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Magnetoencephalography!

Neural processing of 
speech and complex 
auditory scenes

Advanced Neuroimaging

Neural Un-Mixing of 
Speech

Neurally Inspired Algorithms

620 J. Simon, D. Depireux, D. Klein, J. Fritz, and S. Shamma
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Figure 11: Schematics depicting models that are more complex. (a) Using the
output of a temporally symmetric (TS) neuron as sole input to another neuron
results in a temporally symmetric (TS) neuron (see equation 3.17). (b) Feedback
from such a temporally symmetric neuron whose sole source is the first tem-
porally symmetric neuron is still self-consistently temporally symmetric (see
equation 3.19). (c) Multiple examples of feedback and feedforward: The initial
neuron TS 1 provides temporal symmetry to all other neurons in the network
due to its role as sole input for the network. All other neurons inherit the tempo-
ral symmetry, and the feedback is also self-consistently temporally symmetric.

feedback:

hTS
1 (t, x) =

(
M∑

m=1

(kAm (t)gCm (x)) +
N∑

n=1

(
kθn

An
(t)gDn (x)

))

∗ kA(t) + hTS
2 (t, x)

hTS
2 (t, x) = hTS

1 (t, x) ∗ k2(t). (3.19)

Neural Modeling!

Neural Signal Processing!



• Magnetoencephalography (MEG)  
- Brief introduction	



• Neural Detection of Attended 
Voices	



• Signal Enhancement / Noise 
Reduction
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Magnetoencephalography
• Non-invasive, Passive, Silent 

Neural Recordings	



• Simultaneous Whole-Head 
Recording (~200 sensors)	



• Sensitivity	


• high:  ~100 fT (10–13 Tesla)	


• low:  ~104 – ~106 neurons	



• Temporal Resolution: ~1 ms	



• Spatial Resolution	


• coarse: ~1 cm	


• ambiguous      



Functional Brain 
Scanning	


= Non-invasive 
recording from 
human brain
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Neural Signals & MEG

tissue

CSF

skull

scalp
B

MEG

V
EEG

recording!
surface

current!
flow

orientation!
of magnetic!
field

Magnetic!
Dipolar!
Field!

Projection

•Direct electrophysiological measurement!
•not hemodynamic!
•real-time!

•No unique solution for distributed source

Photo by Fritz Goro 

•Measures spatially synchronized  
cortical activity!

•Fine temporal resolution (~ 1 ms)!
•Moderate spatial resolution (~ 1 cm)
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MEG Auditory Field
Flattened Isofield Contour Map

Instantaneous!
Magnetic!
Field Sink Source

40 fT/step t = 98 ms



Time Course of MEG Responses
Pure Tone

Broadband Noise

Auditory Evoked Responses 

• MEG Response Patterns Time-Locked to 
Stimulus Events	



• Robust	



• Strongly Lateralized
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• Magnetoencephalography (MEG)  
- Brief introduction	



• Neural Detection of Attended 
Voices	



• Signal Enhancement / Noise 
Reduction	





Phase-Locking in MEG to 
Slow Acoustic Modulations

Ding & Simon, J Neurophysiol (2009)	


Wang et al., J Neurophysiol (2012)

AM at 3 Hz 3 Hz phase-locked response 

response spectrum (subject R0747) 

MEG activity is precisely 
phase-locked to temporal 
modulations of sound

0 10

Frequency (Hz)

3 Hz

6 Hz



Ding & Simon, J Neurophysiol (2012) “Spectro-Temporal Response Function”

(up to ~10 Hz)

MEG Responses 
Predicted by STRF Model

Linear Kernel = STRF



Ding & Simon, J Neurophysiol (2012)	


Zion-Golumbic et al., Neuron (2013)
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Selective Neural 
Encoding



Selective Neural 
Encoding



Selective Neural 
Encoding



Unselective vs. Selective 
Neural Encoding



Unselective vs. Selective 
Neural Encoding



Selective Neural 
Encoding



Speech Reconstruction 
Results

grand average 
over subjects

representative 
subject

Identical Stimuli!

reconstructed  
from MEG

attended speech 
envelopes

reconstructed  
from MEG

attending to!
speaker 1

attending to!
speaker 2

Ding & Simon, PNAS (2012)



Single Trial Speech 
Reconstruction

Ding & Simon, PNAS (2012)



Single Trial Speech 
Reconstruction



Neural Detection of 
Attended Voice: Summary

• Can tell which voice a listener is attending to	



• Can even track speech envelope of that voice	



• Since attention can be manipulated (familiar vs. 
unfamiliar speaker, familiar vs. unfamiliar 
language, familiar vs. unfamiliar verbal content):	



Access to familiarity of voice / speech content
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First, understand classic Scalar Regression methods 
(e.g. CALM)
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When scalar regression may fail since: 
Noise in Reference may be filtered w.r.t. Brain channel 
Noise in Reference may be time-shifted w.r.t. Brain channel 
May be more independent noise sources than References 

NOISY
CHANNEL



Can be estimated using Reference Channels
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First, understand classic Scalar Regression methods 
(e.g. CALM)
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When scalar regression may fail since: 
Noise in Reference may be filtered w.r.t. Brain channel 
Noise in Reference may be time-shifted w.r.t. Brain channel 
May be more independent noise sources than References 

NOISY
CHANNEL

External Noise Removal: 1

c.f. Classic Scalar Regression

But scalar regression fails when:	


	

 Noise Reference is filtered with respect to Noisy channel	


	

 Noise Reference is time-shifted with respect to Noisy channel	


	

 More independent Noise sources than Reference channels
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Generalize Scalar Regression: 
Include Multiple Time-Shifted versions of References 
Linear combinations of Time-Shifts are Filters 
Increases effective number of References

Time-Shift Bank

NOISY
CHANNEL

model-free

External Noise Reduction: TSPCA

Generalizes Scalar Regression:	


	

 Include Multiple Time-Shifted versions of References	


	

 Linear Combinations (PCA) of Time-Shifts are Filters	


	

 Increases effective number of References

Time-Shift Principle Component Analysis

!
de Cheveigné and Simon, J. Neurosci. Methods (2007)



External Noise Reduction: TSPCA
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External Noise Reduction: TSPCA
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External Noise Reduction: TSPCA
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TSPCA removes ~98% of noise power,                             
SNR increase > 10 dB for low frequencies

SNRE: ratio of 
Signal other than 
Environmental 
Noise to 
Environmental Noise

No Target Distortion: only Reference channels filtered; 
Tested on wide range of systems 
Single Parameter to choose: N = (# of taps), not sensitive    
Caveats: For small durations, N cannot be too large             

 Large N increases processsing time O(N2) 
Can turn off High Pass filter (possibly Notch filter too)       
Caveat: If turn off Notch, beware of large amplitudes         

due to 60 Hz (clipping, finite # of bits) 

TSPCA Summary
• TSPCA removes ~98% of noise power	



• SNR increase > 10 dB at noisiest frequencies
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Single Parameter to choose: N = (# of taps), not sensitive    
Caveats: For small durations, N cannot be too large             

 Large N increases processsing time O(N2) 
Can turn off High Pass filter (possibly Notch filter too)       
Caveat: If turn off Notch, beware of large amplitudes         

due to 60 Hz (clipping, finite # of bits) 

TSPCA Summary

• No Target Distortion: only Reference channels are filtered	



• Tested on wide range of systems	



• User Friendly: Single Parameter to be chosen in advance:  
N = (# of taps),  not algorithm sensitive	



• Caveats: 	

For small duration signals, N cannot be to large 
	

	

 	

 Processing time O(N2)

• TSPCA removes ~98% of noise power	



• SNR increase > 10 dB at noisiest frequencies
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U. Maryland/KIT

Glitch Removal

before SNS
after SNS



   
  

              
 

   
  

              
 

Sensor Noise Supression 

Target: Sensor Noise 

      Transducer Noise (SQUID) 

      Electronics Noise (FLL, amplifier, A/D) 

in colloboration with Alain de Cheveign

Sensor Noise Reduction: SNS

!
de Cheveigné and Simon, J. Neurosci. Methods (2008a)

Sensor Noise Suppression

Targets Sensor Noise, including:	



	

 Transducer Noise (e.g., SQUID)	



	

 Electronics Noise (e.g., FLL, amplifier)
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Assumption: Every neural source is 
picked up by multiple sensors 

 
Consequence: Any component observed 

on only one sensor is artifactual. 
 

 
Requires spatially dense sensors 
 
Otherwise model-free 

SNS Methodology
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U. Maryland/KIT

Glitch Removal

before SNS
after SNS

SNS Example

“Glitch” Removal
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U. Maryland/KIT

Power and PCA Spectra

Power Spectrum PCA Spectrum

Reduces 
Dimensionality

before SNS
after SNS

before SNS
after SNS

Removes spurious 
sensor-specific 
dimensions

SNS Example
Power and PCA Spectra

Removes spurious 
sensor-specific 
signal dimensions



SNS Summary

• Removes Sensor Noise Glitches	


• Esp. high frequency noise	


• No Target Distortion (unless target loads only 1 

sensor)	


• Allows:  
	

Cleaner Data 
	

More usable epochs (no need to discard glitches)  
	

Reduction of spurious dimensionality (e.g., for  
     PCA, ICA)



Strongly-Mixed-Noise Reduction

Neural Signal-of-Interest vs. Neural Noise 

• Neural sources of Signal-of-Interest may overlap 
with Neural Noise	



• Time courses of Signal-of-Interest may correlate 
with Neural Noise	



• But still separable if there exists a Stimulus-Based 
Criterion to distinguish between them



Särelä and Valpola, J. Mach. Learn. Res. (2005)	


de Cheveigné and Simon, J. Neurosci. Methods (2008b)

• Algorithm creates Spatial Filters based Stimulus-
Based separation criterion (generates Separated 
  Components)	



• Neural sources of Signal-of-Interest must be 
spatially distinct from Neural Noise  (overlap OK)	



• Time courses of Signal-of-Interest must be 
distinguishable from Neural Noise (correlation OK)

Strongly-Mixed-Noise Reduction: 
DSS

Denoising Source Separation



   
  

              
 

   
  

              
 

Before DSS (20 Best Channels)

30
35

40
45

30
35

40
45

!""#$%&'()*#

U. Maryland/KIT, courtesy of Nai Ding

Frequency (Hz)

Subjects

Frequency (Hz)

First DSS component

Spectra of MEG Steady State Response (to dual modulation)

DSS Example
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U. Maryland/KIT, courtesy of Nai Ding

Before DSS (20 Best Channels) First DSS component

Phase coding parameter � (by subject)

DSS Example



   
  

              
 

   
  

              
 

red: �
average 
 
yellow & green: 
individual trials

DSS Example
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Select best components, discard others

keep discard

% of power of summed over all components

DSS: How it Helps



DSS Summary
• Removes Noise deeply mixed with Signal	


• Complementary with:  

- Other denoising algorithms (TSPCA, SNS)  
- Standard analysis tools (beamforming, dipole 
   source analysis, etc.)	



• Flexible: case-dependent bias criteria can be used:  
Bandpassed evoked response (e.g. theta, gamma) 
Any stimulus-dependent representation of response	



• Caveats:  
Bias should be robust, so temporarily remove outliers 
(e.g. ~20% of trials), but OK to use in end	



• When SNR is poor (weaker evoked response), may fail, 
or give component-of-interest as 2nd component.



Denoising Summary

• Different noise sources are best removed using 
different methods	



• Each denoising step decreases dimensionality of 
signal space, increasing the power of the next step	



•  TSPCA: Removes External noise represented 
(imperfectly) in Reference Channels (user friendly)	



• SNS: Removes Sensor noise uncorrelated with 
other channels (user friendly)	



• DSS: Removes more “entrenched” noise (tunable)



Summary

• Magnetoencephalography: powerful, sensitive	



• Sensitivity allows neural tracking of speech, 
attended vs. unattended, and all it entails 	



• Sensitivity includes sensitivity to noise, which 
must then be removed. 	



- Powerful Noise Removal techniques



Thank You



Comparison with EEG
• High temporal resolution	



• Inexpensive, Room temperature	



• Slow, careful set-up	



• Electric fields strongly distorted 	



• Brain = inhomogeneous, anisotropic, dielectric	


• Poor spatial neural reconstruction unless very 

carefully modeling of currents and entire head	


• Inverse problem: worse? better?	



• Many more neural sources	



• Complementary with MEG


