Real-Time Tracking of Magnetoencephalographic Neuromarkers during a Dynamic Attention-Switching Task

¹Alessandro Presacco, ²Sina Miran, ^{1,2}Behtash Babadi and ^{1,2,3}Jonathan Z Simon

¹Institute for Systems Research, ²Department of Electrical and Computer Engineering, ³Department of Biology University of Maryland, College Park, MD, USA

Background

• Segregating speech streams is one of the most remarkable feature of the brain

• Understanding how the brain segregate multiple sound sources and direct its attention to the intended speaker is an important problem

• Non invasive techniques, such as Electroencephalography (EEG) and Magnetoencephalography (MEG) adopted to investigate neuromarkers modulated by attention

Background (con't)

Simple Attention Decoding Experiment: Subject instructed to attend to speaker 1 or 2

Attention Decoding Algorithm:

- Input: clean speech data (speech envelopes), MEG channel recordings
- **Output:** the attended speaker at each time

Applications: Brain-Computer Interface (BCI) systems, smart hearing aids

Temporal Response Function (TRF)

- TRF functionally describes how the temporal acoustic features of speech are transformed into cortical responses.
- It can be thought as the "Brain" impulse response to auditory stimuli.
- It has 3 major peaks: M50, M100 and M200
- It appears to be modulated by attention

Ding and Simon (2012) "Emergence of neural encoding of auditory objects while listening to competing speakers"

Major challenge in decoding attention

- Major challenge in using M/EEG attention modulated neuromarkers: poor accuracy of attention decoding algorithms in near real-time settings.
- Current and past attempts to use M/EEG neuromarkers to determine a listener's attentional focus often use tens of seconds before making decisions.
- This long delay prevents the rapid decisions required in realistic auditory scenes

Goals of this study

- Expand the near-real time state-space model based on Bayesian filtering approach previously proposed by Miran et al (2018)
- Estimate the performance of our algorithm during a Dynamic Attention-Switching Task

Previous work: State-space model based on Bayesian filtering (Miran et al 2018)

Dynamically extract the attentional modulated neuromarkers (amplitude of M100) for the attended (Speaker $1 = m^{(1)}$) and the unattended (Speaker $2 = m^{(2)}$)

$$\begin{cases} m_k^{(i)} \mid n_k = i \sim \text{Log-Normal} \left(\rho^{(a)}, \mu^{(a)} \right), & i = 1, 2 \\ m_k^{(i)} \mid n_k \neq i \sim \text{Log-Normal} \left(\rho^{(u)}, \mu^{(u)} \right), & i = 1, 2 \\ \rho^{(a)} \sim \text{Gamma} \left(\alpha_0^{(a)}, \beta_0^{(a)} \right), & \mu^{(a)} \mid \rho^{(a)} \sim \mathcal{N} \left(\mu_0^{(a)}, \rho^{(a)} \right) \\ \rho^{(u)} \sim \text{Gamma} \left(\alpha_0^{(u)}, \beta_0^{(u)} \right), & \mu^{(u)} \mid \rho^{(u)} \sim \mathcal{N} \left(\mu_0^{(u)}, \rho^{(u)} \right) \end{cases}$$

State-Space model

 $p_k = P(n_k = 1) = \frac{1}{1 + \exp(-z_k)}$ $z_k = c_0 z_{k-1} + w_k$ $w_k \sim \mathcal{N}(0, \eta_k)$ $\eta_k \sim \text{Inverse-Gamma}(a_0, b_0)$

Parameters
$$\Omega = \left\{ z_{1:K_W}, \eta_{1:K_W}, \rho^{(a)}, \mu^{(a)}, \rho^{(u)}, \mu^{(u)} \right\}$$

Bayesian Inference $\hat{\Omega} = \underset{\Omega}{\operatorname{arg\,max}} \ln P(\Omega \mid m^{(1)}, m^{(2)}) = \underset{\Omega}{\operatorname{arg\,max}} \ln P(m^{(1)}, m^{(2)} \mid \Omega) + \ln P(\Omega)$ **Output** $\hat{p}_k = \frac{1}{1 + \exp(-\hat{z}_k)}$ **Estimated probability of attending to speaker 1**

Hidden Markov Model (HMM)

- HMM used to estimate the internal state of the dynamics of the M100 peak based on its first derivative
- Amplitude of neuromarkers boosted or penalized by 1.3% of their peak amplitude based on their positive (P) or negative (N) first derivative, respectively. No changes were made if the derivative was stable (S)

State-space model based on Bayesian filtering + HMM

Experimental Set-up

- Participants comprised 5 younger adults (22-33 yr)
- MEG data recorded from 157 sensors
- Participants attended to one of two stories (one narrated by a male speaker, while the other one by a female speaker) presented diotically while ignoring the other one.
- Sound amplitude: ~70 dB sound pressure level
- Duration: 90 seconds
- Signal to-noise ratio of the two speakers: 0 dB
- Participants listened to 3 trials of the same speech mixture
- Participants instructed to switch the focus of their attention at their own will for a minimum of 1 time and a maximum of 3 times.
- Participants given a switching button that they were instructed to press every time they decided to switch attention.

Estimation of TRF, Extraction of Neuromarkers and Estimated probability of attending to speaker 1 or 2

HMM performance

Derivative-based three state HMM proved to be beneficial in tracking the oscillatory patterns of the neuromarkers.

Conclusions

- Our results suggest the feasibility of using a near real-time algorithm pipeline to track the attention state in a dual-speaker setting during a dynamic-attention switching task
- The addition of a derivative-based three state HMM to our algorithm pipeline also proved to be beneficial in tracking the oscillatory patterns of the neuromarkers.

Algorithm development still in progress

• Work is underway to improve the reliability of the estimation of the TRF

Acknowledgements

Dr. Jonathan Z. Simon

Peng Zan Joshua Pranjeevan Kulasingham David Nahmias Dushyanthi Karunathilake Christian Brodbeck Alex Presacco Natalia Lapinskaya

Dr. Behtash Babadi

Sina Miran Proloy Das

Funding

- National Science Foundation grant, NSF SMA1734892
- NIH R01-DC14085
- NIH P01-AG055365
- DARPA grant N6600118240224

Thank you!!!

Questions???