex.
Therefore, although auditory object representations may start to
emerge as early as primary auditory cortex (7), the top-down at-
tentional modulation of the large-scale, object-based neural rep-
resentation may emerge most strongly with later processing.
The routing of the neural processing of the attended auditory

object into posterior auditory cortex may generally underlie the
selection of auditory information when there are competing
spectrotemporally complex auditory objects. MEG studies have
shown that selectively listening to sound embedded in a complex
auditory scene modulates longer latency (∼100–250 ms) responses
in association auditory cortex but not the shorter latency (∼50 ms)
steady-state response in core auditory cortex (21, 34, 35), as is also
the case for MEG/EEG responses to transient sounds (13, 36–38).
PET studies also indicate that the areas posterior to core auditory
cortex are more activated when speech is interfered by temporally
modulated noise than stationary noise (39, 40), because modu-
lated noise contains speech-like features and requires additional
processes of information selection. Furthermore, a recent fMRI
study has shown that in a multitalker environment, the planum
temporale is increasingly activated when the number of in-
formation sources (i.e., speakers) increases (41). Taken together,
these results support the idea that posterior auditory cortex plays
a major role in the generation of auditory objects (42, 43) and the
selection of information based on the listener’s interest (25, 44).

Neural Adaptation to the Intensity of Individual Auditory Object. The
recognition of speech relies on the shape of its spectrotemporal
modulations and not its mean intensity. This study demonstrates
that cortical activity is precisely phase locked to the temporal
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modulations but insensitive to the mean intensity of the speech
streams, and therefore is effectively encoding only the shape of
the modulations. Intensity gain control has been demonstrated in
multiple stages of the auditory system (15) and constitutes an au-
ditory example of neural normalization, which has been suggested
as a canonical neural computation (45). For example, in the co-
chlear nucleus, neurons encode the shape of the spectral modu-
lation of speech (e.g., a vowel) invariantly to its mean intensity (46).
Critically different from these previous studies, however, the

encoding of temporal modulations seen here is invariant to the
intensity of each speech stream rather than the overall intensity
of the mixture. In the Varying-Loudness experiment, the in-
tensity of one speaker changes, whereas the other is kept con-
stant. Maintaining a stable representation despite the altered
speech requires the observed neural adaptation to the sound
intensity of the specific speech stream. The stable representation
of the constant speaker, in contrast, requires the observed lack of
adaptation to the overall intensity of the sound mixture, which
covaries with the intensity of the altered speech. These both
contrast with the simpler mechanism of global intensity gain
control, which would require the neural representation of both
speech streams to be modulated in the same way based on the
overall intensity of the acoustic stimulus. Therefore, the data
strongly suggest the existence of an object-specific intensity gain
control, which normalizes the strength of neural activity based on
the intensity of individual auditory objects.
In sum, this study demonstrates the key signatures of an ob-

ject-specific neural representation arising from the analysis of
a complex auditory scene. Such an object-specific neural repre-
sentation is phase locked to the slow rhythms (<10 Hz) of the
encoded auditory object, and it adapts to the intensity of that
object alone. Under the modulation of top-down attention, the
auditory response in posterior auditory cortex (latency near 100 ms)
dominantly represents the attended speech, even if the competing
speech stream is physically more intense. This object-specific au-
ditory representation provides a bridge between feature-based,
precisely phase-locked sensory responses and interference-resilient
cognitive processing and recognition of auditory objects.

Methods
Subjects, Stimuli, and Procedure. Twenty normal-hearing, right-handed, young
adult native speakers of American English (between 18 and 26 y old) partici-
pated in the experiment in total. Eleven (5 female) participated in the Equal-
Loudness experiment, 6 (3 female) participated in the Varying-Loudness ex-
periment, and 3 (2 female) participated in the Same-Sex experiment.

The stimuli contain three segments from the book A Child’s History of
England by Charles Dickens, narrated by three different readers (2 female).

Each speech mixture was constructed by mixing the two speakers digitally in
a single channel and was then divided into sections with a duration of 1 min.
All stimuli were delivered identically to both ears using tube phones plug-
ged into the ear canals. In the Equal-Loudness and Varying-Loudness ex-
periments, the two simultaneous speakers were of opposite sex (mean pitch
separation of 5.5 semitones). In the Equal-Loudness experiment, the two
speakers were mixed, with equal rms values of sound amplitude. The sub-
jects were instructed to focus on only one speaker and to answer questions
related to the comprehension of the passage they focused on. In the Vary-
ing-Loudness experiment, the stimuli were mixtures of the same two
speakers. The intensity of one speaker was fixed, whereas the intensity of
the other speaker was either the same or was −5 or −8 dB weaker. The
Same-Sex experiment used mixtures of speakers of the same sex. Details of
the three experiments are included in SI Methods.

Data Recording and Processing. The neuromagnetic signal was recorded using
a 157-channel, whole-head MEG system (KIT) in a magnetically shielded
room, with a sampling rate of 1 kHz. The ongoing neural response (excluding
the first second) during each 1-min stimulus was filtered between 1 and 8 Hz
(21), downsampled to 40 Hz, and was then used for the decoding and
STRF analysis.

The temporal envelope of each speaker in the stimulus was decoded by
linearly integrating the spatial-temporal brain activity. The decoder was
optimized so that the decoded envelope was maximally correlated with the
speaker to decode and minimally correlated with the other speaker (SI
Methods). All correlations in this study were measured by the absolute value
of the Pearson’s correlation coefficient. The decoder optimized in this way
was a discriminative model that reconstructed an envelope similar to one
speaker but distinct from the other, and it was therefore used to explore the
neural code unique to each speaker. The decoder was applied to individual
trials, and the percentage of trials where decoding was successful (decoded
envelope being more correlated with the intended speaker) is always
reported as the grand average. This decoding approach effectively explores
both the spatial and temporal information in MEG and avoids the sometimes
ill-posed problem of estimating the neural source locations.

The STRF was used to model how speech features are encoded in the MEG
response (21), in contrast to how the decoders transform MEG activity (back-
ward) to speech features. A single STRF transforms the spectrotemporal fea-
tures of speech to a single-response waveform. Therefore, because of the
multichannel nature of MEG, a complete forward model is described as a 3D
spatial-STRF model (MEG sensor position × frequency × time). The MEG re-
sponse was modeled as the sum of the responses to individual speakers, with
each having unit intensity (more details about STRF estimation are provided in
SI Methods). The MEG data were averaged over trials in the STRF analysis for
each stimulus and attentional condition.
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SI Methods
Subjects, Stimuli, and Procedures. All subjects were paid for their
participation. The experimental procedures were approved by the
University of Maryland Institutional Review Board. Written in-
formed consent form was obtained from each subject before the
experiment.
The stimuli consisted of three chapters from a public domain

narration of the book A Child’s History of England by Charles
Dickens (http://librivox.org/a-childs-history-of-england-by-charles-
dickens/). The first was chapter 3, read by a male speaker, and the
others were chapter 8 and chapter 22, read by two different female
speakers. All speaker pauses (periods of silence longer than 300
ms) were shortened to 300 ms to keep the speech streams flowing
continuously, and all stimuli were low-pass-filtered below 4 kHz.
The subjects were required to close their eyes when listening.

Before each main experiment, 100 repetitions of a 500-Hz tone
pip were presented to each subject to elicit the M100 response,
a reliable auditory response measured 100 ms after the onset of
a tone pip andwhose neural source is easy to localize within auditory
cortex (1). Three main experiments were conducted as follows.
Equal-Loudness experiment.The stimulus was amixture of two spoken
narratives with equal rms values. The subjects were instructed to
focus on one speaker (speaker 1, male; speaker 2, female) until
the stimulus was finished and then to switch focus to the other
speaker while the same stimulus was played again. The same
process was repeated three times, resulting in three trials with an
identical stimulus and attentional focus. Each trial contained two
1-min duration sections. To help the listeners attend to the correct
speaker, the first second of each section was replaced by the clean
recording from the target speaker. The speaker attended to first
was counterbalanced across subjects. After each section, the sub-
jects were asked to answer a question related to the comprehension
of the passage they had just attended to. On average, 69% of the
questions were correctly answered [not depending on the number
of trials; P > 0.8, F(2,32) = 0.2, one-way repeated measures
ANOVA]. After this part of the experiment, the unmixed stimuli
(each speaker alone) were presented to the listeners four times.
Comprehension questions were interspersed occasionally to
ensure the subjects were awake during the whole experiment.
Varying-Loudness experiment. In this experiment, the intensity of
speaker 2 was fixed at roughly 75 dB sound pressure level (SPL)
and speaker 1 was mixed at either the same intensity, as eval-
uated by rms value, or at an intensity 5 dB or 8 dB lower.
Therefore, when speaker 1 was attended, the attended speaker
had constant intensity, whereas the background speaker was
reduced. In contrast, when speaker 2 was attended, the back-
ground speaker was kept constant, whereas the attended
speaker was damped. The target-to-masker ratio (TMR) varied
overall from −8 dB to 8 dB. At each TMR, two sections, each
1 min in duration, were presented, after each of which a question
was asked. The listeners correctly answered 71% of the questions
asked after each minute of listening, which did not significantly
vary with TMR (P > 0.7, one-way repeated measures ANOVA),
indicating that the listeners understood the story without any
obvious difficulty, even when the acoustics of stimulus changed
dramatically.
The experiment was divided into four blocks, with attention

switching from one speaker to the other after each block. For half
the subjects, in block 1 the listener focused on speaker 1 and in
block 2 the listener focused on speaker 2. In this case the block 1
stimuli were (in presentation order): two sections of clean speech
from speaker 1, two sections of speaker 1 mixed with speaker 2

at 8 dB TMR, two sections of speech mixed with 5 dB TMR, and
two sections of speech mixed with 0 dB TMR. The block 2 stimuli
were (in presentation order): two sections of clean speech from
speaker 2, two sections of speaker 2 mixed with speaker 1 at 0 dB
TMR, two sections of speech mixed with -5 dB TMR, and two
sections of mixed speech mixed with -8 dB TMR. Blocks 3 and 4
were identical to blocks 1 and 2. For the other half of the subjects,
the roles of the speakers were switched. The story continued
naturally throughout each block. Such an experimental design
produces two trials, from alternative blocks, for each section
for each attentional condition. Five of the six subjects in this
experiment were asked to rate subjectively what percentage of
words was correctly recognized after they first listened to each
stimulus. The averaged subjective speech intelligibility is 88%,
80%, 68%, 60%, and 48% at 8 dB, 5 dB, 0 dB, −5 dB, and −8 dB
TMR, respectively, which varies significantly with TMR [P < 10−4,
F(4,24) = 12.6, one-way repeated measures ANOVA].
Same-Sex experiment. The two chapters read by female speakers
were mixed digitally with equal intensity and then divided into six
30-s sections. The average pitch of the two speakers differed by
3.2 semitones (2). The subjects were instructed to focus on one
speaker throughout the six sections and then to switch attention
to the other speaker when all the sections were played again.
This whole process was repeated again, resulting in two trials
for each attentional state. To help the subjects identify which
speaker to focus on, the first 5 s of each section were replaced by
clean speech from the target speaker; therefore, the neural re-
cording of the first 5 s was not included in any analysis. A story
comprehension question was asked after each session.
Additionally, each listener went through two initial training

sessions before attending to each speaker. In the first session, the
nonattended speaker was turned on gradually, using a sigmoidal
ramp that saturated after 20 s. The second session used stimuli
with the same intensity as the stimuli used in the experiment. The
training sessions were repeated on the subjects’ request to make
sure the subjects were able to identify and focus on the target
speaker after the last training session.

Data Recording.A 200-Hz, low-pass filter and a notch filter at 60 Hz
were applied to the MEG recording online. Three reference
magnetic sensors and three vibrational sensors were used to
measure the environmental magnetic field and vibrations, and
were also utilized to denoise the magnetoencephalography (MEG)
signals (3). Five electromagnetic coils were used to measure each
subject’s head position inside the MEG machine.

Spectrotemporal Response Function Model. The spectrotemporal
representations of the speech streams of the two speakers are
denoted as SA(f, t) and SB(f, t), respectively, and the MEG re-
sponse is denoted as r(t,k), where k is an index for MEG sensors.
The linear spectrotemporal response function (STRF) model
can then be formulated as

rðt; kÞ ¼ P
f
P

τ STRFA ð f ; τ; kÞSA ð f ; t− τÞ
þP

f
P

τ STRFB ð f ; τ; kÞSB ð f ; t− τÞ þ εðt; kÞ;

where STRFA(f,t,k) and STRFB(f,t,k) are STRFs for the attended
and background speech, respectively, for every MEG sensor
and ε(t,k) is the residual response waveform not explained by
the STRF model. The spectrotemporal representations of the
speech of the two speakers were calculated from unmixed speech
using an auditory filter-bank model (4). The amplitude of the
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stimulus, SA(f, t) and SB(f, t), is represented in logarithmic am-
plitude scale (i.e., in decibels). The mean amplitude of the en-
velope of each speech stream is normalized to 0 dB, because in a
linear model like the STRF, the mean of the stimulus is repre-
sented by the dc component of the neural response, which is not
reliably measurable by MEG. In other words, SA(f, t) and SB(f, t)
are independent of the actual intensity of either speech stream.
Therefore, the amplitude of the STRFs should covary with the
intensity of either speech stream, unless the change of stimulus
intensity is compensated by the auditory system in an object-based
manner.
The STRF model was applied separately to individual sensors.

For the sake of computational efficiency, however, the 157-
channel MEG dataset was dimensionally reduced to 30 channels
when estimating the STRF, using denoising source separation
(DSS) (5), but was then transformed back to the MEG sensor
space. Each STRF was estimated using boosting with 10-fold
cross-validation (6), as described by Ding and Simon (7).
The temporal profile of an STRF is extracted using singular

value decomposition (SVD). For the STRF from a MEG sensor
or a neural source location, the SVD of STRF is STRF(f,t) = Σp
λpTRFp(t)SRFp(f). The temporal profile of the STRF, or the
temporal response function, is defined as λ1TRF1(t) (7).

Extraction of theM50STRF andM100STRF Magnetic Fields.TheM50STRF
and M100STRF were extracted from two time intervals: 10–100 ms
and 50–200 ms, respectively. The approximate latency of each re-
sponse peak was determined based on a single temporal response
function extracted from the spatial STRF using SVD (7). The
M100STRF, also known as the M100-like response, is known to
have the same polarity as the M100 response evoked by a tone
pip (7), whereas the M50STRF has the opposite polarity. There-
fore, the M100STRF was determined by the strongest response
peak with a magnetic field topography positively correlated with
that of the M100, and the M50STRF was determined similarly, but
with a negative correlation. The magnetic field pattern extracted
for each peak was averaged over speakers and attentional con-
ditions, and it was then used for neural source localization.

Source Space Analysis. In the neural source analysis, subjects from
the Equal-Loudness experiment and the Varying-Loudness ex-
periment were pooled together, and the responses at different
TMRs were also averaged. The neural source of each peak in the
STRF was modeled by an equivalent-current dipole (ECD) in
each hemisphere. A spherical head model was derived for each
subject using MEG Laboratory software program v.2.001M
(Yokogawa Electric; Eagle Technology, Kanazawa Institute of
Technology). The position of the ECD was estimated using
a global optimization approach (8). The grand averaged corre-
lation between the fitted ECD magnetic field and the measured
magnetic field was above 95% in both hemispheres and for both
M50STRF and M100STRF. When comparing the ECD positions of
different peaks in STRF, we included only ECDs successfully
capturing the measured magnetic field, characterized by a higher
than 85% correlation between the ECD magnetic field and the
measured magnetic field. No more than 2 of the 17 subjects were
excluded this way, for each STRF peak. After the ECD positions
were determined, the moment of the dipole was estimated using
the least squares method (9). The polarity of the M100STRF is
defined as negative so as to be consistent with the polarity of the
N1 peak of EEG.
In the analysis of the amplitude and latency of the M50STRF and

the M100STRF, the STRFs are projected to the lead field of the
dipole in each hemisphere. Mathematically, if the STRF is STRF( f,
t,k) and the lead field is L(k), the projection is ΣkSTRF(f,t,k)L(k).

Optimal Design of the Decoders. Mathematically, the decoding
operation can be formulated as ENV(t) = ΣkΣτMk(t + τ)Dk(τ),

where ENV(t) is the decoded envelope, Mk(t) is the MEG
measurement from a single sensor k, andDk(t) is the linear decoder
for the same sensor k.
In the following, we first discuss the case of a single MEG

sensor, and therefore drop the index k. In matrix form, the de-
coding is expressed as v=Md, where v= [ENV(0), ENV(Δt), . . .,
ENV(TMAX)]

T; d = [D(0), D(Δt), . . ., D(TD)]
T; and the matrix,

M, is [M(0), M(0 + Δt), . . ., M(0 + TD); M(Δt), M(Δt + Δt), . . .,
M(Δt + TD); . . . ; M(TMAX), M(TMAX + Δt), . . ., M(TMAX +
TD)], with Δt being 25 ms. TD, the maximal time delay consid-
ered by the decoder, is selected to be 500 ms.
Suppose the envelopes of the speech streams of the two

speakers are s1 = [s1(0), s1(Δt), . . ., s1(TMAX)] and s2 = [s2(0),
s2(Δt), . . ., s2(TMAX)] and they are normalized to have the same
L2 norm (i.e., ks1k = ks2k). The envelope was extracted by
summing, over frequency, the spectrotemporal representation of
the speech (4), with its amplitude expressed in logarithmic scale.
The correlations between the decoded envelope and the enve-
lopes of the two speech streams are c1 = α−1s1Tv = α−1s1Md and
c2 = α−1s2Md, respectively, where α−1 = ks1k·kvk= ks2k·kvk. Let us
denote r1 = s1M and r2 = s2M; then, (c1/c2)

2 = (dr1r1
TdT)/

(dr2r2
TdT). Denote R1 = r1r1

T and R2 = r2r2
T; then, it is known

that the quantity (c1/c2)
2 is maximized when d is the generalized

eigenvector of R1 and R2 with the largest eigenvalue (10).
The conclusion from this single MEG sensor case is easily

generalized to the case for multiple MEG sensors by concate-
nating the recording from all the MEG sensors. For example, in
the case of 100 MEG sensors, the first row of M becomes [M1(0),
M1(0 + Δt), . . ., M1(0 + TD), M2(0), M2(0 + Δt), . . ., M2(0 +
TD), . . ., M100(0), M100(0 + Δt), . . ., M100(0 + TD)] after con-
catenation. In this study, to reduce the computational complex-
ity, the 157 MEG sensors were compressed into 3 virtual sensors
using DSS in each hemisphere (5). Therefore, the 6 virtual
sensors were concatenated first; the two covariance matrices, R1
and R2, were then calculated; and, finally, the decoder was ob-
tained by generalized eigen-decomposition.
The chance level performance of the decoders was simulated by

independently shuffling the order of each 1-min stimulus (in-
dependently between the 2 simultaneous speakers) and the order
of all the responses 4,096 times. At this chance level, obtained by
reconstructing the stimulus based on unmatched responses, the
reconstructed envelope is similarly correlated with the speech
envelopes of both speakers (P > 0.8, paired t test) and the 95th
percentile of the correlation with each speech stream envelope is
below 0.01, showing that the decoder does not show bias toward
either speaker.
In the Varying-Loudness experiment, the same decoder was

used to decode the stimulus at every TMR. The stimulus and
response in every TMR condition were divided into a training set
and a testing set. All training sets were then pooled together to
train the decoder. After training, the decoder was applied to
individual TMR conditions to assess the neural encoding accu-
racy. Therefore, if the decoding results were consistent over TMR
conditions, it would imply that the underlying spatial–temporal
neural code captured by the decoder is unaffected by the in-
tensity change of a speaker. In Fig. 3, the decoding accuracy for
each speech stream is normalized separately. Specifically, the
decoding accuracy for one speech stream, the first or the second,
is divided by the decoding accuracy of that speech stream when
presented individually, cs1 or cs2, and is then multiplied by the
mean accuracy of decoding a speech stream presented in-
dividually [i.e., (cs1 + cs2)/2].
Cross-validation was used to evaluate the performance of

decoders: Half of the data in each experimental condition were
used to train the decoder, and the other half were used to cal-
culate the correlations between the decoder output and the
stimulus envelopes.
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Models of Gain Control. The envelope of speech is assumed to be
faithfully encoded in auditory cortex, and the imperfect decoding
of speech envelope is assumed to be attributable to (stimulus-
irrelevant) neural background activity. Therefore, the MEG mea-
surement is modeled as a linear mixture of neural activity phase
locked to each speech stream and stimulus-irrelevant spontaneous
activity. To simplify the simulation, but without loss of generality, we
further assume that the neural encoding of each stream instanta-
neously follows that speech stream; for example, rA0(t) = sA(t) and
rB0(t) = sB(t), where rA0(t) and rB0(t) are the raw neural responses
to the attended speech and background speech, respectively, and
sA(t) and sB(t) are the corresponding speech envelopes.
We model the intensity gain control of neural activity using two

models. One model normalizes the MEG activity by the strength
(measured by the rms) of the envelope of the acoustic mixture
[i.e., smix(t)], and the second model normalizes the MEG activity
by the strength of each speaker individually. The two models are
described as follows:

i) Global gain control model:

rAðtÞ ¼ rA0ðtÞ=RMSðsmixðtÞÞ
rBðtÞ ¼ rB0ðtÞ=RMSðsmixðtÞÞ

ii) Object-based gain control model:
rAðtÞ¼ rA0ðtÞ=RMSðsAðtÞÞ
rBðtÞ ¼ rB0ðtÞ=RMSðsBðtÞÞ

The neural reconstruction of the attended speech, a linear
combination of MEG activity, is modeled as ŝA(t) = rA(t) +
λBrB(t) + λNn(t). In the reconstruction, rB(t) and n(t) are at-
tenuated but not eliminated because of, for example, the limited
spatial resolution of MEG. The two free parameters λB and λN
are fit based on the Equal-Loudness experiment; that is, when
sA(t) and sB(t) have equal intensity, λB and λN are adjusted so
that the simulated decoding results [i.e., the correlation between
rA(t) and sA(t) and the correlation between rA(t) and sB(t)] match
the experimental observations in the Equal-Loudness experi-
ment (Fig. 2B). The model is then used to predict the decoding
results in the Varying-Loudness experiment, where the intensity
of two speakers is changed separately. The model predictions are
generally insensitive to the values of λB and λN.

SI Discussion
Decoding in Delta and Theta Bands. In this decoding analysis, the
neural response is filtered between 1 and 8 Hz, including both the
delta (1–4 Hz) and theta (4–8 Hz) bands. If only the delta or
theta band is analyzed, the decoder output is still more similar to
the attended speech (P < 0.005, paired t test, for both frequency
bands and both speakers). The decoding result is more accurate
in the delta band than in the theta band (higher correlation with
the attended speaker in 91% vs. 76% of trials).

Segregation of Speakers of the Same Sex. In the Equal-Loudness
and Varying-Loudness experiments, the two competing speakers
are of different sex. Male and female voices differ in pitch range
and formant frequencies and, as basic perceptual categories, are
easy to distinguish. Human listeners can also successfully seg-
regate speakers of the same sex, even if they are acoustically and
perceptually highly similar to each other. To test if the neural
segregation of speakers of the same sex also occurs in auditory
cortex, we created a mixture of two female speakers and
instructed the subjects to focus on one of them. In this Same-Sex
experiment, after a training session, the subjects can successfully
recognize and follow the target speaker, and answered 74% of
the comprehension questions asked during the experiment. From
the neural response, the temporal envelope of the speech of the
attended speaker is decoded (Fig. S2), and the decoded envelope

is more correlated with the attended speech than the background
speech (P < 0.01 for both speakers, paired t test based on in-
dividual trials from individual listeners).
The STRF analysis is also applied to the Same-Sex experiment;

the amplitude of the M100STRF is significantly modulated by
attention [attentional focus × hemisphere × speaker, three-way
repeated-measures ANOVA, P < 0.02, F(1,23) = 66], whereas
the amplitude of the M50STRF is not.

Phase Locking to the Speech Mixture. The two decoders shown in
Fig. 2 reconstruct a temporal envelope that is similar to one
speech stream but distinct from the other. To distinguish the
encoding of either speech stream further not just from the other
but from the physically presented speech mixture, we designed an
additional pair of decoders. This pair also reconstructs temporal
envelopes that are maximally correlated with the envelopes of the
attended and background speech, respectively, but are minimally
correlated with the envelope of the mixture.
This decoding analysis is also successful. The extracted tem-

poral envelope is more closely correlated with the envelope of the
individual speech streams than the temporal envelope of the
mixture (Fig. S3; P < 0.0005, paired permutation test). There-
fore, this pair of decoders directly demonstrates the existence of
phase locking to individual speech streams, distinct from the
phase locking to the mixture.
In the current experiment, the auditory scene consists of only

two auditory objects and we demonstrate that the attended object
and the background object are represented differentially. For the
case of more than two auditory objects in an auditory scene,
whether the neural system divides the scene into multiple objects
or only the attended object and the background must be de-
termined by future experiments.

Speech Segmentation and Intelligibility. Phase-locked neural ac-
tivity, such as seen here, encodes the temporal information of
speech and is a candidate for use in the process of segmentation of
continuous speech into syllabic-level structures (11). Speech
recognition, however, further requires the decoding of phonemic
content, which itself requires spectral analysis. Therefore, the
correct segmentation of speech is necessary but not sufficient for
intelligibility. For example, it has been shown that the ability to
use syllabic stress cues to segment speech is maintained even
for unintelligible speech at −15 dB TMR (12). In the Varying-
Loudness experiment of the current study, the subjects could
generally understand the story at all tested TMRs but reported
a TMR-dependent word recognition rate, ranging from 50 to
90%, consistent with the literature (13, 14). In contrast, the
neural tracking of the temporal features of speech is not signif-
icantly affected by TMR, and therefore is not correlated with the
word recognition rate. It is thus likely that the phase-locked
neural activity observed by MEG is related to the temporal
processing and syllabic-level segmentation of speech rather than
directly to the much higher order phenomenon of speech in-
telligibility (11, 15, 16).
In the Varying-Loudness experiment, the subjectively rated

speech intelligibility decreases with TMR, consistent with ob-
jectively measured speech intelligibility (13). This close match
between subjectively rated and objectively measured speech
intelligibility has been demonstrated previously (17). The per-
centage of questions correctly answered, however, is not sig-
nificantly affected by TMR. It is possible that this lack of effect
is attributable to the small number of questions (n = 4) being
asked for each TMR condition. The purpose of these ques-
tions, however, is only to ensure the subjects’ attention. The
fact that the subjects can correctly answer most questions in
every TMR condition demonstrates the subjects’ engagement
in the task and their ability to understand the story roughly, at
every tested TMR.
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Fig. S1. Decoding of the speech representations from single trials. Scatterplots of the correlation coefficients between the decoded envelope and the actual
envelope for individual trials and individual subjects. The attentional focus of listeners is denoted by marker color, and the separate trials are denoted by
marker shapes. Comparing the results of the two decoders, it can be seen that the speech of the attended and background speakers can be decoded separately
from the same response, even on a single-trial basis.
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Fig. S4. STRF power is shown as a function of frequency and time (summed over all sensors and subjects) for unmixed speech. It is dominated by two response
components, M50STRF and M100STRF, with respective latencies near 50 ms and 100 ms, respectively.
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