Diffusion Kurtosis Imaging (DKI) Reconstruction. Linear or Non-Linear?

Jiachen Zhuo, Jonathan Z. Sim<mark>on, Rao P. Gull</mark>apalli

University of Maryland School of Medicine University of Maryland, College Park

Declaration of Relevant Financial Interests or Relationships

Speaker Name: Jiachen Zhuo

I have no relevant financial interest or relationship to disclose with regard to the subject matter of this presentation.

Introduction

- Diffusion Kurtosis Imaging (DKI)^{*} measures the non-Gaussian behavior of water diffusion and has a great potential in providing information regarding the underlying microstructural characteristics of neural tissues.
- Two types of DKI reconstruction methods widely used:
 Nonlinear least squares (NLS) originally proposed (~ hours)
 fast DKI method uses linear fitting (~ minutes)
- Although the NLS approach may provide more accurate results, near real-time reconstruction is critical in the clinical setting and therefore linear methods are highly preferred.

DKI Reconstruction: Method 1: Non-linear Least Squares (NLS)*

• <u>Step 1</u>: Estimate $D_{app}(\mathbf{g})$ and $K_{app}(\mathbf{g})$ for each diffusion direction $\mathbf{g} = [g_1, g_2, g_3]$ through non-linear method

$$\ln(S(b,\mathbf{g})/S_0) = -bD_{app}(\mathbf{g}) + \frac{1}{6}b^2D_{app}^2(\mathbf{g})K_{app}(\mathbf{g})$$

• <u>Step 2</u>: fit diffusion tensor **D** and kurtosis tensor **W** by linear least squares:

$$D_{app}(\mathbf{g}) = \sum_{i=1}^{3} \sum_{j=1}^{3} g_{i}g_{j}D_{ij} \qquad K_{app}(\mathbf{g}) = \frac{MD^{2}}{D_{app}(\mathbf{g})^{2}} \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{l=1}^{3} g_{i}g_{j}g_{k}g_{l}W_{ijkl}$$

 D_{ij} : elements of the diffusion tensor **D** W_{ijkl} : elements of the kurtosis tensor **W**

$$MD = \frac{1}{3} \sum_{i=1}^{3} D_{ii}$$

• Reconstruction time: **slow** (~1.5 hour for whole brain)

^{*} Jensen JH, et al. Magn Reson Med. 2005; 53:1432-40.

Method 2: fast DKI (fDKI)*

- Only 2 b-values are used.
- Explicitly calculate D_{app} and K_{app} for each diffusion direction **g** prior to fitting diffusion tensor **D** and kurtosis tensor **W**, where

$$D_{app} = \frac{(b_3 + b_1)D^{(12)} - (b_2 + b_1)D^{(13)}}{b_3 - b_2} \qquad K_{app} = 6\frac{D^{(12)} - D^{(13)}}{(b_3 - b_2)D^2_{app}}$$
$$D^{(12)} = \frac{\ln[S(b_1)/S(b_2)]}{b_2 - b_1} \qquad D^{(13)} = \frac{\ln[S(b_1)/S(b_3)]}{b_3 - b_1}$$

- Reconstruction time: **fast** (2-3 minutes for whole brain)
- Restricted to 2 b-values and diffusion directions are assumed to be fixed for each b-value

* Jensen JH, et al. NMR Biomed. 2010. 31:741-8.

Method 3: Fitting tensors directly (NLS_T)

• The diffusion tensor **D** and kurtosis tensor **W** can be fitted directly from *S*(**g**, *b*) :

$$\ln \frac{S(\mathbf{g}, b)}{S_0} = -b\sum_{i=1}^3 \sum_{j=1}^3 g_i g_j D_{ij} + \frac{1}{6}b^2 M D^2 \sum_{i=1}^3 \sum_{j=1}^3 \sum_{k=1}^3 \sum_{l=1}^3 g_i g_j g_k g_l W_{ijkl}$$

- 1 step process of 21 parameters to estimate (6 for D and 15 for W)
- Solve for D_{ij} and W_{ijkl} by non-linear least squares method
- Reconstruction time: **slow** (~1 hour for whole brain)

Method 4: fast DKI with direct tensor fitting (fDKI_T)*

• Fit the diffusion tensor **D** and the kurtosis tensor **W** directly from *S*(**g**, *b*) using linear equations:

• Reconstruction time: **fast** (1-2 minutes)

* Tabesh A et al. Magn Reson Med, 2010.

Goal of this study

- To assess the performance of the linear and nonlinear DKI reconstruction methods
- To assess the errors associated with each type of reconstruction in DTI and DKI parameters

Methods

Imaging

- DKI data collected on an adult male Sprague-Dawley rat on Bruker Biospec 7T scanner
- □ 30 diffusion directions ($\delta/\Delta = 4/20$ ms), 5 b-values (b = 500, 1000, 1500, 2000, 2500 s/mm²), 5 b=0 s/mm².
- FOV = 3.0 × 3.0 cm², matrix resolution = 128 × 128, TR/TE = 6000/50 ms, slice thickness = 1 mm with no gap, number of slices = 24, number of averages = 2.

• Datasets for testing

- <u>Short:</u> A clinically practical subset with 2 b-values (b = 1000, 2000 s/mm²)
- <u>Full:</u> complete dataset with all b-values

DKI reconstruction

• Methods of Comparison:

Methods	Fitting parameters	Number of parameters	Linear or Non-linear	Data set
NLS	D_{app} , K_{app}	60	Non-linear	Short
NLS_T	\mathbf{D}, \mathbf{W}	21	Non-linear	Short
fDKI	D_{app} , K_{app}	60	Linear	Short
fDKI_T	\mathbf{D}, \mathbf{W}	21	Linear	Short
Truth	D, W	21	Non-Linear	Full

- Data preprocessing
 - Motion and eddy current correction
 - Gaussian smoothing with FWHM 0.3mm
- DKI reconstruction were performed voxel-wise.

Testing Parameters

- DTI parameters: *FA*, *MD*
- DKI parameters: *MK*, $K_{//}$, K_{\perp}
- DKI parameters calculated using surface integration*: *MK^s*, *K*_⊥^s

* Tabesh A et al. Magn Reson Med, 2010.

Parametric maps

• Parametric maps are much noisier for fDKI and NLS reconstruction schemes

Error Analysis

• Overall percentage error *Err* for testing parameters:

$$Err = \sum_{i=1}^{N} \left| S_{i} - S_{i}^{truth} \right| / \sum_{i=1}^{N} S_{i}^{truth} \cdot 100\%$$

- *N*: is the total number of voxels calculated.
- *S_i* and *S_i^{truth}* : voxel values within the parametric maps for specific method and the ground truth, respectively.
- Voxels included:
 - 1) Within the brain
 - 2) Satisfies*:

$0 < K_{app}(\mathbf{g}) < 3/(b_{max}D_{app}(\mathbf{g}))$ for all methods and \mathbf{g}

*A maximum of 0.7% voxels were observed to have such kurtosis values, e.g. in K_{\perp} map generated from the fDKI method

Parameter accuracy for different DKI reconstruction methods

- $Err_{fDKI} > Err_{NLS} > Err_{fDKI_T} \approx Err_{NLS_T}$
- $Err(K_{\perp}^{s}) < Err(K_{\perp})$
- $Err(MK^S) \approx Err(MK)$
- Errors in DTI parameters are stable for all methods considered

Discussion

- Direct tensor fitting methods (fDKI_T and NLS_T) result in fewer errors compared to conventional methods (fDKI and NLS) that require a 2-step process and need to fit many more parameters (60 parameters for 30 directions) and then reduce to tensor parameters (30 *D*_{app}s to fit **D** and 30 *K*_{app}s to fit **W**)
- Among the tensor derived methods, the linear fit (fDKI_T) performs comparable to the more time-consuming nonlinear fit (NLS_T). This may also due to the improved stability in fitting fewer parameters.
- DTI parameters are more stable across different methods because of enough redundancy in conventional methods (30 D_{app} s to fit 6 diffusion tensor parameters)
- For radial kurtosis, incorporating the more complex surface integration can provide information with increased accuracy.

Conclusion

 Using linear fit for DKI reconstruction with a tensor first approach provides comparable accuracy to nonlinear fit, hence could be the method of choice for faster and more efficient DKI reconstruction.

Acknowledgements

- CTRIM (Core for Translational Research in Imaging)
 - Da Shi
 - Dr. Su Xu
 - Steven Roys

University of Florida
 Dr. Angelos Barmoutis

This work was partly supported by: US Army W81XWH-07-2-0118

Magnetic Resonance Research Center