

Robust Cortical Encoding of Slow Temporal Modulations of Speech

Nai Ding, Jonathan Z. Simon University of Maryland, College Park

Speech Listening in Challenging Listening Environments

Speech Masker

Noise Masker

strong informational masking (top-down selection needed)

strong energetic masking (**bottom-up saliency** reduced)

Experiments

Speech Masker

Stimulus:

- a male speaker
- a female speaker
- mixed into a single channel
- The listeners were asked to attend to one speaker.

Noise Masker

Stimulus:

- a female speaker
- spectrally matched stationary noise
- mixed into a single channel

Procedure: The subjects listened to a story in 1-minute sections. They answered comprehension questions, and rated speech intelligibility, after each section.

Neural Recording

Cortical activity was continuously recorded using magnetoencephalography (MEG), while the subjects were listening to a story.

uuuuuu

The MEG Response Is Phase Locked to the Speech Envelope

phase locking to slow temporal modulations < 10 Hz (Ding & Simon, J Neurophysiol. 2012)

Rated Intelligibility

Decoding Speech Envelopes from the MEG Responses

(Ding & Simon, PNAS 2012)

Decoding Speech Envelopes from the MEG Responses

Speech Masker

The neural response carries more information about the attended speaker than the unattended speaker.

chance level

(Ding & Simon, PNAS 2012)

Rated Intelligibility

Neural Reconstruction

The neural response is not significantly affected by the TMR, for either speech or noise masker.

Neural Reconstruction

The neural response is not significantly affected by the TMR, for either speech or noise masker.

Neural Encoding Accuracy & Speech Intelligibility

Speech Masker

Noise Masker

The neural synchronization to speech envelope is more robust to acoustic interference than speech intelligibility.

It may reflect the detection of syllabic structure rather than phonetic categories.

Neural Encoding Accuracy & Speech Intelligibility

For the noise masker, At -3 dB TMR, neural reconstruction accuracy predicts individual subjects' speech rating.

Spatial-temporal Details of the MEG Response to Speech

The neural response from each MEG sensor can be modeled by a temporal response function (TRF).

The TRF is the impulse response that transforms the speech envelope (stimulus) to the MEG recording (response).

Temporal Response Function (TRF)

The source of $M100_{TRF}$ is from posterior association auditory cortex, while the source of $M50_{TRF}$ is more close to core auditory cortex.

TRF (Attention Effect)

Speech Masker

The $M100_{TRF}$ is strongly modulated by attention while the $M50_{TRF}$ is not.

TRF (TMR Effect)

M100_{TRF} amplitude

Noise Masker M50_{TRF} amplitude 12 dBQ + 6 + 2 - 3 - 6 - 9TMR (dB)

M100_{TRF} amplitude

TRF (TMR Effect, M100_{TRF})

M100_{TRF} amplitude

M100_{TRF} amplitude

TRF

- The $M50_{\text{TRF}}$ is
 - not modulated by attention.
 - affected by energetic but not informational maskers.

It may reflect the audibility of the speech stream.

- The $M100_{TRF}$ is
 - modulated by attention.
 - robust to both energetic and informational maskers.

It may reflect the creation of a neural representation specific to the attended auditory stream.

Summary

- Long-latency (~100 ms) cortical activity encodes the temporal modulations of:
 - the target speech stream, but
 - not the physical acoustics
- This auditory stream-specific neural synchronization predicts an individual's speech score in noise, and is likely to contribute to the perception of the syllabic structure of speech.

Acknowledgments: Supported by NIH R01 DC 008342

Thanks!

Acknowledgments: Supported by NIH R01 DC 008342