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The sparse assumption. Slices in time of the input 
signal x, expressed in a proper basis Ψ (an nxn 

matrix), are associated to vectors with at most k 
non-null coefficients with k << n. These classes 
of signal are called k-sparse.
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Compressive Sensing (CS) is an emerging topic that merges signal acquisition and compression tasks. This means that CS is able to acquire all the signal information content using fewer sam-
ples with respect to the standard limit imposed by Shannon-Nyquist theorem. This is possible thanks to the fact that the instances of the n-dimensional signals x to be processed are sparse.
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The Encoder. Over each time window, the signal is acquired by 
projections on proper set of m different sampling sequences φj col-
lected row by row in the sensing matrix Φ (note that m < n). As guide-
line for the sampling sequences generation, the CS theory suggests 
to use i.i.d. random vectors. 

signal acquisition:

Make it easy!
Antipodal Random Vectors to optimize the 

phisical realzation of the ecoder stage

The Decoder. The reconstruction of x can be achieved by sol-
ving the following optimization problem which looks at the spar-
set vector mapped in the collected measurements. Its conver-
gence to x is guaranteed by the so-called restricted isometry 
property of the matrix ΦΨ which roughly ensures that its appli-
cation must be able to preserve the input signal l2 norm.
In this case classical CS theory guarantees reconstruction for
m > mmin = 4k log( n / k ).
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EEGs are sparse over the orthogonal 
Daubechies 8 wavelet basis

<|> Real-time monitoring of biological signals such as heartbeat and brain waves by means of wearable or implantable devices is of great concern for 
e-health future developments.

<||> The advantage of a portable system is that the subject can be  monitored during normal life activities without being forced to stay inside clinical fa-
cilities. Such a system must be tiny enough that it does not represent an obstacle for the patient’s movements. Unfortunately, since portable devices are 
battery powered, a trade-off exists between device size/cost and minimum desired operational lifetime. 

<|||> The key idea of this work is to move towards development of ad hoc wireless sensor nodes for biosignals introducing low-power, real-time com-
pression of the raw physiological data in the sensor node in order to reduce the total amount of data to be transmitted. In this way the overall required 
power is reduced as well and device lifetime can be extended when physical size constraints are fixed.

EEG Cap with 
Radio Transmitter Mobile Device

Electoencephalographic (EEG) signals are essential in identifying and studying several neurological disorders such as epilepsy and schizophrenia and are usually measured inside a laboratoy 
using a wired cap featuring a number of electrodes placed on the scalp.
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Particularly, Evoked Potentials (EP), recordings of brain electrical activity arising when an external stimulus is delivered to the 
subject, are extremely challenging to acquire for two main reasons:
  1) there are several noise sources corrupting the measurements such as environmental noise, sensor noise and physiological noise 
(unwanted components of biological origin);
  2) the spontaneous EEG amplitude (alpha waves, beta waves, etc.) is usually much higher than evoked activity (tens of microvolts).
The commonly adopted solution when the stimulus is periodically triggered is averaging over several signal epochs (time inter-
vals between two subsequent stimuli) so that any contribution that is not time-locked to the stimulus is averaged out while 
shared (evoked) features are retained and become more evident.
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The Rakeness approach relaxes the restricted isometry property when the class of signals to acquire is also localized,i.e., the information con-
tent is not only sparse, but also non-uniformly distributed in the whole signal domain. In this setting, antipodal random sensing sequences are 
also designed to maximize the average energy which one is able to collect (i.e. rake) when the input signal is projected into them. Exploiting 
such an approach one is able to reduce Mmin.
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Experimental Setup
Actual EEG recordings taken from a normal hearing subject who performed a 
simple auditory task, consisting of listening to one second spaced speech syl-
lables.
32 brain channels (International 10-20 system) + 2 differential ocular channels 
used as noise references to reject eye blinks artefacts
All channels are 1-200Hz band pass filtered and organized into 700 epochs, 
each of one-second duration.
The entire dataset is divided into two halves: a TRAINING SET (TS) and a DATA 
SET (DS).

Standard EEG Offline Filters
TS and DS are resampled at 512Hz and filtered using 3 OFFLINE DENOISING AL-
GORITHMS which actually represent the state-of-the-art in EP analysis but are 
much too power demanding to be directly implemented in a portable device.

1  Time-Shift PCA (TSPCA):
 Environmental noise removal (external noise due to electromagnetic inter-
ference and 50-60Hz  power line hum) obtained by delaying signals collected 
by sensors used as noise reference channels, orthogonalizing them, projecting 
the brain sensors onto the noise derived basis, and finally remove projections to 
obtain clean data. [ref5]

2 Sensor Noise Suppression (SNS):
 This method is based on the assumption that every source of interest is 
picked up by more than one sensor while wide-band noise and glitches arising 
from problems like momentary variation of skin contact are not shared by neigh-
bors. In the denoising process each signal is projected on the subspace span-
ned by its neighbors and then replaced by its projection. [ref6]

3 Denoising Source Sepatration (DSS):
 Physiological noise removal is addressed by partitioning the recorder activi-
ty into stimulus-related and stimulus-unrelated components by means of a spa-
tial filtering based on a criterion of stimulus-evoked reproducibility. [ref7]
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RESULTS

Standard CS (bottom figure) has acceptable performance
but the match with the offline filtered signal is greatly
improved by introducing rakeness-based CS (top figure)

 Standard CS is no able to reconstruct the EP waveform
shape while rakeness-based CS still ensures a good match 

Rakeness-based CS Improves CS performance in terms of RECONSTRUCTION ACCURACY vs CR (n/m) w.r.t. standard CS
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SENSING MATRICES

The input signal autocorrelation matrix, required by the rakeness-based CS is estimated using 
the TS portion of the offline denoised midline centered channel Cz, which tipically gives the 
strongest auditory response. To increase the robustness of the estimation, each epoch of Cz 
is replicated 100 times and randomly shifted.

A novel approach for reducing the power consumption in portable health monitoring systems has been 
presented along with simulation results on a real dataset of EEG Evoked Potentials.

The proposed method, based on a recent extension of Compressed Sensing theory, called rakeness, 
outperforms standard CS in terms of quality of reconstruction for a given Compression Ratio, with very 
good performance up to CR=16.

Some interesting filtering capabilities are introduced, such as suppression of high-frequency noise 
peaks and 60 Hz power line noise, proving the effectiveness of the proposed methodology also for denoi-
sing purposes.

The sharp noise peak localized around the electrode 
FC6 at 700ms is completely removed by both the 
offline filtering and the rakeness-based CS.

Additionally, the rakeness-CS acquisition is able to 
also remove high frequency spectral components 
such as the 60 Hz power line hum.

This demonstates that some desirable properties of 
the TS have been implicitly imparted into the acqui-
red signal during the rakeness optimized compres-
sion process.

yΦ
Rakeness opt. prob.

x
offline

estimated EEG 
correlation

sensing sequeces
correlation

RNG
H

ow
 it w

ork

[ref1] D. Donoho, “Compressed sensing,” Information Theory, IEEE Transactions on, vol. 52, no. 4, pp. 1289–1306, 
April 2006.
[ref2] F. Pareschi, P. Albertini, G. Frattini, M. Mangia, R. Rovatti, and G. Setti, “Hardware-algorithms co-design and im-
plementation of an analog-to-information converter for biosignals based on compressed sensing,” IEEE Trans. 
Biomed. Circuits Syst, 2016, dOI: 10.1109/TBCAS.2015.2444276.
[ref3] E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE Transactions on Information Theory, vol. 51, 
no. 12, pp. 4203–4215, Dec. 2005.
[ref4] R. Rovatti, G. Mazzini, and G. Setti, “Memory-m antipodal processes: Spectral analysis and synthesis,” IEEE 
Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 1, pp. 156–167, Jan 2009.
[ref5] A. de Cheveigné and J. Z. Simon, “Denoising based on time-shift PCA,” Journal of Neuroscience Methods, vol. 
165, no. 2, pp. 297 – 305, 2007.
[ref6] A. de Cheveigné and J. Z. Simon, “Sensor noise suppression,” Journal of Neuroscience Methods, vol. 168, no. 
1, pp. 195 – 202, 2008.
[ref7] A. de Cheveigné and J. Z. Simon, “Denoising based on spatial filtering,” Journal of Neuroscience Methods, vol. 
171, no. 2, pp. 331 – 339, 2008.
[ref8] B. Lütkenhöner and J. Mosher, “Source analysis of auditory evoked potentials and fields,” in Auditory Evoked 
Potentials - Basic Principles and Clinical Applications, R. F. Burkard, J. J. Eggermont, and M. Don, Eds. Lippincott Wil-
liams & Wilkins, 2007, pp. 546–569.


