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Unitarity of interacting fields in curved spacetime

John L. Friedman, * Nicolas J. Papastamatiou, and Jonathan Z. Simon+
Department of Physics, University of Wisconsin, Milwaukee, Wisconsin 53201

(Received 29 June 1992)

On globally hyperbolic spacetimes, each foliation by spacelike hypersurfaces corresponds to a Hamil-
tonian description of field theory, and unitarity follows formally from the Hermiticity of the Hamiltoni-
an. For a renormalizable theory, unitarity at each order in perturbation theory follows from the corre-
sponding Hermiticity of each term in the time-ordered product of interaction Hamiltonians. For more
general spacetimes, one can still use the path integral to obtain a generalized Lehmann-Symanzik-
Zimmermann reduction formula for S-matrix elements and the corresponding perturbative expansion.
Unitarity imposes an infinite set of identities on the scattering amplitudes, which are the generalizations
of the flat-spacetime Cutkosky rules. We find these explicitly to O(k') in a A,cp theory, and show how to
find the relations to any order. For globally hyperbolic spacetimes the unitarity identities are satisfied

[at least to 0(A, )] because of a single property of the configuration-space propagator that refiects the
causal structure of the spacetime.

PACS number(s): 03.70.+k, 04.60.+n

I. INTRODUCTION

There is now a substantial literature on the behavior of
quantum fields in curved spacetime [1]. Because of both
conceptual and calculational difficulties, most investiga-
tions have been restricted to the behavior of free fields.
There has been more limited progress in the study of in-

teracting quantum fields in curved spacetime, focused on
the renormalizability of theories [2,3]. Although unitari-

ty of interacting quantum fields in curved spacetime has
been assumed, the scattering identities which follow from
unitarity (analogues of the Cutkosky rules) have ap-
parently not yet been explicitly obtained for general
curved backgrounds.

A treatment of the unitarity relations that govern in-

teracting fields in curved spacetime differs in two key
ways from the standard discussion of flat-space unitarity.
First, in flat spacetime the number of S-matrix elements
contributing to each unitarity relation is substantially re-
stricted by conservation of energy and momentum. In a
generic curved spacetime no analogous restrictions per-
sist. Second, flat-space quantum field theory is ordinarily
treated in a momentum-space context, and the unitarity
relations are obtained from analyticity properties of the
momentum-space propagator. In a curved spacetime one
has no natural way to define a global momentum space,
and the unitarity relations are obtained in a
configuration-space context. In some ways this turns out
to be an advantage: the role that causal structure plays in
enforcing unitarity is clarified by the configuration-space
form of the propagator.

The plan of the paper is as follows. In Sec. II we re-
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view the status of unitarity for free field theories in
curved spacetime, emphasizing the relation between
free-field unitarity and the preservation of the inner prod-
uct on the one-particle Hilbert space (for scalar fields this
is the Klein-Gordon inner product). We present the ar-
gument in a way that does not rely on global hyperbolici-
ty of the spacetime. As we discuss in the following paper,
free fields are unitary on a class of spacetimes with closed
timelike curves, primarily because the inner product is
conserved on these spacetimes as well [4].

Next, in Sec. III, we consider unitarity for interacting
field theories on globally hyperbolic spacetimes. When
the corresponding free-field theory is unitary on a space-
time, perturbative unitarity of the interacting theory fol-
lows from the existence at each order of a self-adjoint
Hamiltonian. For a perturbatively defined theory shown
to be renormalizable to a particular order, we show that
the theory is unitary to that order.

Even for spacetimes which are not globally hyperbolic,
one can define a perturbative expansion for S-matrix ele-
ments. In Sec. IV we obtain a generalized Lehmann-
Symanzik-Zimmermann (LSZ) reduction formula [5] for
general spacetimes by means of the path integral (follow-
ing a suggestion of J. B. Hartle) and show how Feynrnan
rules can be defined. As in Sec. II, this derivation does
not rely on global hyperbolicity of the spacetime. Unitar-
ity of the S matrix entails a set of identities which must
hold order by order in perturbation theory. In flat space-
time, these identities are the configuration-space counter-
parts of the momentum-space Cutkosky rules [6]. We
present a diagrammatic method for deriving the unitarity
identities to any order in perturbation theory and show
that they can be expressed as identities involving only the
Feynman propagator. Thus, for any given spacetime, one
can address the issue of unitarity by examining properties
of the Feynman propagator. We explicitly obtain these
identities for a ky theory to order A. , and also show that
they are satisfied for all propagators of the form

i EF(x,y ) =0(x —y )D (x,y)+ 0(y x)D (x,y), —

46 AAA2



46 UNITARITY OF INTERACTING FIELDS IN CURVED SPACETIME AAA3

where D(x,y) is the two-point Wightman function. We
use lower-case Latin letters as spacetime indices and a
signature of ( —+ + + ).

II. UNITARITY FOR FREE QUANTUM
FIKI.DS IN CURVED SPACKTIMK

A. The field representation

The presentation of free-field unitarity given below is
written in terms of a path-integral formalism intended to
make sense regardless of whether the spacetime can be
foliated by spacelike hypersurfaces. In globally hyperbol-
ic spacetimes, free-field unitarity is well understood [7],
and readers interested only in the results for interacting
fields in a globally hyperbolic setting can skip to the next
section. The formalism introduced here will be used in
the companion paper on the loss of unitarity for interact-
ing fields on spacetimes with closed timelike curves [4].

Let M, g,b be an asymptotically Hat spacetime that is
static in the past and future. (This could be relaxed to
stationary as t ~+ 0() .) Instead of introducing asymptot-
ic scattering states (limits as t ~6 ae), we choose particu-
lar spacelike hypersurfaces 2;„ in the past static region
and X,„, in the future static region, and define in states
and out states on these two hypersurfaces.

A static metric with timelike Killing vector t' can be
written in the form

g,b
——e+' V, &Vb&+h, b

where e "=( V, tV't)'—~ is the lapse function on a
t=const hypersurface X,t'=g' Vbt, and h,b is the
three-metric on X. (That is, the components of h,&

or-
thogonal to X vanish, and the part of h,b tangent to X is
its three-metric. ) The Klein-Gordon operator

A path integral over configuration space describes the
evolution of states in the field representation, in which
state vectors on a hypersurface X are functions %((p) of
field configurations y(x) on X. (Detailed descriptions of
the field representation in fIat spacetime are given by
Glimm and Jaffe and by Symanzik [8]. The field repre-
sentation in curved spacetime has been used by Freese
et al. and Floreannini et al. [9]) The vacuum state cor-
responding to t' is

lo) =~,(g )

=N exp — d X—,'gory

where N is a normalization constant. The Schrodinger
field operator 4s(x) is multiplication by (p(x), and the
corresponding momentum operator is n.s(x )

i 5—/5y(x)
To relate the usual Fock space states to functions

%((p), we need to find, in terms of 4s(x) and mrs(x), the
creation operator a t(f}, corresponding to a positive-
frequency solution f. In the Fock representation one or-
dinarily uses Heisenberg operators 4H(x) and trH(x),
where mH=h' e $,4H is the canonically conjugate
momentum and h is the determinant of the three-metric.
For the Heisenberg operators,

"(f)=&—f1~.) . (7)

By choosing 4H (x ) and trH (x ) to coincide on X with
C)s(x) and mrs(x), we can rewrite a (f) in terms of the
Schrodinger field operators,

a (f ) =i f d X,fV'4H

d x h' e 0 4s i m's (&)

K= —V', 7'+m +gR,
with mass m and curvature coupling g, has the form

E=e "(S +Q )

(2)

(3)

or in the field representation,

a (f)%((p)=f d'x[h'~'e "Qfqr(x) f5/5y(x)]—4(y) .

(9)

with Q the operator satisfying Qf =i S,f, or Qf =cd for
a solution f with positive frequency a). If we denote by
D, the covariant derivative operator with respect to the
three-metric h, b on X, then

e
—vD ae vD +m 2+ gR )

1/2 (4)

A positive definite inner product is given by

(fig)= —.f d&.(f (t g f kg ), —

%'e will also need the Klein-Gordon inner product on the
space of complex solutions to Kf =0

«fig ) = fdX.—(f. ~'g} .
1 X

The usual Fock space is thereby isomorphic to the
Fock space of the field representation. The n-particle
state of the usual Fock space,

a,t. a,tlo), (10)

is the symmetrized tensor product of n one-particle
states,

f(;8 ' ' sfj),
and the corresponding state of the field representation is

a (f, ) a (fj)(po((p) . (12)

[a(f),a (g)]=(fig),

In terms of creation and annihilation operators, the
operator algebra takes the form

where f+ and f are the positive- and negative-frequency parts
of f This would eliminate . the negative sign in Eq. (7) but
would be inappropriate for the discussion in Sec. II B below.

[a(f),a(g)]=0,
[a (f),a (g)]=0 .

(13)
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Let 9'" and 9'"' be the Fock spaces associated with X;„
and X,„„respectively. Because the final static geometry
is not isometric to the initial geometry, the Fock spaces

and V'"' are not naturally isomorphic, and the
Schrodinger field operators are distinct. There is no nat-
ural way to associate a field operator C&(x, ) at a point x,
of X;„with a field operator 4(xz ) at a point xz of X,„,.

The S-matrix 4 describing the evolution from Y" to
2'"' can be formally expressed as a path integral:

..&Pl&I );.= f&q +p(q I
)e"'"+.(q I ), (14)

where S[q] is the action. For the free-field theory
S[y]=SO[g], where

So[q&]= —
—,
' f dz q&Kq) . (15)

As usual, when K appears in a path integral, it is under-
stood as K+ie, in the limit a~0+. A Heisenberg field
operator 4H(x) satisfying the Klein-Gordon equation,

agreeing with the Schrodinger field operator N on X;„,
and acting on 2'", can be defined by writing

..&~l~+Hl~&,.= J &q +i(ql~, )q(x)e'q'. (qlx )

When one can foliate the spacetime with spacelike hyper-
surfaces X, (with X;„=X, , X,„,= X, ), the Heisenberg

field operator @H(x),x EX, can be related to the
Schrodinger field operator 4s(x) in the usual manner:

@H(x)=B,, '4~(x)'M„ (17)

Here B« is the time evolution operator mapping a state
1

on X;„to a state G«+ on 2„
1

Vl«+ =f 2)qe ''%(ply. )

Then from Eq. (16) one obtains Eq. (17) as

&Pl&@H(x)l~&= f&q+ii(q l~ )q(x)e'+. (q Iz )

g/ ~ e 2 ~ ~ ~ e 1 gj

=&/3le, ,e (x)n„ la&

=&pire;, 'e, (x)e„ l~& . (19)

We have used in the last equality the relation 4=G« .

In a region where there are closed timelike curves, no Schrodinger field operator exists, but 4&H(x) is defined by the
path integral of Eq. (16), or, equivalently, by the value of 4 and a for x E 2;„together with the Klein-Gordon equation

K+0=0 .

Equation (20) is formally implied by Eq. (16):

K y%' '
cp x %~= q%'13K' x exp —

i-2 dzqKcp %~

6=i f2)p 4& exp( i ,' f dz—q&—Kqr)%'
5q x

=i f2)y [%13e' 4 ]
6

(20)

=0. (21)

B. Unitarity

For free fields, when the 5 matrix exists, unitarity fol-
lows from the fact that the classical time evolution
preserves the Klein-Gordon inner product,

& Uf I Ug &.„,= &f Ig &,„, (22)

where f and g are solutions to the Klein-Gordon equa-
tion in the past, Uf and Ug the corresponding solutions
evolved in the future,

and

( Uf I Ug ),„,:= —i f Uf V'Ug dS, . (24)OUt '

The S matrix 4 is defined up to an overall constant by
the requirement that it map N and ~ on the initial hyper-
surface 2;„ to 4 and m. on the final hypersurface X,„,.
The statement that 4I on X,„, is evolved in time from
N~ on X;„by the Klein-Gordon equation can be ex-
pressed in the manner (f I @H ) = ( Uf I @H ) or

& f I g &,„:= i f fv'—g ds.
in

(23) 4'4s(f)S '=4~(Uf) (25)
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for any complex solution f in the past.
Define a'"' by

4s(x) =a'"'(x)+a '"'(x) (27)

Sa'"(f)S '=a'"'(Uf) . (26)

In other words, a "' is an annihilation operator that kills
the image S~O) of the in vacuum. If we define a '"'by

Hermiticity of tIt implies a '"'=(a'"') . Then preserva-
tion of the Klein-Gordon inner product implies that the
commutation relations of a and a are preserved by S.

[a'"'(Uf), a '"'(Ug)]= tt'[a'"(f), a'" (g)]S '=S(f ~g )4' '=(f ~g ) =(Uf ~Ug ) .

Finally, if we fix the overall normalization of 4 by

,„&o~z'z~o&,„=I

(see caveats below), then

(28)

(29)

(30)

To obtain this last equation, write an n-particle state in the form

~i
. j):=a'"t aI" t~o)

1 J in '

%'e have

z "'z-'z~o),„=,'"t,' "tz~o),„.
Then the inner product;„( k . I ~i

. j );„oftwo in states is preserved by 1 4:

(k i~ tt' tt'~i j) — (0~$ a'"' a'"'a '"' a '"'$~0);„

(0~0) g [trout a'tout]. . . [aout a)'out)

(31)

(32)

X [ '"tk»

(33)

where Eqs. (28) and (29) were used to obtain the next-to-
last equality and ~ is a permutation of the indices i j.

Two caveats: First, if the image of the in vacuum does
not have finite norm in V'"', Eq. (29) will fail to define an
S matrix (see, e.g. , DeWitt or Wald [7]). Second, unitari-
ty requires not simply that the image of the in vacuum be
finite, but that its norm be preserved. One ordinarily ob-
tains the S matrix only up to an overall normalization
from the Bogoliubov coefficients that describe the evolu-
tion of solutions to the Klein-Gordon equation; unitarity
is then used to fix the normalization. Requiring that the
S matrix be unitary up to an over all normalization is
sufficient to guarantee that the algebra of observables
generated by 4'4$' ' and SmS ' be unitarily equivalent
to that generated by 4 and m.. In principle, however, by
solving the functional Schrodinger equation, one could
decide whether the norm of the vacuum was preserved.

Note that the discussion in this section does not rely on
specific properties of the scalar field, but, rather, on the
existence of an inner product. The discussion can be
straightforwardly generalized to two-component spinors,
Dirac spinors, and electromagnetic fields (antisymmetric
tensors), with corresponding inner products

(piv) —f dX~~p v f dXgtT~~p v

&X 0&= f dX.Xy'0,

and

(F2IFt &= t f dX,—( A2bF;" F2 Atb) . —

In the last relation, A, is any asymptotically regular vec-
tor field such that I',b =V, A&

—Vb A„and the product is
gauge invariant.

III. UNITARITY FOR INTERACTING
FIELDS IN CURVED SPACETIME

A formal proof of unitarity for interacting fields in glo-
bally hyperbolic spacetimes can be given by a straightfor-
ward extension of the corresponding proof for flat space-
time. As in the case of free fields we require that the
spacetime be static in future and past regions containing
the spacelike hypersurfaces X;„and X,„„respectively.
Let t be a universal time, i.e., a scalar for which the t =
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const surfaces foliate the spacetime, and for which t in-
creases to the future. In each static region with timelike
Killing vector t', successive hypersurfaces are chosen to
be Lie derived by t', i.e., t'V, t = 1.

Consider an action of the form

S[y]=S [cp] —f dz V(y(z)),

where So is the free action of Eq. (15). The defining equa-
tion for the elements of the S matrix, Eq. (14), can be
written in the form

,„,(pl/i&&;„= f2)g'pt3 g ', f dz V(g(z)) e' '0
n

(35)

For spacetimes of the type described above, we have [cf.
Eq. (16)]

x&
. y x„e

=...&pl&"'T~(x ) @(x„)l~&;., (36}

= Texp i f d—t Ht(t) (37)

where

Ht(t)= f dXe "V(y), (38)

with e"=( V, tV't—) ' the lapse function.
For Hermitian V(y), one can use Eq. (37) to establish

the unitarity of 4 to each order of perturbation theory,
provided that the theory is renormalizable. It is widely
believed that theories which are renormalizable in flat
space are renormalizable in curved spacetimes as well,
and renormalizability has been shown for spacetimes that
can be analytically continued to spaces with Riemannian

where 4 ' is the free-field S matrix and the evolution is
governed by the free action So (interaction picture).
Then one can formally describe the S matrix as

1=Texp —i f dz V(p)

lim H„(p),
p~Q

(39)

an Hermitian operator on the free-field Fock space.
After renormalization, Ht appearing in Eq. (37) is re-

placed by HI, =H —HQ „, where HQ, is the free Hamil-
tonian expressed in terms of renormalized quantities.
Similarly, the mth-order approximation to the S matrix,

metrics [3]. If a given theory is renormalizable, one can
systematically construct a finite theory by first regulariz-
ing and then introducing a set of counterterms for which
matrix elements remain finite when the regularization is
removed. Let p denote the regulator in some particular
scheme for which the regularization is removed when
p~o. We assume that the following hold for a renor-
malizable theory.

(1) There is a family H (p) of regularized Hamiltonians
which are Hermitian on the free-field Fock space for
pAO.

(2) There is a finite set of regularized counterterms
Z H (p), each of which is Hermitian on the free-field
Fock space for pAO.

(3) At each order m of perturbation theory, one can
choose renormalization constants Z(p, , m) so that the
corresponding renormalized Hamiltonian H„'

=H(p)+Z H has, as a weak limit,

~ m

zI '=I+t fdtHt„'(t}+ . +,Tfdt, . dt Ht„'(ti) . Hl„'(t ),
m!

(40)

has a weak limit obeying the relations

limt' I = lim[4' 't],
p~O p~0

limS' ' = lim [4' ' ']
p~Q p~Q

(41)

that allow a 3+ 1 decomposition. On the other hand, Eq.
(35) holds independently of this restriction. As we will

show in the next section, it can be used to derive a di-
agrammatic expansion of the S matrix which allows a
direct verification of the unitarity conditions to any order
in perturbation theory.

Then for p&0, the Hermiticity of H„(p) implies that
'(p, ) is unitary. Finally, the existence of a well-defined

limit, as the regularization parameter is allowed to ap-
proach zero, expressed by conditions (41) implies that

' is unitary.
Because this proof of perturbative unitarity requires a

globally defined Hamiltonian, it holds only in spacetimes

IV. UNITARITY AND FEYNMAN
DIAGRAMMATIC EXPANSION

A. Background

For a unitary S matrix, 4 4=1. When the matrix ele-

ments of 4 S' are expanded in powers of the interaction
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coupling constant, the consequence is an infinite number
of unitary scattering identities. If the background space-
time is Minkowski and Feynman diagrams are evaluated
in momentum space, these identities are known as Cutko-
sky rules [6]. The specification of the flat-spacetime Cut-
kosky rules is straightforward because of the conserva-

4'= S"'+M" '+ k'4'"+ (42)

we have

tion of energy and momentum. For an interaction with
strength A, ,

(43)

and so, order by order,

x'. &a'la) =(a'IP"tZ'"la &,

7„1.0—( ~lg(0)'tg(1)l ) + (a&I@(&)f'g(o)l

A. :0=(a'IS' 'tS' 'Ia &+ &a'lh'"tS'"Ia&+ &a'IS' ' S' 'Ia&, etc . (44)

One example of a Cutkosky rule coines from the matrix element (i',j 'Iet SIij ), the overlap of S 4 between two-
particle states. For the A,y theory the first nontrivial equation is second order in A, , and we have

0=A[(i,',j 'Is' 'tA' Ii j )+(i',j 'Is"' 1'"Iij )+(i',j'Is' ' 4' ' ij )]
=A, [2Re(i',j'I~' 'li,j )+ g (I,JI+"'li' j') "(I,JI&"'li,j )],

I~J
(45)

where we have used energy conservation, the scalar nature of the field, and the fact that the free S-matrix S' ' is trivial
in flat spacetime. The pair of indices (I,J) label a complete, orthonorinal set of two-particle states, arising from the sum
over the complete, orthonormal set of all n-particle states inserted between 8' t and S~". In terms of Feynman dia-
grams, this equation takes the form

2 Re (46)

The second term of Eq. (46) can be viewed as having cut the first term into two pieces and sewn them back together by
summing over physical states.

In curved spacetime, the generalization of this infinite tower of unitarity identities must be made somewhat carefully.
Energy and momentum conservation, which limits the number of contributing Feynman diagrams in Eq. (46), is no
longer available. The triviality of the free field S-matrix 8 ' is also lost, since even free fields undergo particle creation
in general curved spacetimes We ca.nnot (in general) transform the propagator and Green's functions to momentum
space and must be content with configuration-space path integrals.

The loss of conservation of energy and momentum means that more diagrams contribute nontrivially, but this does
not make the generalized unitarity identities significantly more difficult; we simply must include all possible terms in
deriving them. The nontriviality of the free-field S-matrix 4' ' can also be overcome. In Bat spacetime, the middle term
of the first line of Eq. (45) is simplified by the insertion of a complete set of states between 4' and O'. In general curved
spacetimes, all terms can similarly be simplified by inserting a complete set of states. For a unitary S matrix,

(47)

and, in particular,

As described later, our Feynman diagrams represent the S matrix, not the T matrix, where 4=I+i 75(hp" ). With this conven-
tion, Eq. (46) and related Feynman diagrammatic equations involve the real, rather than the imaginary, part of the amplitude. The
dot product is defined in Sec. IV D.
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Equation (47) has a simple interpretation. The overlap
between an initial state

I
a ) with another initial state la')

is given by the joint amplitude to go from the state a ) to
some final basis state ( A

I
via the scattering process 4',

and then backward in time (via the same scattering pro-
cess} to the state Ia'), summed over all possible inter-
mediate orthonormal states. If we view Sla) as the evo-
lution in time of state Ia), as in the Schrodinger picture,
then the function of unitarity is to enforce the normaliza-
tion of states over time. Of course the particular basis we
choose when inserting the set of states [ I A ) ] does not
affect the results, so long as the basis is complete, but, as
we will see, there is a class of bases that considerably sim-
plify the formalism.

B. LSZ reduction

To compute transition amplitudes from past states to
future states we use a generalized Lehmann-Symanzik-
Zimmermann (LSZ) reduction [5]. This generalization
relies only on the Feynman path integral and does not re-
quire the spacetime to be foliated with spacelike hyper-
surfaces.

We present here a variant of the standard path-integral
reduction of S-matrix elements to products of Feynman

(50)

where

X = —
—,
t q)K(p —V(tp) (51)

and denote by S0 the free-field action. We write the gen-
eral matrix element, „,(k . ISli ),„ in the form

propagators. If one defines the free Feynman propagator
by a path integral in the manner

i)5.F(x,y)

:= f2) t(()% (")' (((()x) tp(y)exp i ,
'—f—dz tpK(p )pp, (49)

then the steps in the reduction make no mention of the
causal structure of the spacetime. If one can foliate the
spacetime, Eq. (49) is equivalent to a vacuum expectation
value of time-ordered Heisenberg field operators. There
are, however, spacetimes with closed timelike curves in
which the Cauchy problem is well defined [10]. The
free-field Feynman propagator is also well defined, and
the reduction given below can be regarded as a path-
integral derivation of the usual Feynman rules for the
scattering of interacting fields on this more general class
of spacetimes.

Let

( k. . . Ig i. . . ) — cQ~ &tout. . . )I(oute isa in't. . . )pin
Out in F' k 0 i 0

=f dX, fp"'(x)V' f dXbf "(y)V'" f2)(ptp()"'t(p(x) t(()(y) e' tpI)" .
out in

(52)

(53)

This is the generalization of the usual LSZ reduction formula.
To replace the product of field operators by products of propagators, we introduce, as usual, a generating functional

W(J)= f2)q) %p"'exp i fdx[ t
q&Kq V(tp)+—Jy] 0'()—,

for which

fXlq& (P(')"'(t()(x) ti)(y)e' tPI) = —. . —. IV( J)
i 5J(x) i 5J(y) J=p

(54}

Then Eq. (53) can be rewritten as

1 5IV(J)=exp i dx V—
i 6J f2)qr )11(')"'exp i f dx [ ,'ti)K(i)+ J(i)] (PI)——

1 6=Nexp —i dx V—
i 5J exp ——fdx dy J(x)bF(x,y)J(y) (55)
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after performing the Gaussian integration. Finally, up to an overall normalization,

,„,&k . . ~I~i . );„=f dX, fk"'(x}V'. . . f dXbf, '"(y)V
out in

X— exp i—dx V —. exp —— dx dy J(x)&F(x,y)J(y)
i 5J(x) i 5J(y) I. 5J 2 J=0

(56)

This is the desired expression for 4' in terms of hF. From
it we will obtain the usual Feynman rules in configuration
space.

The description of scattering for interacting fields is
greatly simplified by a choice of basis of the final Fock
space V'"' for which the free-field scattering matrix is
trivial. Our spacetime has static epochs in the past and
future, and in the past we can choose a basis { ~

A );„]for
Y" associated with the timelike Killing vector in the past.
That is, each past basis vector

~
A );„is an n-particle state

of the form given in Eqs. (10) and (11), the symmetrized
tensor product of n solutions FI, . . . , FJ, to the free
Klein-Gordon equation, where each FI has a positive fre-
quency with respect to the past Killing vector, and

The future basis vectors, however, will not be n-particle
states with respect to the future Killing vector. Instead,
by choosing the basis { ~

A ),„,], where

~
A ),„,=4' '~ A );„, we have, „,( A'~S' '~A );„=5„„.for

unitary 4' '. Note that each basis vector of P'"' has the
form ~A ), ,=~I . J),„,=ar'"' . aJ'"'~0),„„with
ar '"'=4' 'aI '"4' ' ' as in Sec. II. In particular, we will
choose the future "vacuum" state in Eq. (49) such that
/0).„,=t"'/0), „.

We shall refer to a state ~i, i„),„, as an n-particle
state, because this terminology corresponds to the Feyn-
man diagrams of the interaction picture: diagrams with n

future external lines can then be called amplitudes for n-
particle out states. A clean break is thereby made be-
tween particle creation due to the curved background
and particle creation due to interactions. All remaining
calculations, Feynman rules, and Feynman diagrams will
use this expedient basis and terminology. To recapitu-
late, a future "n-particle state" has n particles with
respect to the vacuum 1' '~0);„, not to the natural vacu-
um of the future Killing vector.

Our notation uses lower-case Latin letters from the
middle of the alphabet to indicate one-particle states
created by arbitrary (not necessarily positive frequency)
solutions to the Klein-Gordon equation [e.g. , ~i ) =a; ~0),
a; =a (f, )]. Upper-case Latin letters from the middle of
the alphabet correspond to one-particle basis states [e.g. ,
~I ) =aj ~0), ar =a(FI ), &I~J ) =51J]. Lower-case letters
from the beginning of the Greek alphabet correspond to
multiparticle states composed of arbitrary one-particle
states (e.g. , ~a) =a, . .a. ~0) ). Upper-case letters from
the beginning of the alphabet correspond to multiparticle
basis states (e.g., ~

A ) =aI . . aJ ~0) ).

C. Feynman diagrams

For V(y) =(A, /4! )gr, the configuration-space Feynman
rules are as follows.

(i) Draw all topologically distinct diagrams with 1 +n
external lines, labeled by

l in states f„.. . , fi,
n outstates fr+i, . . . ,fr+„,
m internal vertices y&, . . . ,y

The contribution of a diagram to the S-matrix element
& fr+, f, +„~S~f, f, ) is computed as follows.

(ii) To each line from y; to yj assign a factor i b F(y;,yi ):

= y, (internal)=ihF(y;, y ) . (57)

(iii) To each external line f~ from y; assign a factor
f (y, ) for an in state and f (y; ) for an out state:

= y; (initial external) =f (y; ),
y,

— — f, (finalexte. mal}=f (y;) .

(iv) To each vertex y; assign i kfdy—;:,
(58)

y( = irfdy, . (59)

= fj (initial~ final) =
&j }i ) . (60)

For example, the second order connected one-particle
to one-particle transition amplitude for the A,y theory

&jl~ ~' 'li )= Jdx dy f.(y)[b~( x, y)] f;(x)

(61)

is represented by

(v) Assign a symmetry factor, the reciprocal of the
number of permutations of internal lines that leave the
diagram unchanged for fixed vertices &just as for fiat
spacetime).

(vi) To each line unattached to a vertex, from an in
state f, to an out state f, assign the overlap value
& j~t )= t f'dX,—f'(x)V'f;(x):
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(62)

The usual convention is to use Feynman diagrams to
represent the T matrix, not the S matrix, where
4=I+i 75(hp" ). We cannot follow this convention,
since energy-momentum is not conserved, and we shall
use Feynman diagrams to represent the elements of the S
matrix (not the T matrix). Some equations will therefore
disagree with the T-matrix convention by factors of i.

~ /
l

~ /
l

~ /
l

~ /
l

diagrams. Draw a continuous curve that cuts the dia-
gram into two parts, one part containing the initial state
la) and the other containing the initial state la ), that
does not pass through any interaction points. The cut
will correspond to the final surface in the future. Any
nontrivial scattering process from the initial state la) to
the final surface (and from the initial state la') to the
final surface} will contribute. In our example there are
four topologically distinct ways of making this cut that
will contribute:

D. Identities governing unitary scattering

The generalization of the infinite tower of unitarity
identities to curved spacetime can be neatly described by
the Feynman diagrams just outlined. The process of di-
agrammatically constructing the scattering unitarity
identities in configuration space is quite straightforward.
Several steps are similar to those used in constructing the
Cutkosky rules in flat spacetime, in the momentum-space
representation. We will obtain the identities correspond-
ing to Eqs. (48) at order A, , A, , and A. . First, however, as
a representative example, we begin with a detailed discus-
sion of a particular diagram corresponding to one-
particle —one-particle scattering at order A, .

The one-particle —one-particle scattering identity is

r )"
arran rrrr.

(65)

~ /
l

rvrri (Jrg~

The last individual diagram of (65) can also be represent-
ed by

(66)

(63)

Very few of the infinite number of intermediate basis
states

I
3 ) contribute nontrivially at this order, in fact

only the one-, three-, and five-particle states.
The first step in the diagrammatic approach is to con-

struct a (fictitious) connected, configuration-space Feyn-
man diagram that scatters the state Ia) (e.g., li )) into
the other state

I

a' ) (e.g., I
i ' ) ). Using the example of the

second order, connected, one-particle-one-particle
scattering process, the relevant diagram is

~ /
l

If there is more than one diagram contributing to the
scattering at a given order (as in scattering processes de-
scribed below}, then the procedure must be applied to all

The final step is to break up each of the cut diagrams into
two factors. The first factor is the Feynman diagram
made of the bottom part of the cut diagram with the ini-
tial state la) scattering to an intermediate state of n par-
ticles on the final (cutting) surface. The second factor is
the remaining top part of the cut diagram, with the initial
state la') scattering to the same intermediate state on the
final surface, turned upside down and complex conjugat-
ed. All n-particle states in the final surface are summed
over (with a factor of I/n! to avoid overcounting identical
states}, and the two diagrams are multiplied together
with a combinatoric factor p. The combinatoric factor is
necessary when either of the diagrams gives multiple con-
tributions, and it is calculated as follows: for a precut dia-
gram with a symmetry factor of q [from Feynman rule
(U)] and for cut diagrams with symmetry factors of r and
s, respectively, then p =rs/q. Diagram multiplication
can be combined with multiplication by the combinatoric
factor p into a single operation, denoted by a dot product.

When this cutting process is applied to all diagrams
and all terms are summed over, the resulting expression
must vanish by Eq. (48). The four diagrams of (65) lead
immediately to the second-order unitary scattering iden-
tity:
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I JK I JK +

~ j
li E.

~ j
l l

~ j
l

IJKLM IJKLM *

V V'

I,J,
K,L,M

l
E.

~ p
1

I JK I JK* i IJK I JKi

+
I I

+$
4~ IJK

~ p

1 l)
~ p

l l

I,J,K
(67)

or, more explicitly,

A,
2

0= f dx dy f, (x)j', '(y)[ [iA~(x—,y)] [ih~(x—,y)] +D(x,y)3+D(x,y)'], (68)

where the two-point Wightman function is given by

D( yx)= +Fr(x)F, (y) .
I

(69)

0= —[ihF(x,y)] [ihF(—x,y)] +D(x,y) +D(x,y)'

(70)

Note that, in general, terms contribute to Eqs. (63) and
(67) that would not appear in the fiat-spacetime case.
This includes the amplitude for one particle to decay into
three particles of the same species, and for four particles
to appear out of the vacuum. In curved spacetime we
lose both energy-momentum conservation and stability of
the vacuum, allowing such amplitudes to contribute non-
trivially. In this relation, as in the following unitarity re-
lations, the effect of changing the diagram by switching
any external legs from past to future is simply to change
the corresponding f's to f's (in fact, the f's need not be
positive frequency at any rate).

The smeared unitarity identity (68) will hold for arbi-
trary particle states if the pointwise unitarity relation

also holds. We believe that any unitary, renormalizable
theory which satisfies the smeared unitarity relation (68)
also satisfies the pointwise unitarity identity (70) [though
Eq. (68) certainly does not imply Eq. (70)]. The point-
wise relation follows trivially if ihF(x, y)=
8(x y)D(x, y)+—8(y x)D(x,y),—but for spacetimes
which cannot be foliated with spacelike hypersurfaces,
Eqs. (68) and (70) are nontrivial restrictions on the
theory.

The identities following from the second order, con-
nected, two-particle —two-particle scattering process are
derived analogously. The two-particle —two-particle
scattering identity is

(71)

Only the two-, four-, and six-particle states contribute to the intermediate states
~
A & at this order. There are three

(fictitious) connected, precut diagrams contributing:
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~ r
l

l J
The four contributing cuts from the first individual diagram of (72) are very similar to the four contributing cuts of (65):

~ r
l

~ /
l

~ /
l

~ / ~ /

J

(73)

~err& r err'

The four contributing cuts from the second individual diagram of (72) are given by
~ / ~ /
l J

rA rrrrrrrrkr
l

rrrr r r
(74)

The four contributing cuts from the third individual diagram of (72) can be obtained by exchanging i' and j ' in the dia-
gram of (74). When summed over the intermediate states allowed on the final surfaces, the sum of the resulting 12 dia-
grams gives

I JKLMN (I JKLMN

I,J,K,
L,M, N

+g

I J

I JKL

l J

I JKL +

3(

r ~ /j ) ~/ J )
( IJKL

+
I,J,
K,L

J ~ /
i J ) &l J

+
I,J,
K,L

~ J ~ /

+ [ last four terms with i m j' ]
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or, the smeared unitarity identity

0= J dx dy I
—[ibF(x,y)] [—ibF(x,y)] +[D(x,y)] +[D(x,y)] }

X [f,(x)f (x)f,'(y)f .(y)+f, (x)f, (y)f,'(x)f,'(y)+ f, (x)f,(y)f,'(y)f, '(x) }

This will hold for arbitrary particle states if the pointwise relation

0= —[ihF(x,y)] [ibF(x, y)] +[D(x,y)] +[D(x,y)]
is satisfied.

The three-particle —three-particle scattering identity is

0= g A. [(i',j ', k'~S' '
~
A )( A ~S '~i j,k )+(i',j ', k'~S'"

~
A )( A ~S'"~i j,k)+(i',j ', k'~S' '

~
A )( A ~eV' '~i j,k) ] .

Qnly the one-, three-, five-, and seven-particle states contribute to the intermediate states
I
A ) at second order

are several contributing diagrams, of which only one will be cut apart here:

kl

(79)

i j k

The four topologically distinct ways of making this cut that contribute are

~ / ~ /
k1 J

r//)JCA 'rJ/////

~ r ~ /
l J

~ r ~ r
kl J

~ r ~ /
l J

i j k

rrrrrx. ~red&A

i j k

~arran ri r ur
i j k j k

(80)

This leads to the vanishing expression

JK I JK

I,J,K I,J,K

l J y
l J k

&

I ~ i I

~ / ~ / k/i J k i J

I JKLM N P LI JKMN P

l
E.

i j J

j k i j k

k t k

+
I,J,K,L,
M,N, P

l J k

I

~ r ~ r ) r
g J ky

k~ ~i j k y

i j k I
ql J

k I
kg ~i j k&

(81)
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and to an analogue of pointwise unitarity relation (70) and (77):

0= —i AF{x,y) —i KF(x,y)+D {x,y)+D (x,y) .

If i+F(x,y) =Q(xo —yo)D (x,y)+0(yo —x )D (x,y), then Eq. (82) follows trivially. Because of its linearity, Eq. (82) is
true under even weaker conditions. If i EF(x,y) =9(x y—)D (x,y)+6(y x—)D (x,y) on the initial hypersurface, then
because both Re[ihF(x, y)] and D (x,y) each satisfy the Klein-Gordon equation throughout all spacetime, Eq. {82)also
holds for the entire spacetime, even if the spacetime does not possess a foliation of spacelike hypersurfaces.

A theory with higher-order interactions (in lower dimensions) would be unitary if it satisfied analogues of the point-
wise relations (82), (77), and (70) with higher powers of n:

0= —[i h~(x, y) ]" [i—b F(x,y) ]"+ [D (x,y)]"+D (x,y) ]" . (83}

The connected 0 (A, ) diagrams have four external lines (four-point vertex), or two (tadpole}. For four external lines,
unitarity is trivial: for a diagram with two legs in the past and two in the future, it has the form

0=&i',j'I&'"I~ j &+&'i',j'I+" Ii j &

= iA, f dz [ f,'(z)f—, (z)f, (z)f, (z) +f, ,(z)f, (z)f, (z)f, (z)] . (84)

The unitarity of the tadpole diagram depends on the reality of the regularized coincidence limit of the two-point func-
tion bF(x, x)=D(x,x)+D(x, x):

0=&i'IS'"li &+&i'IS'" li &= i) f dz f—; (z)f;(z)[AF(z, z) &F(z,z)—] . (8&)

In the presence of closed timelike curves, the coincidence limit of the propagator will in general be complex, because it
includes contributions from multiple loops around closed timelike (or null) curves, and the phases of these contributions
depend on the global structure of the spacetime, not just on the short-distance behavior [4,12].

Higher-order unitarity relations are not of the form of Eq. (83). For instance, the pointwise unitarity relation from
the third order, connected, one-particle —one-particle scattering diagram is

0= [i bF(x,y)]~[id F(y, z)]~[id F(x,z)]" [i AF(x,y—)]~[ib~(y, z)]~[id~(x, z)]"

—[i 3 F(x,y)] [D (y, z)]~[D (x,z)]"+ [D (x,y)]~[id F(y, z)]q[D (x,z}]"
—[D(x,y)] [ibF(y, z)] [D(x,z)]"+[ihF(x,y)]~[D(y, z))q[D(x, z)]"

—[D (x,y )]I'[D (y, z) ]q[i b F(x,z) ]"+ [D (x,y) ]I'[D (y, z) ] i[i b F(x,z) ]", (86)

for (p, q, r)=(2,2, 1). It cannot be reexpressed by equa-
tions of the form of Eq. (83). This relation is obtained by
cutting the diagram

(87)

in its eight possible ways (one above all three vertices,
three with one vertex above the cut, three with two ver-
tices above the cut, and one below all three vertices).

All remaining third order, connected, scattering dia-
grams, when cut, give the same pointwise relation as Eq.
(86), but with various non-negative integer values for p, q,
and r. All these relations are trivially satisfied when the
propagator is of the form

i AF(x, y ) = 0(x y)D (x,y)+0(y —x)D (x,y) . —

The failure of any of the smeared identities constitutes
a disproof of unitarity for the theory. Note that all the
identities are consequences of unitarity of the interacting

I

field, but are themselves statements about the free-field
propagator. A free field could violate any of these identi-
ties and would still be unitary, but any attempt to make
the field interact with itself would destroy the unitarity.
This appears to be the case for the A.y theory in the pres-
ence of closed timelike curves [4].

In quantum electrodynamics in curved spacetime [11],
the unitarity relations again rely on a set of identities
analogous to those relating the Feynman propagators to
two-point Wightman functions in Eqs. (83) and (86). In a
covariant gauge, however, relations between the propaga-
tor and the Wightman functions are not quite sufficient to
ensure unitarity. One must also verify that only physical
degrees of freedom contribute to the sum over intermedi-
ate states appearing in the unitarity identities.

V. SUMMARY

Free-field theories enjoy unitarity in a large class of
background spacetimes, including some spacetimes with
closed timelike curves. Our demonstration of unitarity
for interacting fields, however, required global hyperboli-
city. Unitarity also requires renormalizability of the par-
ticular quantum theory, which is difficult to prove for
general curved backgrounds, but it is believed that this
difficulty is technical, not fundamental.
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In curved spacetime, an interacting quantum field
theory, defined by its perturbative expansion in powers of
an interaction coupling constant, possesses an LSZ reduc-
tion similar to the case of flat spacetime. By using the
Feynman path-integral formulation, this generalization of
LSZ reduction does not require the spacetime to be glo-
bally foliated with spacelike hypersurfaces. As in flat
spacetime, Feynman diagrams simplify scattering calcu-
lations and also allow a diagrammatic representation of
the interaction process. Unlike flat spacetime, we must,
in general, restrict the calculations and diagrams to
configuration space, since a momentum space representa-
tion is not available.

A unitary, perturbative, interacting field theory
satisfies an infinite sequence of identities obtained by ex-
panding matrix elements of the identity S 4=1 in
powers of the coupling constant. The momentum-space

representation versions of these identities in flat space-
time are known as Cutkosky rules. These identities have
a straightforward interpretation: any field state that
evolves into the future, if then evolved backward to the
past, and summed over all future states, should result in
the initial field state. Using Feynman diagrams one can
represent the process pictorially as a sewing together of
cut versions of the same diagram, as in flat spacetime.
This pictorial nature of the Feynman diagrams makes
these rules particularly straightforward to calculate.
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