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Background

* Segregating speech streams is one of the most remarkable feature of the brain

* Understanding how the brain segregate multiple sound sources and direct its
attention to the intended speaker 1s an important problem

* Non 1nvasive techniques, such as Electroencephalography (EEG) and
Magnetoencephalography (MEG) adopted to investigate neuromarkers
modulated by attention




Background (con’t)

Simple Attention Decoding Experiment: Subject instructed to attend to speaker 1 or 2
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* Input: clean speech data (speech envelopes), MEG channel recordings
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Attention Decoding Algorithm:

Male speaker

Female speaker Channels

M/EEG {

* Output: the attended speaker at each time

Applications: Brain-Computer Interface (BCI) systems, smart hearing aids



Temporal Response Function (TRF)

* TRF functionally describes how the temporal acoustic features of
speech are transformed into cortical responses.

* It can be thought as the “Brain” impulse response to auditory stimuli.
* It has 3 major peaks: M50, M100 and M200

* It appears to be modulated by attention
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Mayjor challenge in decoding attention

* Major challenge 1n using M/EEG attention modulated neuromarkers: poor
accuracy of attention decoding algorithms in near real-time settings.

* Current and past attempts to use M/EEG neuromarkers to determine a
listener’s attentional focus often use tens of seconds before making
decisions.

* This long delay prevents the rapid decisions required in realistic auditory
scenes



Goals of this study

* Expand the near-real time state-space model based on Bayesian
filtering approach previously proposed by Miran et al (2018)

* Estimate the performance of our algorithm during a Dynamic
Attention-Switching Task



Previous work: State-space model based on
Bayesian filtering (Miran et al 2018)
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Neuromarker (A.U.)

Probability

Hidden Markov Model (HMM)

HMM used to estimate the internal state of the dynamics of the M 100 peak based on its first derivative

Amplitude of neuromarkers boosted or penalized by 1.3% of their peak amplitude based on their
positive (P) or negative (N) first derivative, respectively. No changes were made 1f the derivative was
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State-space model based on Bayesian
filtering + HMM

Dynamically extract the attentional modulated neuromarkers (amplitude of
M100) for the attended (Speaker 1 = m”) and the unattended (Speaker 2 = m®)
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Experimental Set-up

* Participants comprised 5 younger adults (22-33 yr)
* MEG data recorded from 157 sensors

* Participants attended to one of two stories (one narrated by a male speaker, while the
other one by a female speaker) presented diotically while 1ignoring the other one.

* Sound amplitude: ~70 dB sound pressure level

* Duration: 90 seconds

* Signal to-noise ratio of the two speakers: 0 dB

* Participants listened to 3 trials of the same speech mixture

* Participants instructed to switch the focus of their attention at their own will for a
minimum of 1 time and a maximum of 3 times.

* Participants given a switching button that they were instructed to press every time
they decided to switch attention.



Estimation of TRF, Extraction of Neuromarkers and
Estimated probability of attending to speaker 1 or 2
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Conclusions

* Our results suggest the feasibility of using a near real-time algorithm pipeline
to track the attention state in a dual-speaker setting during a dynamic-attention
switching task

* The addition of a derivative-based three state HMM to our algorithm pipeline
also proved to be beneficial in tracking the oscillatory patterns of the
neuromarkers.

Algorithm development still in progress

* Work 1s underway to improve the reliability of the estimation of the TRF
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Thank you!!!

Questions???



