Over-representation of speech in older adults originates from early response in higher order auditory cortex

Christian Brodbeck, Alessandro Presacco, Samira Anderson & Jonathan Z. Simon

Overview

Puzzle

- Compared to young adults, older adults (60+) exhibit
 - Impaired auditory temporal processing
 - More difficulty comprehending speech, especially in challenging circumstances
- Yet, the speech envelope can be reconstructed more accurately from their cortical responses, recorded with MEG (Presacco et al., 2016)

Overview

Puzzle

- Compared to young adults, older adults (60+) exhibit
 - Impaired auditory temporal processing
 - More difficulty comprehending speech, especially in challenging circumstances
- Yet, the speech envelope can be reconstructed more accurately from their cortical responses, recorded with MEG (Presacco et al., 2016)

Different possible explanations, for example

- Low level deficit, e.g. excitation-inhibition imbalance
- Recruitment of additional top-down resources
- Increased attention

Overview

Puzzle

- Compared to young adults, older adults (60+) exhibit
 - Impaired auditory temporal processing
 - More difficulty comprehending speech, especially in challenging circumstances
- Yet, the speech envelope can be reconstructed more accurately from their cortical responses, recorded with MEG (Presacco et al., 2016)

Different possible explanations, for example

- Low level deficit, e.g. excitation-inhibition imbalance
- Recruitment of additional top-down resources
- Increased attention

This talk

- Localize cortical responses to speech of young and older adults
 - Anatomy: localization in cortex
 - Time: latency at which information is contained

MagnetoEncephaloGraphy (MEG)

MagnetoEncephaloGraphy (MEG)

(Hari & Parkkonen, 2015)

MagnetoEncephaloGraphy (MEG)

Neural source localization

Neural source localization

Continuous Speech

()

Stimulus and response are known; find the best response function to produce the response from the stimulus:

Stimulus and response are known; find the best response function to produce the response from the stimulus:

7

Stimulus and response are known; find the best response function to produce the response from the stimulus:

Stimulus and response are known; find the best response function to produce the response from the stimulus:

7

Methods

Design

- 60 s long audiobook excerpts, 3 repetitions each
- 2 excerpts were clean speech
- 4 excerpts with second speaker at different signal to noise ratios (SNRs; +3, 0, -3, -6)

Participants

- 17 young adults (aged 18-27 years)
- 15 older adults (aged 61-73 years)
 - Clinically normal audiogram

Reconstructing speech envelope

Speech envelope

Continuous MEG recording

I	I	I	I	Ι
1	2	3	4	5

Time [seconds]

Reconstructing speech envelope

Time [seconds]

Decoding speech envelope

Cortex: older > younger

(Presacco, Simon, & Anderson, 2016)

Midbrain

Midbrain

- Older listeners have reduced frequency following response (FFR)
- Increased cortical responses not due to stronger input from midbrain

Midbrain: younger > older

Possible explanations

Low level change, e.g., excitation/inhibition imbalance

- Decrease in cortical inhibition could lead to stronger evoked responses
 - Reduction in inhibitory neurons in A1 (de Villers-Sidani et al., 2010)
 - Increased firing rates in A1 (Overton & Recanzone, 2016)
- Prediction:
 - Even low latency responses show enhancement in older listeners, e.g., 30 ms

Possible explanations

Low level change, e.g., excitation/inhibition imbalance

- Decrease in cortical inhibition could lead to stronger evoked responses
 - Reduction in inhibitory neurons in A1 (de Villers-Sidani et al., 2010)
 - Increased firing rates in A1 (Overton & Recanzone, 2016)
- Prediction:
 - Even low latency responses show enhancement in older listeners, e.g., 30 ms

Top-down/strategic processing

- Higher level processes recruited to compensate for degraded input from the periphery
 - Recruitment of additional frontal and temporal regions for complex sentences (Peelle et al., 2010)
- Prediction:
 - Response enhancement delayed until longer latency responses, e.g., 100-200 ms

Possible explanations

Low level change, e.g., excitation/inhibition imbalance

- Decrease in cortical inhibition could lead to stronger evoked responses
 - Reduction in inhibitory neurons in A1 (de Villers-Sidani et al., 2010)
 - Increased firing rates in A1 (Overton & Recanzone, 2016)
- Prediction:
 - Even low latency responses show enhancement in older listeners, e.g., 30 ms

Top-down/strategic processing

- Higher level processes recruited to compensate for degraded input from the periphery
 - Recruitment of additional frontal and temporal regions for complex sentences (Peelle et al., 2010)
- Prediction:
 - Response enhancement delayed until longer latency responses, e.g., 100-200 ms

Attention

- Increased attention associated with stronger responses
 - Attention increases MEG response amplitudes with similar field topography (Woldorff et al., 1993)
- Prediction:
 - Similar spatial distributions of responses, but overall enhancement in older adults
 - More activity in core auditory areas

Encoding model

man n// m M

Speech envelope

Continuous MEG source estimates

I	I	I	I	I
1	2	3	4	5

Time [seconds]

Encoding model

Continuous MEG source estimates

I	I	I	I	Ι
1	2	3	4	5

Time [seconds]

Statistics

Evaluate model predictions:

Pearson correlation:

r(predicted response, measured response)

Bias-correction:

- Compute r of a temporally shuffled model
- Test for better r of the true model

Significance test:

- Mass-univariate t-test
- Threshold-free cluster enhancement
- Max statistic distribution with 10,000 permutations

Localization

Heschl's gyrus (core auditory cortex)
Superior temporal gyrus

Localization

Encoding model

Continuous MEG source estimates

I	I	I	I	Ι
1	2	3	4	5

Time [seconds]

Temporal response function

Temporal response function (TRF)

- Brain response to an elementary temporal feature in the stimulus
- Time axis: latency between acoustic feature and brain response

Temporal response function

Temporal response function (TRF)

- Brain response to an elementary temporal feature in the stimulus
- Time axis: latency between acoustic feature and brain response

Summary

Over-representation of speech in older adults originates from early response in higher order auditory cortex

- Temporal lobe, outside of core auditory cortex
- Primarily affecting earliest cortical responses

~30 ms response

- Strategic/top-down processing
 - Latency too short
- Attention
 - Localized outside of core auditory cortex
- Low level change, e.g., excitation/inhibition imbalance
 - Short latency
 - Fast spread to areas outside core auditory cortex

Funding

NIH

Grant P01-AG055365

Appendix

Mix of 2 speakers

ANOVA: Age (2) × SNR (4)

Main effect of Age

MEG

Properties of MEG:

- Excellent temporal resolution (magnetic fields)
- Mediocre spatial resolution (inverse problem)
 - Relatively good estimation of center
 - Spatial dispersion

Simulation (Minimum Norm Estimates):

