Applications from Magnetoencephalography: Neural Detection of Attended Voices and Signal Enhancement

Jonathan Z. Simon

Institute for Systems Research

Department of Electrical & Computer Engineering

Department of Biology

University of Maryland

http://www.isr.umd.edu/Labs/CSSL/simonlab

FY14 Federal Laboratory Symposium, 23 Sep 2014

Neural processing of speech and complex auditory scenes

Magnetoencephalography

Neurally Inspired Algorithms

Advanced Neuroimaging

Outline

- Magnetoencephalography (MEG)
 Brief introduction
 - Brief introduction
- Neural Detection of Attended Voices
- Signal Enhancement / Noise Reduction

Outline

- Magnetoencephalography (MEG)
 Brief introduction
- Neural Detection of Attended Voices
- Signal Enhancement / Noise Reduction

Magnetoencephalography

- Non-invasive, Passive, Silent Neural Recordings
- Simultaneous Whole-Head Recording (~200 sensors)
- Sensitivity
 - high: ~100 fT (10⁻¹³ Tesla)
 - low: ~10⁴ ~10⁶ neurons
- Temporal Resolution: ~I ms
- Spatial Resolution
 - coarse: ~ I cm
 - ambiguous

Functional Brain Scanning

Hemodynamic techniques

Functional Brain Scanning

= Non-invasive recording from human brain

Electromagnetic techniques

PET positron emission tomography

> fMRI & MEG can capture effects in single subjects

EEG electroencephalography

Excellent Spatial Resolution (~1 mm)

Poor Temporal Resolution (~I s)

Limited Spatial Resolution (~1 cm)

Excellent Temporal Resolution (~1 ms)

Functional Brain Scanning

Hemodynamic techniques

Functional Brain Scanning

= Non-invasive recording from human brain

Electromagnetic techniques

positron emission tomography

> fMRI & MEG can capture effects in single subjects

EEG electroencephalography

Excellent Spatial Resolution (~1 mm)

Poor Temporal Resolution (~I s)

Limited Spatial Resolution (~1 cm) Excellent Temporal Resolution (~1 ms)

Functional Brain Scanning

Neural Signals & MEG

Photo by Fritz Goro

- •Direct electrophysiological measurement
 - •not hemodynamic
 - •real-time
- •No unique solution for distributed source
- •Measures spatially synchronized cortical activity
- •Fine temporal resolution (~ 1 ms)
- Moderate spatial resolution (~ 1 cm)

Magnetic Field Strengths 10-4 Earth's field 10⁻⁵ 10⁻⁶ Intensity of magnetic signal (T) 45 10-7 10⁻⁸ Urban noise FVAT 10⁻⁹ BRAIN (neurons) Contamination at lung EYE (retina) Spontaneous activity Steady activity Evoked by sensory stimulation Evoked activit 10⁻¹⁰ أ قرة SPINAL COLUMN (neurons) Evoked by sensory stimulation LUNGS Heart ORS Magnetic contaminants HEART 10⁻¹¹ Cardiogram (muscle) Fetal heart LIVER (\cdot) Timing signals (His Purkinje system) Iron stores Muscle GI TRACK 10⁻¹² Spontaneous signal (α -wave) FETUS Cardiogram Stimulus response Magnetic contaminations Signal from retina 10⁻¹³ LIMBS Steady ionic current MUSCLE **Evoked** signal Under tension 10⁻¹⁴ **Biomagnetic Signals** Intrinsic noise of SQUID 10⁻¹⁵

Magnetic Field Strengths 10-4 Earth's field 10⁻⁵ 10⁻⁶ Intensity of magnetic signal (T) 45 10-7 10⁻⁸ Urban noise FVAT 10⁻⁹ BRAIN (neurons) Contamination at lung EYE (retina) Spontaneous activity Steady activity Evoked by sensory stimulation Evoked activit 10⁻¹⁰ أ قرة SPINAL COLUMN (neurons) Evoked by sensory stimulation LUNGS Heart ORS Magnetic contaminants HEART 10⁻¹¹ Cardiogram (muscle) Fetal heart LIVER (\cdot) Timing signals (His Purkinje system) Iron stores Muscle GI TRACK 10⁻¹² Spontaneous signal (α -wave) FETUS Cardiogram Stimulus response Magnetic contaminations Signal from retina 10⁻¹³ LIMBS Steady ionic current MUSCLE **Evoked** signal Under tension 10⁻¹⁴ **Biomagnetic Signals** Intrinsic noise of SQUID 10⁻¹⁵

MEG Auditory Field

Flattened Isofield Contour Map

Time Course of MEG Responses

Pure Tone

Magnetic Field (fT) 120 M150 M100 -150 0 100 200 300 150 r M50 M150 Magnetic Field (fT) 150 0 100 200 300 ms time (ms)

Broadband Noise

Auditory Evoked Responses

- MEG Response Patterns Time-Locked to Stimulus Events
- Robust
- Strongly Lateralized

Outline

- Magnetoencephalography (MEG)
 Brief introduction
- Neural Detection of Attended Voices
- Signal Enhancement / Noise Reduction

Phase-Locking in MEG to Slow Acoustic Modulations

MEG activity is precisely phase-locked to temporal modulations of sound

Ding & Simon, J Neurophysiol (2009) Wang et al., J Neurophysiol (2012)

MEG Responses Predicted by STRF Model

Neural Reconstruction of Speech Envelope

Neural Reconstruction of Speech Envelope

Ding & Simon, J Neurophysiol (2012) Zion-Golumbic et al., Neuron (2013) Reconstruction accuracy comparable to single unit & ECoG recordings

Unselective vs. Selective Neural Encoding

Unselective vs. Selective Neural Encoding

Speech Reconstruction Results

Identical Stimuli!

Ding & Simon, PNAS (2012)

Single Trial Speech Reconstruction

Ding & Simon, PNAS (2012)

Single Trial Speech Reconstruction

Neural Detection of Attended Voice: Summary

- Can tell which voice a listener is attending to
- Can even track speech envelope of that voice
- Since attention can be manipulated (familiar vs. unfamiliar speaker, familiar vs. unfamiliar language, familiar vs. unfamiliar verbal content):

Access to familiarity of voice / speech content

Outline

- Magnetoencephalography (MEG)
 Brief introduction
- Neural Detection of Attended Voices
- Signal Enhancement / Noise Reduction

External Noise

External Noise

Can be estimated using Reference Channels

External Noise Removal: I

c.f. Classic Scalar Regression

External Noise Removal: I

c.f. Classic Scalar Regression

But scalar regression fails when:

Noise Reference is *filtered* with respect to Noisy channel Noise Reference is *time-shifted* with respect to Noisy channel More independent Noise sources than Reference channels

Time-Shift Principle Component Analysis

Generalizes Scalar Regression:

Include Multiple Time-Shifted versions of References Linear Combinations (PCA) of Time-Shifts are Filters Increases effective number of References

Signal cleaned using TSPCA and 3 Reference channels

Signal cleaned using TSPCA and 3 Reference channels

Signal cleaned using TSPCA and 3 Reference channels

Signal cleaned using TSPCA and 3 Reference channels

TSPCA Summary

- TSPCA removes ~98% of noise power
- SNR increase > 10 dB at noisiest frequencies

SNR_E: ratio of Signal other than Environmental Noise to Environmental Noise

TSPCA Summary

- TSPCA removes ~98% of noise power
- SNR increase > 10 dB at noisiest frequencies

- No Target Distortion: only Reference channels are filtered
- Tested on wide range of systems
- User Friendly: Single Parameter to be chosen in advance:
 N = (# of taps), not algorithm sensitive
- Caveats: For small duration signals, N cannot be to large Processing time $O(N^2)$

Sensor Noise

Sensor Noise Reduction: SNS

Sensor Noise Suppression

Targets Sensor Noise, including: Transducer Noise (e.g., SQUID) Electronics Noise (e.g., FLL, amplifier)

SNS Methodology

Assumption: Every neural source is picked up by multiple sensors

Consequence: Any component observed on only one sensor is **artifactual**.

Requires spatially dense sensors

Otherwise model-free

SNS Example

"Glitch" Removal

SNS Example Power and PCA Spectra

sensor-specific signal dimensions

SNS Summary

- Removes Sensor Noise Glitches
- Esp. high frequency noise
- No Target Distortion (unless target loads only I sensor)
- Allows:

Cleaner Data More usable epochs (no need to discard glitches) Reduction of spurious dimensionality (e.g., for PCA, ICA)

Strongly-Mixed-Noise Reduction

Neural Signal-of-Interest vs. Neural Noise

- Neural sources of Signal-of-Interest may overlap with Neural Noise
- Time courses of Signal-of-Interest may correlate with Neural Noise
- But still separable if there exists a Stimulus-Based Criterion to distinguish between them

Strongly-Mixed-Noise Reduction: DSS

Denoising Source Separation

- Algorithm creates Spatial Filters based Stimulus-Based separation criterion (generates Separated Components)
- Neural sources of Signal-of-Interest must be spatially distinct from Neural Noise (overlap OK)
- Time courses of Signal-of-Interest must be distinguishable from Neural Noise (correlation OK)

Särelä and Valpola, J. Mach. Learn. Res. (2005) de Cheveigné and Simon, J. Neurosci. Methods (2008b)

DSS Example

Spectra of MEG Steady State Response (to dual modulation)

Before DSS (20 Best Channels) First DSS component

DSS Example

Phase coding parameter α (by subject)

Before DSS (20 Best Channels)

First DSS component

DSS Example

DSS: How it Helps

"Select best components, discard others"

DSS Summary

- Removes Noise deeply mixed with Signal
- Complementary with:
 - Other denoising algorithms (TSPCA, SNS)
 - Standard analysis tools (beamforming, dipole source analysis, etc.)
- Flexible: case-dependent bias criteria can be used: Bandpassed evoked response (e.g. theta, gamma) Any stimulus-dependent representation of response
- Caveats:

Bias should be robust, so temporarily remove outliers (e.g. ~20% of trials), but OK to use in end

• When SNR is poor (weaker evoked response), may fail, or give component-of-interest as 2nd component.

Denoising Summary

- Different noise sources are best removed using different methods
- Each denoising step decreases dimensionality of signal space, increasing the power of the next step
- TSPCA: Removes External noise represented (imperfectly) in Reference Channels (user friendly)
- SNS: Removes Sensor noise uncorrelated with other channels (user friendly)
- DSS: Removes more "entrenched" noise (tunable)

Summary

- Magnetoencephalography: powerful, sensitive
- Sensitivity allows neural tracking of speech, attended vs. unattended, and all it entails
- Sensitivity includes sensitivity to noise, which must then be removed.
 - Powerful Noise Removal techniques

Thank You

Comparison with EEG

- High temporal resolution
- Inexpensive, Room temperature
- Slow, careful set-up
- Electric fields strongly distorted

- Brain = inhomogeneous, anisotropic, dielectric
- Poor spatial neural reconstruction unless very carefully modeling of currents and entire head
- Inverse problem: worse? better?
- Many more neural sources
- Complementary with MEG