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Abstract—Wireless sensor nodes capable of acquiring and
transmitting biosignals are increasingly important to address
future needs in healthcare monitoring. One of the main issues in
designing these systems is the unavoidable energy constraint due
to the limited battery lifetime, which strictly limits the amount
of data that may be transmitted. Compressed Sensing (CS) is an
emerging technique for introducing low-power, real-time com-
pression of the acquired signals before transmission. The recently
developed rakeness approach is capable of further increasing CS
performance. In this paper we apply the rakeness-CS technique
to enhance compression capabilities for electroencephalographic
(EEG) signals, and particularly for Evoked Potentials (EP), which
are recordings of the neural activity evoked by the presentation
of a stimulus. Simulation results demonstrate that EPs are
correctly reconstructed using rakeness-CS with a compression
factor of 16. Additionally, some interesting denoising capabilities
are identified: the high-frequency noise components are rejected
and the 60 Hz power line noise is decreased by more than 20 dB
with respect to the state-of-the-art filtering when rakeness-CS
techniques are applied to the EEG data stream.

I. INTRODUCTION

Wearable or implantable computing and communication
systems allow convenient, real-time monitoring of vital sig-
nals, such as heartbeat and brain waves, and other physiolog-
ical parameters. In particular, electroencephalography (EEG),
the technique of measuring electrical signals generated within
the brain by placing electrodes on the scalp, is an essential
tool in identifying and studying several neurological disorders
including epilepsy and schizophreny.

In this work we focus on Evoked Potentials (EPs), record-
ings of brain electrical activity evoked by an external stimulus
that is repeatedly delivered to the subject. EP acquisition is
usually carried out inside a laboratory using a wired cap,
featuring a number of electrodes located at specific posi-
tions, cable-connected to one or more amplifiers followed
by an Analog-to-Digital Converter. Offline signal processing
is regularly performed after the signal has been acquired
and stored as a mandatory analysis step in order to get
rid of several noise components affecting the measurements,
especially: environmental noise (external noise due to electro-
magnetic interference and 50-60 Hz power line hum), sensor
noise (arising from problems like momentary variation of skin
contact) and physiological noise (unwanted components of
biological origin). Even after this filtering, the spontaneous
EEG amplitude (alpha waves, beta waves, etc.) is usually
much higher than the evoked activity, ranging from less than
one to several microvolts, and significant signal averaging
is commonly required to reveal the stimulus response. This
averaging is carried out over many epochs (time intervals
between two subsequent stimuli) so that signal contributions
that are not time-locked to the stimulus are averaged out, as
shown in Fig. 1.

Fig. 1. Evoked potential recordings aligned with the stimulus trigger (grey
lines), and their average (black line).

The clear advantage of a wireless health monitoring system
is that the subject can be monitored during normal life
activities without being forced to stay inside clinical facilities
connected to the electronic apparatus. In portable systems the
entire recording unit is battery powered, and the physical size
of the batteries determines the overall device size and oper-
ational lifetime. For mobile recording applications, size and
lifetime represent the most important design constraints and
tradeoffs. The system must be tiny enough that it does not rep-
resent an obstacle for the patient’s movements; unfortunately,
this is often in contrast with the constraint on the minimum
desired operational lifetime before recharging is needed. As
an example, the aforementioned filtering algorithms typically
demand too much computational power to be implemented in
such a system.

The power consumed by the wireless device can be di-
vided into two main contributions: power employed for data
acquisition/processing and power used for data transmission.
The latter contribution can be reduced by considering a low-
power, real-time compression of the raw physiological data
in the wearable device itself. However it is essential that the
computational complexity of the data compression algorithm
is low.

Accordingly, the Compressed Sensing (CS) paradigm has
been recently introduced to provide data compression in
wearable computing systems thanks to the low computational
complexity [1], [2]. The basic idea behind CS is to move
the burden of computational effort from the battery-powered
wireless node to a base station where energy constraints are
less stringent since the energy is taken directly from the power
lines. Hence, the compression/encoding algorithm is designed
to be simple (i.e. made of a few elementary operations)
while its decompression/decoding counterpart is inherently
non-linear and usually more time- and energy-consuming.

The purpose of this work is to move towards development
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of ad hoc wireless sensor nodes for biosignals by means of the
CS framework, in particular the recently introduced rakeness
approach [3]. The advantage is twofold. First, by embedding
CS in the sensor node we can exploit its intrinsic compression
capability to reduce the amount of data to be transmitted (and
also the required energy). Then, the rakeness approach, by
tuning the statistical properties of the CS acquisition algorithm
with that of the input signal, can boost the performance of CS
in terms of compression ratio.

An additional consequence of the statistical tuning of the
CS acquisition algorithm is not only to increase the CS
performance in terms of compression ratio, but also that the
matched features are enhanced, while others are removed or
strongly attenuated. In this way we can enhance features we
are interested in, and reject unwanted components directly
during acquisition. In other words, we are using CS to perform
implicit signal filtering. We can use this to achieve an effect
similar to that of existing denoising techniques, which are
generally too expensive in terms of power consumption to be
implemented directly in portable devices. The most interesting
aspect of the proposed approach is that the filtering effect
is performed directly as the signals are projected into the
compressed domain, and do not require any additional, time-
consuming, denoising steps.

The content of the paper is structured as follows. In Sec. II
we provide an overview of CS theory and of a recently
developed rakeness extension. Then, in Sec. III, we show
some interesting results obtained employing rakeness-based
CS to compress EEG, with particular emphasis on EP signals.
Finally, we summarize the contributions.

II. RAKENESS-BASED CS FRAMEWORK

Let us focus on the discrete-time CS approach, where
any instance of the input signal x 2 RN is represented by
its Nyquist-rate samples. The CS framework is based on a
sparsity assumption, i.e. that given a proper basis  2 RN⇥N ,
any signal instance can be expressed as the linear combination
of only a few vectors of  , i.e., x =  ↵ where the coefficient
vector ↵ has only K ⌧ N non-null coefficients. The aim of
CS is then to represent each realization x with a measurement
vector y 2 RM , with M < N . The ratio N/M is commonly
referred to as Compression Ratio (CR). The compressed mea-
surements are achieved as a simple matrix multiplication (i.e.
multiply and accumulate operations) between a set of sensing
vectors �

j

, j = 1, ...,M , arranged as the rows of a sensing
matrix � 2 RM⇥N :

y = �x+ ⌫ = � ↵+ ⌫ = A↵+ ⌫ (1)

where A = � is a M ⇥ N matrix that links the sparse
representation ↵ to y, and ⌫ is additive noise modeling the
system non-idealities.

The reconstruction x̂ =  ↵̂, ↵̂ 2 RN of the original signal
from y is an underconstrained problem, since M < N , and
hence there are an infinite number of inverse solutions for (1).
Under the assumption that the matrix A satisfies the Restricted
Isometry Property (RIP) [4] and that M is O(K log(N/K))

[5], CS theory ensures that the correct solution is given by the
following sparsity promoting optimization problem:

↵̂ = min k↵k
`1

s.t. k� ↵� yk
`2 < "

(2)

where k ·k
`1 and k ·k

`2 represent the standard `1 and `2 norms
respectively and " takes into account the effect of ⌫.

The most convenient way to ensure RIP is to generate the �

j

as instances of independent and identically distributed (i.i.d.)
Gaussian (or Sub-Gaussian) random variables. A common
hardware friendly choice is to adopt an i.i.d. antipodal random

process, where the probability to have +1 or -1 is the same
[2]. In this way, the hardware requirements for implementing
the multiply and accumulate operations to compute (1) are
greatly simplified. Recently it has been shown [3] that, if
the class of signals to be acquired exhibit a non-flat energy
distribution, the CS performance can be improved taking
advantage of an innovative concept named rakeness 1. In this
new scenario the �

j

are no longer constructed from simple
i.i.d. random entries but rather their statistics are tuned in
order to match that of the input signal, thus increasing the
average energy of the y and ensuring better results in terms
of reconstruction accuracy or, equivalently, to increase the CR
given the desired reconstruction accuracy. To formalize this,
let us define the rakeness ⇢ between two stochastic processes
� and x, generating the sensing sequences �

j

and the signal
instances x respectively, as

⇢(�, x) = E
�,x

h
|h�

j

, xi|2
i

(3)

where E
�,x

[ · ] denotes the statistic expectation over � and
x and h·, ·i the standard inner product. Under the assumption
that the correlation matrices R

� and R

x of the processes �

and x are known, respectively, we can express the rakeness
value as ⇢(�, x) =

P
N

j=1

P
N

i=1 R
�

i,j

R

x

i,j

[2], with R

�

i,j

the
(i, j)-th element of R�. The key concept is trying to maximize
the “raked” energy preserving RIP. This is obtained by the
following optimization problem

max

�

⇢(�, x)

s.t.

( h�
j

,�

j

i = e

⇢(�,�)  r e

2

(4)

where e represents the energy of each �

j

, and r is a non-
critical parameter ensuring that the �

j

are random enough to
preserve RIP [6]. The outcome of (4) is the correlation matrix
R

� of the stochastic process � to be used to generate the �

j

.
Interestingly, by using a properly designed Linear Probability
Feedback Process (LPFP) [7], it is possible to generate binary
antipodal �

j

with a prescribed R

�. This allows us to use the
rakeness approach with the hardware advantages offered by
binary antipodal sensing vectors.

In the following we exploit the rakeness approach in the
acquisition of EEG signals. The advantage is twofold, enhanc-
ing both compression and noise suppression. First, we are able
to achieve a very high CR. With the rakeness approach, we
achieve CR = 16, while we only achieve CR = 4 with the
standard CS approach. At the same time, statistically designing
the �

j

actually acts to enhance some components of x and
attenuating others, i.e., it results in a filtering effect on the
input signal. We exploit this to introduce, along with the
compression capability, a denoising feature in the rakeness-
based CS framework.

In the next section the effectiveness of the proposed ap-
proach is demonstrated with application to EEG signals, where
we are able to simultaneously achieve very high CR and online
denoising that is comparable with that obtained from the state-
of-the-art offline solutions.

III. RESULTS
In this section the state-of-the-art denoising techniques

previously introduced and the rakeness-based CS approach are
tested on actual EP recordings taken from a normal-hearing
subject who performed a simple auditory task, consisting of
listening to one second spaced speech syllables.

1Online at http://cs.signalprocessing.it
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(a) (b)

Fig. 2. Comparison between averaged auditory EP of channels Fp1, FC6 and
Cz before (a) and after (b) denoising.

The analog waveforms were collected with 32 brain chan-
nels, labeled as in the International 10-20 system, plus two
additional differential ocular channels, named HEOG and
VEOG, used as noise references to reject artifacts arising
from eye blinks. All channels are 1 -200 Hz band-pass filtered
and organized into 700 epochs, each of one-second duration.
Successively, the entire dataset is divided into two parts: the
first 350 epochs are employed as a Training Set (TS) as
explained in the following, while the second part, named Data
Set (DS), is used for CS performance testing.

A. State-of-the-Art Offline Denoising

Both brain and reference channels are sampled at 512 Hz
and filtered using offline denoising algorithms in the fol-
lowing order. First, Time-Shift PCA (TSPCA) [8] is applied
for environmental noise removal. This filtering algorithm is
obtained by delaying the signals collected by sensors used as
noise reference channels, orthogonalizing them, projecting the
brain sensors onto the noise derived basis, and removing the
projections to obtain clean data. Subsequently, the resulting
signals are filtered using Sensor Noise Suppression (SNS) [9].
This method is based on the assumption that every source
of interest is picked up by more than one sensor. To reduce
noise, each sensor signal is projected on the subspace spanned
by its neighboring channels and replaced by its projection.
In this process, wide-band noise and glitches, that are not
present in the neighbors are eliminated, while shared features
are retained. The last denoising step aims to remove unwanted
physiological sources. A spatial filter is designed, using a
blind source separation method known as Denoising Source
Separation (DSS) [10] to partition recorded activity into
stimulus-related and stimulus-unrelated components, based on
a criterion of stimulus-evoked reproducibility.

Fig. 2 shows the EP average response of the TS brain
channels Fp1, FC6 and Cz before (Fig. 2(a)) and after
(Fig. 2(b)) the denoising process. In the first two cases the
noise components appear considerably reduced in the denoised
signals, while for Cz, which is supposed to give the strongest
auditory response [11], the effects of this method are mostly
masked by averaging. Note that this denoising technique is
not able to remove the power line noise, as clearly observable
from the residual 60 Hz oscillations in Fig. 2(b).

B. Rakeness-CS Online Denoising
We first compare the system performance of the standard CS

approach with the rakeness-based CS in terms of the maximum
CR achievable that preserves the features of the average EP
waveform. Next, we present results showing that the rakeness-
based CS acquisition introduces desirable denoising properties,
after signal reconstruction.

The CS framework is tested on the DS epochs with N =

512 (1 s epochs sampled at 512 Hz), using the orthogonal
Daubechies 8 wavelet as sparsity basis and the SPGL1 tool-
box2 to solve (2) and retrieve the signal x from the compressed
samples y. The input signal autocorrelation matrix, required
to solve (4) in the rakeness-based approach, is estimated from
the TS offline denoised data and particularly from the midline
centered channel Cz. Furthermore, in order to increase the
robustness of the estimation, each Cz epoch is replicated 100
times and randomly shifted in the epoch. In such a way, we
obtain L instances xCz(·, l), l = 1, . . . , L of a “clean” auditory
response, which are no more aligned to the stimulus trigger
at the beginning of the time window. Then, the associated
correlation matrix R

Cz is computed as follows:

R

Cz

=

2

664

r1(0) r1(1) r1(2) ... r1(N � 1)

r1(1) r2(0) r2(1) ... r2(N � 2)

r1(2) r2(1) r3(0) ... r3(N � 3)

... ... ... ... ...

r1(N � 1) r2(N � 2) r3(N � 3) ... r

N

(0)

3

775

(5)
with r

n

(i) =

1
L

P
L�1
l=0 x

Cz

(n, l)x

Cz

(n + i, l), n =

1, ..., N, i = 0, ..., N � 1. Then, using R

Cz and solving the
rakeness optimization problem (4), we get the correlation
matrix R

� which, by means of the LPFP in [7], is used to
generate the sampling vectors �

j

.
The simulation results are presented in Fig. 3. In case

of CR=4 (Fig. 3(b)), the averaged reconstructed EPs using
standard CS show a quite good match with the filtered EPs
average (Fig. 3(a)) and with rakeness-based CS this matching
is greatly improved. When CR=16 (Fig. 3(c)), the discrepancy
between the standard-CS and the filtered EP dramatically
increases while the rakeness approach still ensures acceptable
performance.

As expected, employing the rakeness approach consider-
ably improves the achievable CR with negligible performance
degradation. Using this approach, a smaller number of com-
pressed samples is needed to achieve a target reconstruction
accuracy and hence the power consumption in the portable
device can be greatly reduced.

Next we highlight the extremely interesting denoising prop-
erties offered by the rakeness approach, as exemplified by
Fig. 4. Here, we focus on one single epoch looking at its
multichannel representation (scalp map) shown in Fig. 4(a)
where one can notice a strong component located in the right-
frontal hemisphere, identifiable with the dark area localized
around the electrode FC6. As confirmed by the representation
of the scalp potential of FC6 over time (Fig. 4(b)), there is
a sharp noise peak around 700ms that is completely removed
by both the offline filtering and the rakeness-based CS. This
demonstrates that some desirable properties of the TS have
been implicitly imparted into the acquired signal during the
rakeness optimized compression process.

Interestingly enough, by looking at the power spectral
density plot in Fig. 4(c), one can note an additional advantage
of the rakeness-based approach with respect to the state-of-the-
art one. The spectral density of the offline denoising shows a
strong component around 60 Hz that is clearly an interference

2Available online at https://www.math.ucdavis.edu/˜mpf/spgl1/
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(a)

(b)

(c)

Fig. 3. Comparison between the standard CS and the rakeness-based CS
performance on the channel Cz: offline filtered and averaged (a); standard-
CS vs rakeness-CS acquired, reconstructed and averaged with CR=4 (b) and
CR=16 (c).

from the power supply. The rakeness-CS decreased this en-
vironmental noise power by more than 20 dB in comparison
with the state-of-the-art denoising technique.

IV. CONCLUSION

In this work, a novel approach for reducing the power
consumption in portable health monitoring systems has been
presented along with simulation results on a real dataset of
EEG Evoked Potentials.

The proposed method, based on a recent extension of
Compressed Sensing theory, called rakeness, outperforms stan-
dard CS in terms of quality of reconstruction for a given
Compression Ratio, with very good performance up to CR=16.
Moreover, some interesting filtering capabilities are intro-
duced, such as suppression of high-frequency noise peaks
and 60 Hz power line noise, proving the effectiveness of the
proposed methodology also for denoising purposes.
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(a)

(b)

(c)

Fig. 4. Rakeness-based CS denoising features. Comparison between the raw
and denoised signals with the standard-CS and rakeness-CS reconstructions:
(a) scalp maps, (b) channel Fp6 single epoch with vertical dotted line
indicating the point in time where the scalp maps are calculated, (c) power
spectral density with vertical dotted line indicating 60 Hz line noise.
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