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Motivation
• The Big Quest
Teasing out “function” of Primary Auditory Cortex (AI)

which sounds/features evoke responses?
how are they encoded into spike trains?

• Broadband and dynamic sounds
• Evoke strong, sustained, dynamic responses in AI
• Many natural sounds

e.g. speech, vocalizations, backgrounds

• Reasonable quest
Quantitative measure of how spikes encode sound features
• Quantitative descriptor
• Quantitative predictor
• Visual tool—a la Spectral Response Field/Tuning Curve

• Compromise from quantitative necessity
• Restrict broadband and dynamic sounds to mathematically

simple subset:
• Noise—strongly modulated in spectrum and time
• not a severe compromise

• Spectro-Temporal Receptive Field (STRF) meets
   criteria:

• Quantitative descriptor
• Quantitative predictor
• Visual Tool

function ≈ { 



Sound Features
• Spectro-Temporal Features of Any Sound

• Spectral content of sound as a function of time.

Which spectral frequency bands have enhanced power?
Which spectral frequency bands have diminished power?
How do these change as a function of time?
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Stimulus Construction
• Pink Noise = flat power density in octaves [log (f)]

not white
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• Unmodulated noise (flat) • Spectrally modulated noise
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Spectro-Temporal Response Field (STRF)

• Spectro-temporal response field of neuron is the standard
response field, made time-dependent.

• Frequencies mapped along cochlea on log frequency axis
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Spectral Response Fields,
evolving in time

Impulse Responses,
parametrized by spectral band
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Interpreting STRFs

STRF region Stimulus Power Spike rate contribution
Excitatory Enhanced Faster
Inhibitory Enhanced Slower
Excitatory Diminished Slower
Inhibitory Diminished Faster (!)

Stimulus Effect on Rate

Cross-section interpretations



Spectro-Temporal Response Field (STRF)

2 Dimensional
Transfer Function
of the same
neuron

• Its Fourier transform is
the transfer function.

• Analysis is often
conceptually simpler
in the Fourier domain.

• Either can be used to
predict the linear
response to any
broadband dynamic
sound.

2 Dimensional Fourier Transform

Inverse Transform
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Single Ripple in
Fourier Space

Ω

-0.4 cyc/oct

w4 Hz–4 Hz

0.4 cyc/oct
The Fourier transform
of a single moving
sinusoid has support
only on a single point
(and its complex
conjugate).

∫ [.] exp(±2πjΩx±2πjwt)

Single Moving Ripple

Single Ripple in
Spectro-Temporal Space
(Spectrogram)

S(t,x)= sin[2πwt + 2πΩx + φ]

x = log2[f / f0]
w = ripple velocity,

e.g. 4 Hz = 4 cycles/s
Ω = ripple density,

e.g. 0.4 cycles/octave
= 2 cycles/5 octaves

Ripples are auditory “gratings”
whose spectral envelope is a
sinusoid along the log(f) axis. At
any time t and any frequency x,
the amplitude
S(t,x)  is given by: 
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S(t,x)= sin[2πwt + 2πΩx + φ]
x = log2[f / f0]

w = ripple velocity
Ω = ripple density

The Fourier space of the
spectrograms. We probe a cell at
different velocities w and different
densities Ω , and quantify the
response for up and down-moving
sounds.
Any ripple in the lower half-plane
is equivalent to a ripple in the
upper-half plane.

Multiple Individual Ripples



Spike Train Measurements
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• C(τ, x) contains cross terms
• Cross terms have random phase and can be attenuated

by averaging over multiple, random-phase stimuli.

Snoise(t,x) =Σj Σk sin[2πwjt + 2πΩkx + φj,k]
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Spectro-Temporal Noise
To speed up the characterization of a cell’s response, we use
combinations of ripples of all velocities w and densities Ω, with
random phases. 

Spectro-Temporal
generalization of
white noise
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STORC(t,x) =Σj  sin[2πwjt + 2πΩkx + φj,k]
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Temporally Orthogonal Ripple
Combinations (TORCs)

• Stimuli are composed only of ripples with different ripple velocities.
• Each stimulus contains ripples which cover the same range of ripple

velocities, but at different ripple frequencies.
• Multiple stimuli are still needed to present a complete set of ripples.
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STRFest         (τ, x) = TORC Σ
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TORCs are better suited for
temporal cross-correlation
because there are no cross

terms. The resulting
estimates are robust, use

short-duration stimuli, and
are quickly computed.

To eliminate interference from cross-terms, we use specific
combinations of ripples with differing velocities w and random phases. 
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Shown above are the impulse responses (IR) and receptive fields (RF)
derived from quadrant 1 (black) and quadrant 2 (red) of the transfer
function by inverse Fourier transformation. 
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Fully Separable STRF

The STRF and TF are a
product of a single spectral
response function with a
single temporal response
function.

Quadrant Separable STRF

The STRF is not separable,
but each quadrant of the
transfer function is, i.e.,
there are different spectral
and temporal responses for
upwards and downwards
frequency modulation.
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• Evaluation of Separability
• Noise Reduction
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Singular Value Decomposition (SVD) decomposes the matrix into a sum
of separable matrices, ordered by their overall magnitudes.  The first k
components sum to a matrix which minimizes the power of the
remaining components.

We apply SVD to each quadrant of the transfer function.

SVD naturally separates the signal and
noise components of a matrix. Typically,
large jumps in the singular values
indicate where the separation occurs.
Noise is removed by discarding the
lower-magnitude components.
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Singular Value Decomposition (SVD)

Without prior assumptions, SVD indicates that a large
majority of  STRFs in AI are quadrant separable. 
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Stimuli Used for Predictions

• Predictions of Responses to Novel Stimuli

Good test of linearity
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The STRF estimates often predict the magnitude and dynamics
of the response well. 
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• Preliminary results indicate that the non-linear predictions fit the responses
more accurately than the linear predictions, although the differences
between the two are typically subtle.

Non-Linearity—Predictions
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3rd Order Regression Curve

Mean Spike Rate
STRF Estimate
3rd Order Regression with Inverse-Repeat

Measured rate-level function at τ  and x
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Example 1: Cell
228/08a10
τ = 16 ms, x = 3.80 kHz

Example 2: Cell 226/20a06
τ = 20 ms, x = 1.15 kHz

• The value of the STRF at each point (τ, x) is the slope of a linear rate-
level function:  Rτ,x(t) =[STRF(τ, x)] ⋅ S(t-τ, x) .

• Polynomial rate-level curves measured at every (τ, x) improve the
description.  These are potentially non-linear functions.

 

• Using cubic polynomials, we have shown that either the non-
linearities are absent, or they are dominantly second order.

• Subtraction of the response to the inverted envelope gives a nearly
linear polynomial fit.  This would be expected, for example, from a
purely even order (e.g., rectifying non-linearity).

Non-Linearity—Theory
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Normalized Stimulus Level
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Summary
• The function of AI
To encode spectro-temporal features of sounds

spectrally: up to ~ 1 cycles/octave (rarely up to 4 c/o)
temporally: ~ 2 to  ~ 20 Hz (rarely up to 100 Hz)

(in ferret)
plus, of course, to encode other sound features not
addressed here

• Spectro-Temporal Response Field (STRF)
• Descriptor of spike rate for broadband dynamic stimuli
• Predictor of spike train for stimuli of dynamic,

spectral modulations of noise
    • STRFs agree despite measurement method
    • Predictions of responses to novel stimuli

• Visual Tool demonstrates spectro-temporal regions of
excitation and inhibition

• Physiological Constraints (e.g. Separability) constrain
possible network dynamics

• Non-linear corrections/generalizations
  realizable and work in progress
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