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Background
• Segregating speech streams is one of the most remarkable feature of the brain

• Understanding how the brain segregate multiple sound sources and direct its
attention to the intended speaker is an important problem

• Non invasive techniques, such as Electroencephalography (EEG) and
Magnetoencephalography (MEG) adopted to investigate neuromarkers
modulated by attention



Background (con’t)
Simple Attention Decoding Experiment: Subject instructed to attend to speaker 1 or 2

Attention Decoding Algorithm:
• Input: clean speech data (speech envelopes), MEG channel recordings

• Output: the attended speaker at each time

Applications: Brain-Computer Interface (BCI) systems, smart hearing aids



Temporal Response Function (TRF)
• TRF functionally describes how the temporal acoustic features of

speech are transformed into cortical responses.
• It can be thought as the “Brain” impulse response to auditory stimuli.
• It has 3 major peaks: M50, M100 and M200
• It appears to be modulated by attention
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Ding and Simon (2012) “Emergence of neural encoding of 
auditory objects while listening to competing speakers ”



Major challenge in decoding attention

• Major challenge in using M/EEG attention modulated neuromarkers: poor
accuracy of attention decoding algorithms in near real-time settings.

• Current and past attempts to use M/EEG neuromarkers to determine a
listener’s attentional focus often use tens of seconds before making
decisions.

• This long delay prevents the rapid decisions required in realistic auditory
scenes



Goals of this study

• Expand the near-real time state-space model based on Bayesian 
filtering approach previously proposed by Miran et al (2018)

• Estimate the performance of our algorithm during a Dynamic 
Attention-Switching Task



Previous work: State-space model based on 
Bayesian filtering (Miran et al 2018)

Dynamically extract the attentional modulated neuromarkers (amplitude
of M100) for the attended (Speaker 1 = m(1)) and the unattended
(Speaker 2 = m(2))
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State-Space model
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Hidden Markov Model (HMM)
• HMM used to estimate the internal state of the dynamics of the M100 peak based on its first derivative

Transition probabilities
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• Amplitude of neuromarkers boosted or penalized by 1.3% of their peak amplitude based on their
positive (P) or negative (N) first derivative, respectively. No changes were made if the derivative was
stable (S)
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State-space model based on Bayesian 
filtering + HMM

Dynamically extract the attentional modulated neuromarkers (amplitude of
M100) for the attended (Speaker 1 = m(1)) and the unattended (Speaker 2 = m(2))
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Experimental Set-up
• Participants comprised 5 younger adults (22-33 yr)
• MEG data recorded from 157 sensors
• Participants attended to one of two stories (one narrated by a male speaker, while the

other one by a female speaker) presented diotically while ignoring the other one.
• Sound amplitude: ~70 dB sound pressure level
• Duration: 90 seconds
• Signal to-noise ratio of the two speakers: 0 dB
• Participants listened to 3 trials of the same speech mixture
• Participants instructed to switch the focus of their attention at their own will for a

minimum of 1 time and a maximum of 3 times.
• Participants given a switching button that they were instructed to press every time

they decided to switch attention.



Estimation of TRF, Extraction of Neuromarkers and 
Estimated probability of attending to speaker 1 or 2
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HMM performance

Derivative-based three state HMM
proved to be beneficial in tracking the
oscillatory patterns of the
neuromarkers.
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Conclusions
• Our results suggest the feasibility of using a near real-time algorithm pipeline

to track the attention state in a dual-speaker setting during a dynamic-attention
switching task

• The addition of a derivative-based three state HMM to our algorithm pipeline
also proved to be beneficial in tracking the oscillatory patterns of the
neuromarkers.

Algorithm development still in progress
• Work is underway to improve the reliability of the estimation of the TRF
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Thank you!!!

Questions???


