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Ding N, Simon JZ, Shamma SA, David SV. Encoding of natural
sounds by variance of the cortical local field potential. J Neurophysiol
115: 2389–2398, 2016. First published February 24, 2016;
doi:10.1152/jn.00652.2015.—Neural encoding of sensory stimuli is
typically studied by averaging neural signals across repetitions of the
same stimulus. However, recent work has suggested that the variance
of neural activity across repeated trials can also depend on sensory
inputs. Here we characterize how intertrial variance of the local field
potential (LFP) in primary auditory cortex of awake ferrets is affected
by continuous natural sound stimuli. We find that natural sounds often
suppress the intertrial variance of low-frequency LFP (�16 Hz).
However, the amount of the variance reduction is not significantly
correlated with the amplitude of the mean response at the same
recording site. Moreover, the variance changes occur with longer
latency than the mean response. Although the dynamics of the mean
response and intertrial variance differ, spectro-temporal receptive field
analysis reveals that changes in LFP variance have frequency tuning
similar to multiunit activity at the same recording site, suggesting a
local origin for changes in LFP variance. In summary, the spectral
tuning of LFP intertrial variance and the absence of a correlation with
the amplitude of the mean evoked LFP suggest substantial heteroge-
neity in the interaction between spontaneous and stimulus-driven
activity across local neural populations in auditory cortex.
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LARGE-SCALE NEURAL ACTIVITY, measured by the local field
potential (LFP), electroencephalography (EEG), or magneto-
encephalography (MEG), has been extensively studied in hu-
mans and other mammals to characterize network-level neural
dynamics involved in sensory processing (Lakatos et al. 2005;
Steinschneider et al. 2008; Szymanski et al. 2011). Since these
large-scale neural signals can be measured both by implanted
microelectrodes and noninvasively by EEG or MEG, they
provide a critical bridge between single-unit animal neurophys-
iology and noninvasive human neurophysiology. During the
presentation of complex sounds, extracranially measured EEG
and MEG responses and intracranially measured LFP signals
are phase locked to the slow temporal modulations of sounds
(i.e., the sound envelope). Sound envelope-locked signals have
been reported across a large number of cortical areas, including
primary auditory cortex (A1) (e.g., Eggermont 2002) and
sensory areas not specifically involved in auditory processing
(e.g., Lakatos et al. 2008).

Traditionally, sensory coding by the LFP is characterized by
its mean response, i.e., activity averaged across multiple rep-

etitions of the same stimulus (Eggermont et al. 2011). The
mean response mainly reflects stimulus-locked neural activity.
Recently, however, it has been suggested that sensory stimuli
change not just the mean response but also the variance of
neural activity over trials, here termed intertrial variance
(Churchland et al. 2010; Crone et al. 2001). The intertrial
variance mainly reflects the power of non-stimulus-locked
neural activity. Single-unit spiking activity can generally by
described by Poisson statistics, where the intertrial variance
scales proportionately with the mean responses. However, for
LFP the interaction between mean response and intertrial
variance can take several different forms, depending on both
single-neuron activity and synchrony of neurons across the
neural network (Ecker and Tolias 2014; Goris et al. 2014; Lin
et al. 2015; Telenczuk et al. 2010). In one extreme case,
stimulus-locked neural responses are generated by resetting the
phase of spontaneous neural oscillations. In other words, spon-
taneous activity is converted into stimulus-driven activity and
therefore the variance of neural activity, reflecting the power of
non-stimulus-locked neural activity, will be reduced by sen-
sory stimuli (Fig. 1A) (Hanslmayr et al. 2007; Kayser et al.
2009; Lakatos et al. 2009; Luo and Poeppel 2007; Makeig et al.
2002). In another extreme, if precisely stimulus-locked neural
responses are generated independent of spontaneous neural
activity, the intertrial variance of measured neural responses
reflects the power of spontaneous neural activity and should be
invariant to sensory stimuli (Fig. 1B) (Ding and Simon 2013;
Howard and Poeppel 2010, 2012; Makinen et al. 2005; Shah et
al. 2004; Yeung et al. 2004). If neural responses are loosely
phase locked to the stimulus and are independent of spontane-
ous neural activity, the intertrial variance of neural activity will
be increased (Fig. 1C) (Krause and Banks 2013; Truccolo et al.
2002). Finally, even if a sensory stimulus does not generate any
phase-locked response, it can suppress spontaneous neural
activity (Fig. 1D) (Churchland et al. 2010), not affect neural
activity at all (Fig. 1E), or generate an increase in non-
stimulus-locked neural activity (Fig. 1F) (Crone et al. 2001).

Questions about intertrial variance have contributed to an
ongoing controversy in sensory neuroscience: whether stimu-
lus-stimulus-locked LFP/EEG/MEG responses are generated
by resetting the phase of ongoing neural oscillations, i.e., the
phase resetting theory shown by Fig. 1A, or by an additive
response component independent of ongoing activity, i.e., the
additive response theory shown by Fig. 1, B and C. The phase
resetting theory predicts that intertrial variance should de-
crease, while the additive response theory does not generate
any specific prediction about intertrial variance. For recordings
from different cortical areas and under different behavioral
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states, the intertrial variance of low-frequency LFP has been
reported to increase (Krause and Banks 2013; Truccolo et al.
2002), decrease (Churchland et al. 2010), or remain unaffected
(Makinen et al. 2005) by sensory stimuli. Therefore, there is no
consistent answer about whether sensory stimuli increase or
decrease response variance, and it remains unclear whether this
heterogeneity is due to differences in cortical areas or whether
it even exists among neural populations within the same
cortical area. Furthermore, properties of the intertrial variance
vary across LFP frequency bands (Steinschneider et al. 2008)
and also between stimulus onset and periods of sustained
stimulation (Fuentemilla et al. 2006). In sum, intertrial vari-
ance may depend on behavioral state, cortical area, the local
neural population within an area, the frequency band of LFP
activity, and the duration of sensory stimulation. This study
controls the behavioral state (i.e., passive listening) and the
recording area (i.e., auditory cortex) and investigates how the
intertrial variance is affected by sound stimuli over time, LFP
band, and local neural populations.

Here we ask specifically how the presentation of a natural
sound affects intertrial variance across LFP frequency bands in
A1 and whether the intertrial variance of LFP is tuned to
spectro-temporal sound features. Data were collected from the
awake passive-listening ferret, a carnivore whose auditory
cortex shares basic anatomical and functional properties with
that of many other mammals (Hackett 2011). Sensory activity
was measured using continuous human speech, a complex
natural sound with spectro-temporal properties comparable to
other mammalian vocalizations (Lewicki 2002; Singh and
Theunissen 2003) and one that allows for comparison to
noninvasive studies of representation of speech in humans.

METHODS

Experimental procedures. Extracellular neural activity was re-
corded from A1 of 11 awake, passively listening ferrets. Data were
acquired from 477 recording sites in both hemispheres. All experi-
mental procedures conformed to standards specified by the National
Institutes of Health and were reviewed and approved by the Univer-

sity of Maryland Animal Care and Use Committee. Surgical prepa-
ration procedures are described in David et al. (2009). Recordings
were made with tungsten microelectrodes (1–5 M�; FHC) in awake,
head-fixed animals in a double-walled, sound-attenuating chamber
(Industrial Acoustics). During each recording session, one to four
electrodes were positioned by independent microdrives and neuro-
physiological activity was recorded with a commercial data acquisi-
tion system (Alpha-Omega). Line noise was removed online by a
60-Hz notch filter. Analysis of some single-unit data collected during
these experiments has been published previously (David et al. 2009).

Stimuli. Thirty sentences from the TIMIT database (Garofolo
1993), spoken by 30 different speakers, were employed as the stimuli.
Each 3-s sentence was presented at 65 dB sound pressure level (SPL)
for 2–8 repetitions (5.2 repetitions on average) in random order on
each repetition. The recordings contained pre- and poststimulus silent
periods of 400 ms for 309 sites and irregular pre- and poststimulus
periods (0–1,200 ms) for the remaining 168 sites. Only the subset of
recording sites with 400-ms pre- and poststimulus silent periods were
included in the comparison of stimulus-driven and baseline, sponta-
neous activity (e.g., Fig. 2 and Fig. 3).

Filtering of neurophysiological signals. The LFP was obtained by
low-pass filtering the raw extracellular recording below 600 Hz, and
multiunit activity (MUA) was measured as the time-varying power of
the neural recording after band-pass filtering between 600 and 3,000
Hz. The LFP was further filtered into different frequency bands,
roughly corresponding to those commonly defined for EEG and LFP
recordings (delta: 2–4 Hz, theta: 4–8 Hz, alpha: 8–16 Hz, beta:
16–32 Hz, gamma: 32–64 Hz, high gamma: 64–160 Hz). This
processing used FIR filters based on a 267-ms Hamming window. The
time delay produced by the linear-phase FIR filter was compensated
by shifting the filtered signal 133 ms back in time.

Mean and variance of neural responses. The time-varying LFP
response to a stimulus can be decomposed into two components. One
is the mean response across trials, the component reliably phase
locked to the stimulus across trials. The mean response is sometimes
referred to as the evoked response (Tallon-Baudry and Bertrand
1999). The second component is the difference between single-trial
responses and the mean response, which characterizes neural activity
that is not phase locked with the stimulus and is sometimes referred to
as the induced response (Tallon-Baudry and Bertrand 1999). This

Fig. 1. Schematic illustrations of how the mean and variance of
neural signals may be affected by a sensory stimulus. In all
panels, the gray curves at top are 20 simulated single-trial LFP
waveforms aligned to stimulus onset (vertical line). The black
curve shows the average over 20 trials, and shaded areas at
bottom show the intertrial variance. A: if the response reflects
phase resetting of spontaneous activity, the mean stimulus-
evoked response is accompanied by a decrease in response
variance. B: if the response is perfectly phase locked (i.e.,
synchronized) to the stimulus but independent of spontaneous
neural activity, response variance is not affected by the stimu-
lus. C: if the stimulus-aligned response is independent of
spontaneous neural activity but has imprecise phase locking,
the response variance is increased by the stimulus. D: if the
stimulus suppresses spontaneous neural activity without pro-
ducing a phase-locked response, then a decrease in variance
will also be observed. E: if the stimulus evokes no response,
then no change will be observed in the mean response or
response variance. F: finally, if the stimulus generates a non-
phase-locked response, independent of spontaneous activity,
then an increase in response variance will be observed.
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component is measured by the variance of the LFP over trials, or
intertrial variance.

The decomposition of LFP into mean response and intertrial
variance is expressed mathematically as follows. Suppose the time-
varying neural response in the kth trial is xk(t), for K total trials. In the
following, the time variable, t, is omitted for compactness. Each
single-trial response is decomposed into the mean response, i.e., v �
(�kxk)/K, and a non-stimulus-locked remaining component, i.e., xk � v.
The power of the non-stimulus-locked response, xk � v, is PI �
�k(xk � v)2/K, the same as the variance of the response over trials.
Furthermore,

PI � ��k xk
2� ⁄ K � v2

The first term on the right-hand side, (�kXk
2)/K, is the mean power of

single-trial LFP, referred to here as the total power PT. The second
term, v2, is the power of the mean response PM. Therefore, PT � PI

� PM, and the total power is the linear sum of the power of the
stimulus-locked component and the power of the non-stimulus-locked
component.

This study primarily addresses how LFP power, including contri-
butions from both the stimulus-locked and the non-stimulus-locked
components, is changed by the presentation of an auditory stimulus.
For both the power of the mean response and the intertrial variance,
the stimulus-related change in power is defined as the decibel differ-
ence between the response power during stimulus presentation and
during the prestimulus period. In the prestimulus period, there is no
stimulus-related activity and therefore no stimulus-locked LFP re-
sponse. Thus during this period the mean response averaged over
trials reflects spontaneous activity only, and PM � PT/K.

In this study, each stimulus was repeated only a few times (5.2, on
average), which typically creates difficulty in reliably estimating
the mean and intertrial variance of the neural response to a single
stimulus. However, this difficulty was alleviated by the fact that
there were 30 distinct 3-s stimuli in the data set. To achieve
reliable estimates, stimulus-related changes in mean and intertrial
variance were first calculated separately for each stimulus and then
averaged over all stimuli. For some analyses, they were also
averaged over time.

Spectro-temporal receptive field estimation and analysis. Spectro-
temporal receptive field (STRF) analysis was employed to model the
encoding of spectro-temporal sound features by the intertrial variance
of different LFP bands. The STRF was estimated using boosting with
10-fold cross-validation (David et al. 2007), based on the neural
response and stimulus spectrogram. Details of the estimation proce-
dure are described in Ding and Simon (2012b). The spectrogram of
the stimulus contained 24 logarithmically spaced frequency bins
spanning 180-8,000 Hz, and STRF time lags between the stimulus and
response ranged from �20 to 130 ms. We focus on neural encoding
of slow temporal modulations below 50 Hz, and therefore the neural
signal and the stimulus spectrogram are both resampled to 100 Hz
(David et al. 2009). To remove the influence of transient onset
responses and focus on the spectro-temporal tuning of sustained
neural responses, we excluded data from the first 500 ms of sound
stimulation on each trial for the STRF analysis.

The same boosting algorithm was used to estimate STRFs for
MUA and the LFP mean response. The predictive power of the STRF
is defined as the correlation coefficient (Pearson’s r) between the
measured neural response and the predicted response [i.e., the con-
volution between the STRF and the stimulus spectrogram (David et al.
2009)]. Significant predictive power was evaluated by a permutation
test. Chance-level predictive power was calculated by randomly
shuffling the predicted response in time and computing the correlation
coefficient between the actual response and the shuffled prediction.
Repeating this procedure for 1,000 shuffles produced a distribution of
correlation coefficients. The position of the actual prediction correla-
tion in this distribution was used to directly measure the probability
(i.e., P value) that the actual prediction correlation was produced by

chance. For the STRF analysis, response variance was calculated
based on the LFP signal in different frequency bands while the mean
LFP response was not filtered into narrow frequency bands. The mean
LFP was not broken down into frequency bands because a single
linear STRF model simultaneously characterizes neural tracking in all
modulation frequency bands. The STRF for mean activity in a single
band can be obtained by filtering the STRF estimated from the
broadband LFP mean response. In contrast, the STRF for the variance
of a single band cannot be obtained by filtering the STRF for the
variance of broadband LFP. Computing variance is a nonlinear oper-
ation, and therefore STRFs must be estimated separately for each
band.

Since delta- and theta-band LFP have intrinsically slow temporal
dynamics, we also tested whether extending the maximal time lag to
280 ms improved STRF performance for response variance in those
frequency bands or for the mean LFP response. The STRFs with a
longer time lag range were significantly better at describing the mean
response (i.e., higher predictive power, 7% increase, P � 10�10,
paired t-test) but not significantly better at describing the response
variance (�1% increase in predictive power, P � 0.47 for both
bands). Therefore, we only report STRFs with the longer time lag
range for the mean response.

To calculate the similarity between two STRFs, each two-dimen-
sional STRF was reshaped into a one-dimensional vector, and the
correlation coefficient was calculated between the two resulting vec-
tors. To calculate the best frequency (BF), the absolute value of the
STRF was summed over time, resulting in a frequency tuning curve.
The BF was determined by the peak of this tuning curve. The
bandwidth of the STRF was also determined from the frequency
tuning curve as the number of bins with amplitude higher than half of
the maximal amplitude at BF. To calculate the peak latency of an
STRF, the absolute value of the STRF was summed over frequency,
resulting in a temporal response function. Latency was determined by
the peak of this temporal response function.

RESULTS

Sensory stimuli determine both mean and variance of LFP
activity in auditory cortex. Neurophysiological recordings
were obtained from 477 sites in A1 of ferrets passively listen-
ing to 30 sentences uttered by different human speakers. We
investigated how the mean and variance of LFP across trials
were affected by the stimulus presentation (illustrated in Fig.
1). Three aspects of the LFP activity were characterized. The
power of the mean response reflects the strength of the stim-
ulus-locked LFP response. The intertrial response variance is a
complementary signal that characterizes the power of neural
activity not phase locked to the stimulus. The third measure,
i.e., the total power, is the average of the LFP power in single
trials. Total power includes both the stimulus-locked LFP
components and the non-stimulus-locked LFP components
(see METHODS).

To study these effects in auditory cortex, we filtered the LFP
into standard frequency bands (delta: 2–4 Hz, theta: 4–8 Hz,
alpha: 8–16 Hz, beta: 16–32 Hz, gamma: 32–64 Hz, high
gamma: 64–160 Hz) and measured the time course of changes
in mean response and variance in each band during presenta-
tion of the speech stimulus (Fig. 2). The alpha-band LFP is
used as an example to illustrate the analytical approach (Fig.
2A). The power of the mean response and the intertrial variance
of alpha-band LFP were calculated across repetitions of each
sentence and then averaged over different sentences. Averag-
ing over sentences reduces modulations by specific spectro-
temporal stimulus features but preserves the changes associ-
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ated with the onset, duration, and offset of the speech stimuli.
The power of the mean response in the alpha band shows a
transient response, peaking at �100 ms after the stimulus onset
and followed by a sustained increase. The response variance,
however, gradually decreases within the first �300 ms after the
stimulus onset and then remains suppressed throughout the
period of stimulation (cf. Fig. 1A).

Figure 2, B–D, show the time course of the power of the
mean response, intertrial variance, and total power for each
LFP band, averaged over all recording sites. As expected from
previous studies (Eggermont 2002), the mean response shows
a sustained power increase in all LFP frequency bands during
auditory stimulation. In low frequency bands (delta-beta) the
mean response also shows a sharp transient power increase
after stimulus onset. For intertrial variance, the effects of
auditory stimulation are more variable across LFP bands.
Variance gradually decreases in the delta, theta, and alpha
bands (�16 Hz) after stimulus onset, while it gradually in-
creases in the high gamma band (� 64 Hz). In the beta band,
there is a transient increase in variance within the first 100 ms,
followed by a sustained decrease. The total power of LFP
shows a transient increase after stimulus onset in the delta,
theta, alpha, and beta bands (�32 Hz) and a gradual increase
in the gamma and high gamma bands (�32 Hz).

Figure 3 summarizes changes in response variance and
power immediately following stimulus onset (Fig. 3A) and
during sustained stimulation (Fig. 3B). The onset response is
averaged over the first 300 ms after the stimulus onset, while
the sustained response is averaged from 300 ms after the
stimulus onset until the stimulus offset. In the low frequency
bands (�16 Hz), the onset response is dominated by an
increase in the mean response, leading the total power to also
increase (cf. Fig. 1B), while the sustained response shows a
roughly balanced increase in the mean response and decrease
in intertrial variance (cf. Fig. 1A). Fig. 3, C and D, show the
correlation between the stimulus-related changes in intertrial
variance and mean response across recording sites. Changes in
these two signals are not significantly correlated in the theta
and alpha bands. However, the decrease in low-frequency LFP
variance is correlated with the increase in high gamma power
(Fig. 3D). In the gamma band, intertrial variance is barely
affected by the stimulus for both the onset and the sustained
responses, but the power increase in mean response leads the
total power to increase in �75% of the recording sites (cf. Fig.
1B). In the high gamma band, increases in intertrial variance
and mean response are strongly correlated.

Since the frequency bands below 16 Hz all showed sustained
power increase in mean response and sustained decrease in

Fig. 2. Time course of the power of the
response averaged over trials, intertrial vari-
ance, and total power. A: time course of the
alpha-band LFP intertrial variance and the
power of the mean response, averaged over
all recording sites. The speech stimulus is
presented from 0 to 3 s. Responses to indi-
vidual sentences are indicated by the thin
curves, and the average across all sentences
is shown by the thick curves. Averaging over
sentences smears out temporal fluctuations
specific to individual sentences and empha-
sizes differences in power before, during,
and after auditory stimulation. The mean
response is increased by the stimulus, and
intertrial variance is decreased (cf. Fig. 1A),
but the latter occurs with a slower time
course. The mean response shows a fast
transient response, peaking at �100 ms,
while the intertrial variance gradually de-
creases over �300 ms before reaching a
steady state. B–D: time course of mean re-
sponse, intertrial variance, and total power
for each LFP frequency band, averaged over
recording sites and stimuli. Mean response is
increased in all frequency bands, while inter-
trial variance is decreased in the lower fre-
quency bands (�32 Hz) and increased in the
higher frequency bands (�64 Hz). �H, high
gamma.
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intertrial variance, we then combined these frequency bands
and examined their behavior across recording sites. Figure 3, C
and D, show that stimulus-related changes in both intertrial
variance and mean response of low-frequency LFP (�16 Hz)
are highly variable across recording sites but the correlation
between these two changes is not significantly different from
zero (Fig. 3C; R � 0.02, P � 0.33). Since the mean response
can be affected by the number of stimulus repetitions (see
METHODS), we also considered the subset of sites for which each
stimulus was repeated the same number of times (i.e., 5
repetitions, N � 259). Within this subset of recordings, the
correlation between stimulus-related changes in mean response
and variance remains low and not significantly different from
zero (P � 0.005, R � 0.48).

The average stimulus-related change in total power is close
to 0 (Fig. 3D). Therefore, for low-frequency LFP, the response

averaged over recording sites is consistent with the phase
resetting model (Fig. 1A). However, the behavior of individual
recording sites varies widely, and the responses at any indi-
vidual site might be consistent with any of the six cases
illustrated in Fig. 1.

Spectro-temporal tuning of changes in LFP response
variance. In the analyses above, neural activity was aver-
aged across stimuli to characterize the average LFP response
to many different speech stimuli. However, it has been
shown, with linear STRF analysis, that mean LFP response
is tuned to specific sound features (Eggermont et al. 2011).
We used STRF analysis to test whether the intertrial vari-
ance of the LFP is also tuned to spectro-temporal stimulus
features. We compared the tuning of the LFP variance with
the tuning of MUA and the mean LFP response at the same
recording site.

Fig. 3. Average stimulus-related changes in intertrial variance, power of the mean response, and total power across LFP bands. A: changes in each band
immediately following stimulus onset (0–0.3 s) or during sustained auditory stimulation (0.3–3 s), plotted relative to the baseline prestimulus period. The onset
response is dominated by an increase in mean response, leading to an increase in total power. For the sustained response, lower frequency bands (delta, theta,
and alpha) show a roughly balanced increase in mean response and decrease in response variance, while the high gamma band shows an increase in both mean
response and response variance. The area between the 25th and 75th percentiles of individual recording sites is shaded. B: correlation between stimulus-related
changes in intertrial variance and mean response across recording sites following stimulus onset or during sustained auditory stimulation. Similar patterns are
observed for the onset response and the sustained response. In theta and alpha bands, changes in mean response and intertrial variance are not significantly
correlated. However, changes in mean response and intertrial variance in the beta, gamma, and high gamma bands (i.e., �16 Hz) are strongly correlated across
recording sites. Statistically significant correlations are indicated by asterisks (*P � 0.05, bootstrap, FDR corrected). C: scatterplot of changes in mean response
and intertrial variance of the low-frequency LFP (� 16 Hz) at each recording site during sustained stimulation. The correlation between these changes is not
significantly different from zero (R � 0.02, P � 0.33, bootstrap). Each black dot shows the response from a recording site, and the gray ellipses show its
variability. The horizontal/vertical diagonal of each ellipse shows the standard error of mean response and variance across the 30 stimuli. D: changes in total
response power for each of the 309 recording sites. Data from each recording site are plotted as a short line, centered at the mean and spanning 1 standard error
across the 30 stimuli on each site. The change in total power is near 0 dB for most recording sites, and 39% of recording sites show a decrease in total power.
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Variance STRFs were estimated separately for each LFP
frequency band. Significant sensory tuning was tested by
measuring the ability of STRFs to predict the time-varying LFP
signal, using a cross-validation procedure (Fig. 4A). Prediction
performance was quantified by the correlation coefficient
(Pearson’s r) between the predicted and actual LFP. Average
predictive power was significantly greater than chance in all
bands [P � 10�10, paired t-test, false discovery rate (FDR)-
corrected for multiple comparisons] (Benjamini and Hochberg
1995). Although average predictive power was significantly
different between all pairs of frequency bands (P � 0.05,
paired t-test, FDR corrected), performance for the LFP vari-
ance bands was lower than for MUA and the mean LFP
response.

The similarity of STRF tuning for different frequency bands
is shown in Fig. 4B. Each point in the correlation matrix
indicates the average correlation between STRFs estimated
from two different neural signals. Variance STRFs are highly
correlated between the delta, theta, and alpha bands (R � 0.8)
and less correlated between other bands (R � 0.4). Because of
the strong correlation between the delta-, theta-, and alpha-
variance STRFs, in the following we report results only for the
alpha band. Results for the delta and theta bands were nearly
identical.

Figure 4C shows example STRFs from four recording site
exemplars. In the alpha and beta bands, variance STRFs are
consistently inhibitory, indicating a decrease in variance fol-
lowing increased power of the relevant spectro-temporal stim-

ulus feature. The high-gamma variance STRF and MUA STRF
are generally excitatory, indicating an increase in activity
following increased power of the relevant stimulus feature. For
the gamma band, variance STRFs are sometimes excitatory
and sometimes inhibitory, suggesting that the gamma band
spans a transition zone between distinct processes captured
separately in low and high frequencies (see also Crone et al.
2001). The STRF estimated with the mean LFP response is
more complex than the other signals, showing multiple peaks
with alternating polarities. Because the mean response is the
LFP waveform averaged over trials rather than a power or
variance measure, its polarity does not indicate excitation or
inhibition but rather net depolarization or hyperpolarization at
the recording site.

The temporal properties of the neural response were char-
acterized by summing each STRF across the frequency axis.
The resulting one-dimensional function of time, called the
temporal response function, averaged across all 477 recording
sites, is shown for the different LFP bands in Fig. 5A. The
MUA and high-gamma variance temporal response function
shows positive peaks at relatively short latencies around 20–30
ms, indicating a rapid increase in high-gamma variance fol-
lowing favorable stimulus features. The alpha and beta vari-
ance temporal response function shows negative peaks at
longer latencies around 40–50 ms, indicating a slower decrease
in alpha/beta variance following favorable stimulus features.
The gamma-band variance temporal response function shows
an early positive peak (latency around 20 ms) followed by a

Fig. 4. LFP variance-based and MUA-based
STRFs. A: the average prediction correlation,
which indicates how well an STRF predicts the
time-varying neural response, is higher for MUA
and mean LFP (mLFP) response. The MUA is
defined as the total power of the neural recording
between 600 and 3,000 Hz. The LFP variance-
based STRFs are used to model the intertrial vari-
ance of the LFP. B: correlation between the shape
of STRFs measures the similarity of tuning across
neural signals. Delta-, theta-, and alpha-variance
STRFs are highly correlated, and the higher fre-
quency bands (gamma, high gamma, MUA) also
show a cluster of similarity to each other. C:
example STRFs in each row are measured for the
same recording site but using different LFP bands.
Red areas indicate an increase in the neurophysi-
ological signal following an increase in power of
the corresponding spectro-temporal stimulus fea-
ture, and blue areas indicate a decrease. STRFs are
normalized to have the same maximum absolute
value. LFP variance STRFs are generally inhibi-
tory in the alpha and beta bands, variable (inhibi-
tory or excitatory) in the gamma band, and excit-
atory in the high gamma band. MUA STRFs are
generally excitatory. The peak latency of the LFP
variance STRF is later in the alpha and beta bands
than in the high gamma band. The frequency tun-
ing of LFP variance STRFs is generally similar to
that of the MUA STRF but usually has additional
peaks. Unlike the other signals, STRFs for mean
LFP show peaks at multiple latencies. These
STRFs typically show an early peak (�25 ms
latency) with negative polarity indicating depolar-
ization, followed by a positive peak (�60 ms
latency) indicating hyperpolarization, and some-
times other longer-latency peaks.
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negative peak (latency around 50 ms), reflecting an initial
increase in gamma-band variance followed by a decrease. As
suggested by the full STRF analysis above (Fig. 4C), the
temporal response function for the mean LFP response is more
complicated, showing three peaks with alternating polarities at
a group level. A positive peak in the LFP STRF indicates
voltage changes toward hyperpolarization, while a negative
peak indicates changes toward depolarization. Individual re-
cording sites usually show more than one peak but not neces-
sarily all the three peaks (Fig. 4C).

The similarity of frequency tuning between STRFs for
different neural signals is characterized in Fig. 5B. Only STRFs
with predictive power r � 0.2 were included in this analysis,
and the number of recording site pairs involved in the corre-
lation analysis is shown in Fig. 5B, right. BF is highly corre-
lated for LFP variance and MUA, indicating that spectral
tuning is similar in all the LFP variance bands as well as MUA.
The three peaks in the mean-LFP STRF are analyzed sepa-
rately. The BFs of the three peaks are not strongly correlated
with each other, but the BF of the first peak shows a greater
correlation across sites with the BF of other bands, compared
with the second and third peaks (Fig. 5C).

DISCUSSION

By analyzing extracellular recordings from A1 of awake
ferrets, we found that continuous natural sound affects not only
the mean LFP response but also the variability of the LFP
signal across trials. These stimulus-related changes in variabil-
ity differ across LFP frequency bands. Auditory stimuli sup-
press the intertrial variance of low-frequency LFP (�16 Hz)
but increase the intertrial variance in the high gamma band.
Dynamic fluctuations in LFP variance are tuned to spectro-
temporal acoustic features, and the auditory tuning of these
fluctuations is correlated with the frequency tuning of MUA at
the same recording site.

Sound reduces variance of low-frequency LFP. When stim-
ulus-related effects are averaged across A1, a stimulus reduces

the intertrial variance of low-frequency LFP (�16 Hz) and
enhances the mean response. Similar phenomena have also
been observed in humans with electrocorticography and MEG
(Edwards et al. 2009; Fujioka et al. 2012; Howard and Poeppel
2012). The simultaneous increase in mean and decrease in
variance enhance the precision of neural phase locking. Fur-
thermore, these balanced changes lead to a net change of near
zero in the total LFP power, consistent with the idea that global
homeostatic processes maintain a relatively constant level of
activity in cortex (Churchland et al. 2010; Fiser et al. 2004).

Although complementary on average, the relative size of
changes in the mean response and response variance differs
widely across recording sites, suggesting separable mecha-
nisms controlling the changes in mean response and variance.
Moreover, the changes in mean response and intertrial variance
follow different time courses. The rise in the mean response is
very rapid after stimulus onset (�50 ms), while the decrease in
response variance is slower, taking �300 ms. The slow dy-
namics of the variance decrease may be the reason why it is not
reliably observed in transient responses to brief tones (Stein-
schneider et al. 2008) and becomes more evident as a dynamic
sound sequence unfolds in time (Fuentemilla et al. 2006). One
interpretation of this phenomenon is that changes in variance
reflect processes by which the brain slowly adapts to the
statistics of incoming sensory stimuli and encodes the stimulus
more efficiently after reaching a steady state (Dean et al. 2005;
Rabinowitz et al. 2011).

Additionally, our STRF measurements reveal that this sup-
pression is often spectro-temporally tuned, in contrast to pre-
vious reports of feature-nonspecific reduction in variance
(Churchland et al. 2010). This sensory tuning suggests that
variance reduction is a phenomenon specific to local neural
networks rather than a general, nonspecific process across A1.

Stimulus-related suppression of intertrial variance has been
reported for both low-frequency LFP/EEG/MEG (Edwards et
al. 2009; Fujioka et al. 2012; Howard and Poeppel 2012) and
the firing rate of spiking activity (Buran et al. 2014; Church-

Fig. 5. Spectral and temporal properties of band-dependent
STRFs. A: the average temporal response function (peak-
normalized for each site) is plotted for each MUA and LFP
band. Shading indicates the range between the 25th and
75th percentiles across sites. Vertical dashed lines mark
peak response latencies for the mean LFP for comparison
with the other traces. B: correlations between BF measured
from STRFs for the different signals. BF is consistently
similar between LFP variance STRFs and MUA STRFs,
indicating similar frequency tuning. The 3 peaks in the
STRF for mean LFP are analyzed separately, labeled E1,
E2, and E3, with increasing latency. BFs of the 3 peaks are
not strongly correlated with each other, but BF of the first
peak is more correlated with that of MUA and LFP variance
STRFs. The correlation between all pairs of measures is
statistically significant (P � 0.05, bootstrap, FDR cor-
rected), except that the BF of beta variance is not signifi-
cantly correlated with the BFs of E1 and E2. Bar graph on
right shows the number of recording sites included for each
band in this analysis (i.e., sites with predictive power �
0.2). C: average correlation between the BF of each peak in
the mean LFP and the BF of variance STRFs. The correla-
tion coefficient is averaged across variance STRFs for all
frequency bands (*P � 0.05, FDR corrected).
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land et al. 2010). It is tempting to draw direct connections
between these findings, but some caution should be taken when
comparing LFP with single-unit spiking data. First, from a
methodological perspective, low-frequency LFP is usually
characterized by intertrial variability of the LFP waveform
while the spiking activity is usually characterized by variability
of the firing rate (rather than the highly variable spike time or
the highly stereotyped and stable spike waveform). Spike rates
can usually be modeled by a Poisson process, and for a Poisson
process response variance is proportional to the mean response.
In other words, the response variance always increases when
the mean response increases. Instead, the variability of spiking
activity is usually characterized by the Fano factor (i.e., the
variance of the firing rate divided by the mean firing rate). A
decreased Fano factor indicates a reduction in the rate by which
the response variance increases relative to the mean. Second, a
large component of the LFP reflects dendritic activity, com-
prising neural inputs in addition to output spikes. Thus the two
signals may represent activity at different loci in the neural
network (Carandini 2004). Third, changes in LFP mean and
variance may be more tightly coupled to the synchrony of
neural activity across populations rather than the variability of
individual neural responses (Telenczuk et al. 2010). Thus
changes in the reliability of a single neuron’s spiking activity
can have a complex relationship with the larger-scale LFP
signal.

Implications for phase resetting models of low-frequency
LFP oscillations. There are two dominant models for the
interactions between stimulus-locked LFP responses and spon-
taneous neural oscillations. One, the phase resetting model,
posits that some components of spontaneous neural oscillations
are entrained to external stimuli and become the stimulus-
locked responses (Hanslmayr et al. 2007; Kayser et al. 2009;
Lakatos et al. 2009; Luo and Poeppel 2007; Makeig et al.
2002). The other model, referred to as the linear summation
model, posits that stimulus-locked activity and spontaneous
oscillations are independent and add linearly to produce mea-
sured neural signals (Ding and Simon 2013; Howard and
Poeppel 2010, 2012; Makinen et al. 2005; Shah et al. 2004;
Yeung et al. 2004). These two models both generate clear
predictions about how the total LFP power and LFP variance
should be affected by sensory input. The phase resetting model
generally predicts that the total power of LFP is not changed by
sensory stimuli and that the variance is reduced. The linear
summation model, in contrast, predicts that the total LFP
power is increased and the variance is not changed by the
stimulus.

In contrast to either of these dominant models, this study
finds that changes in mean response and variance are hetero-
geneous across local neural populations. Importantly, the total
power of LFP is actually reduced at many recording sites, an
effect that cannot be explained by either model or even by a
combination of the two models. Therefore, suppression of
spontaneous activity must be taken into consideration when
modeling LFP responses (Buran et al. 2014). Furthermore, the
present study did not reveal a significant correlation between
the power of stimulus-locked activity and the reduction in
intertrial variance, leaving it unclear as to whether stimulus-
locked activity can be attributed exclusively to the phase
resetting of spontaneous oscillations or to other neural
mechanisms.

Sound enhances variance of high-frequency LFP. The nat-
ural sound stimulus produces a sustained increase in the inter-
trial variance of high-gamma-band LFP (�64–300 Hz) in A1.
The time course of the high-gamma variance is similar to the
time course of MUA (�600 Hz), which is strongly correlated
with mean spike rate in the local area (Ray and Maunsell
2011). In the beta and alpha bands, changes in intertrial
variance are more heterogeneous, with more recording sites
showing a sustained decrease in the beta-band variance and a
sustained increase in the gamma band. A similar dichotomy is
also seen in the STRF analysis: The high-gamma STRF and
MUA STRF are generally excitatory (Pasley et al. 2012), while
the low-frequency (�16 Hz) LFP variance STRFs are gener-
ally inhibitory. Therefore, the stimulus-evoked behavior of
LFP is qualitatively different between the low and high fre-
quency bands. The low frequency bands (�16 Hz) show
suppression, and the high frequency bands (�64 Hz) show
enhancement. The transition between these two frequency
regions lies in the beta and gamma range.

Mechanisms of intertrial response variability of neural
activity. Why are the neural responses to the same stimulus
variable across measurements? Two general explanations have
been proposed. One explanation is that internal cortical state
can strongly influence sensory processing. For example, in A1,
spike timing is much more reliable in anesthetized animals
compared with awake animals (Chaudhuri et al. 2015), and
attention can further strongly modulate both spiking activity
and LFP/EEG/MEG (Ding and Simon 2012a, 2012b; Fritz
et al. 2003; Hasson et al. 2015; O’Sullivan et al. 2015; Woldorff
and Hillyard 1991; Zion Golumbic et al. 2013). Recent studies
also demonstrate that the trial-to-trial fluctuations of firing rate
are correlated between neurons (Lin et al. 2015) and can be
modeled by stimulus-independent fluctuations of cortical ex-
citability (Ecker and Tolias 2014; Goris et al. 2014; Lin et al.
2015; McGinley et al. 2015). Our observation that changes in
intertrial LFP variance are spectro-temporally tuned suggests
that changes in LFP variance can be stimulus dependent.
However, salient stimuli could also have bottom-up attention
circuits (Kayser et al. 2005), leading to changes in behavioral
state, which in turn influence variability through a more central
mechanism.

A second possibility is that intrinsic activity in neural net-
works contributes to response variability. Intrinsic activity is
ubiquitous in cortical circuits with or without any sensory
stimulus. For the phase resetting theory (Fig. 1A), a component
of intrinsic neural oscillations is phase reset by sensory stimuli
while other components that are not phrase reset contribute to
response variability (Hanslmayr et al. 2007; Kayser et al. 2009;
Lakatos et al. 2009; Luo and Poeppel 2007; Makeig et al.
2002). For the additive response theory (Fig. 1, B and C),
intrinsic neural activity is not affected by the stimulus, and
such non-stimulus-locked activity contributes to response vari-
ability (Ding and Simon 2013; Howard and Poeppel 2010,
2012; Makinen et al. 2005; Shah et al. 2004; Yeung et al.
2004).

Conclusions. This study demonstrates that natural sound
reduces the intertrial variance of low-frequency LFP below 16
Hz. The stimulus-related variance reduction is not correlated
with the strength of the stimulus-locked LFP response, sug-
gesting that separable neural mechanisms control the mean
response and the response variance. This heterogeneity of the
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relationship between mean response and variance may partly
result from the differences between cortical layers, since phase
resetting is often observed in the supragranular layers (Lakatos
et al. 2005, 2008, 2009) and may be further strengthened in
natural listening conditions because of the modulation of at-
tention (Ding and Simon 2012a, 2012b; Fritz et al. 2003;
Hasson et al. 2015; O’Sullivan et al. 2015; Woldorff and
Hillyard 1991; Zion Golumbic et al. 2013) and stimulus mo-
dality (Lakatos et al. 2009).

Finally, the stimulus-related variance reduction is tuned to
spectro-temporal features and the amount of reduction is highly
variable across neural populations, suggesting that variance
reduction is a property of local neural circuits rather than a
global and homogeneous response across A1.
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