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® Cortical Representations of Speech (via MEG)

» Encoding vs. Decoding



Magnetoencephalography (MEG)

Non-invasive, Passive, Silent
Neural Recordings

Simultaneous Whole-Head
Recording (~200 sensors)

Sensitivity
e high: ~100 fT (10-13 Tesla)
e low: ~10%4—~106 neurons

Temporal Resolution: ~| ms

Spatial Resolution
* coarse:~| cm
* ambiguous



Functional Brain Imaging
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Neural Signals & MEG

Photo by Fritz Goro

*Direct electrophysiological measurement

*not hemodynamic
*real-time
*No unigue solution for distributed source

ontat Magnetic
orientation .
recording | \ of magnetic D/polar
surface | field Field
N - Projection
sz =
current
flow ‘ *

*Measures spatially synchronized
cortical activity

*Fine temporal resolution (~ 1 ms)

*Moderate spatial resolution (~ 1 cm)



MEG Auditory Field

Sagittal View Axial View

Strongly
Lateralized



MEG Auditory Field




MEG Auditory Field




MEG & Auditory Cortex

Non-invasive, Passive, Silent Neural

Recordings

MEG Response Patterns Time-Locked

to Stimulus Events
Robust

Strongly Lateralizec

Cortical Origin On
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MEG Responses
to Speech Modulations

Auditory /

Model




MEG Responses
Predicted by STRF Model

Long duration speech: ~60 s

(up to ~10 Hz)

Linear Kernel = STRF
. . . ¢ o b B/
Ding & Simon, | Neurophysiol (2012) Spectro- Temporal Response Function
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Long duration speech: ~60 s
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Frequency Dependence
of STRF Predictability
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Stimulus Information
Encoded in Response

Response Index
N
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stimulus envelope and
reconstructed envelope
(right hemisphere)
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Neural Reconstruction of
Speech Envelope

Speech Envelope MEG Responses

Decoder N\”/A//W
PV = B
’ BRSVAV A% WA




Neural Reconstruction of
Speech Envelope

stimulus speech envelope
reconstructed stimulus speech envelope

Y J\‘v‘\/"’h w"ﬂuv

i

2 Reconstruction accuracy comparable to

Ding & Simon, ] Neurophysiol (2012) single unit & ECoG recordings
Zion-Golumbic et al., Neuron (201 3)



Speech Envelope

PV

o

Decoder

(up to ~ 10 Hz)




Neural Representation
of Speech: Temporal
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Speech in Stationary Noise

Mixtures of Speech and Spectrally Matched Statonary Noise
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Speech in Stationary Noise

Mixtures of Speech and Spectrally Matched Statonary Noise Contrast Index
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Speech in Noise: Results

Neural Reconstruction of
Underlying Speech Envelope

M\]\M

Ding & Simon, J Neuroscience (2013)



Speech in Noise: Results

Neural Reconstruction of
Underlying Speech Envelope
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Speech in Noise: Results

Neural Reconstruction of
Underlying Speech Envelope
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Cortical Speech
Representations

Neural Representations: Encoding & Decoding
Linear models: Useful & Robust

Speech Envelope only (as seen in MEG)
Envelope Rates:~ | - 10 Hz

Intelligibility linked to Robustness of Speech
Representation (Delta frequency band)
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® Cortical Representations of Speech (via MEG)

» Encoding vs. Decoding
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® “Cocktail Party” Speech



Listening to Speech at
the Cocktail Party

Alex Katz,
The Cocktail Party
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Listening to Speech at
the Cocktail Party
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Competing Speech Streams
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Selective Neural
Encoding
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Unselective vs. Selective
Neural Encoding
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Selective Encoding: Results

reconstructed
_ / from MEG
attending to
speaker 1
p \ attended speech
\ envelopes
attending to ‘1\\ Wi | -\I‘ !\
\"I 0 |‘
speaker 2 |/ l',' % reconstructed

from MEG

|dentical Stimuli!
Ding & Simon, PNAS (2012)



Single Trial Speech
Reconstruction

Attended Speech Reconstruction
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attentional focus
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Speaker One
Ding & Simon, PNAS (2012)



Single Trial Speech
Reconstruction

Attended Speech Reconstruction Background Speech Reconstruction
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Overall Speech
Reconstruction
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Invariance under Relative
Loudness Change

Neural Results

\V)
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8 5 0 5 8
Speaker Relative Intensity (dB)
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* Neural representation invariant to relative loudness change

o Stream-based Gain Control, not stimulus-based



F1

Forward STRF Model

Spectro-Temporal
Response Function
(STRF)
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STRF Results

. Attended Background +

N

g 3 3 I

>

T 5 . 5

o

S 2 2 _

* 0 100 200 - 0 100 200 -—
time (ms) time (ms)

*STRF separable (time, frequency)
*300 Hz - 2 kHz dominant carriers
*M50sTRF positive peak

*M100sTrrF Negative peak



STRF Results
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STRF Results
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Neural Sources

*M100strF source near | eft Right
(same as?) M100 O ,
source: E_g - M50sTRF
Planum Temporale % | M1 00sTRE

*M50sTRF SOUrce is . IM100
anterior and medial _CED - 1T
to M100 (same as [ I 5 mm
M507?): 8 ] 1F <

y O ' ! ' : - ' '
Heschl’'s Gyrus medial

*PT strongly modulated by
attention, but not HG
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® “Cocktail Party” Speech
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® Recent Results

» Attentional Dynamics



Attentional Dynamics

Attend to Speaker 1 * Simple dynamical
I model of neural
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e Time resolution ~5 s
(not, e.g., 60 s)

Akram et al. Neurolmage (2016)



Attentional Dynamics

~Attend to Speaker 1  Simple dynamical
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=S T model of neural
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Attentional Dynamics

~Attend to Speaker 1  Simple dynamical
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TRF Dynamics
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* Dynamical model

entire TRF including
attentional
modulation

Time resolution still
~5s

Uses SPARLS
algorithm developed
by Babadi
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® Recent Results

» Attentional Dynamics
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® Recent Results

» “Restoration” of Missing Speech



Speech Restoration

Twasthenightbe foreChrist mas when all theuthdiou se Nota creaturewassticring not e ven amou Se Thestekingwerehunghythehimewith care

N
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Frequency [KHZz]
&)
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0 4 8 Time [s]
® (Can sustained, non-stationary, speech be restored!?

» Might be aided by contextual knowledge/familiarity
» Might be aided by strong rhythmicity

Cervantes Constantino & Simon, in Preparation



Speech Restoration

Twasthenightbe foreChrist mas when all theuthdiou se Nota creaturewassticring not e ven amou Se Thestekingwerehunghythehimewith care

N
&)

Frequency [KHZz]
&)

O
&)

0 4 8 Time [s]
® (Can sustained, non-stationary, speech be restored!?

» Might be aided by contextual knowledge/familiarity
» Might be aided by strong rhythmicity

Cervantes Constantino & Simon, in Preparation



Speech Restoration

Replay

frequency
ntrol

High

Medium

® Hypothesis: contextual knowledge of missing speech
can be controlled by exposure to the speech



Speech Restoration

Reconstruction from Noise
* *
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Speech Restoration

Reconstruction from Noise
* *

I

* Decoding of the
missing speech
token improves with

—~ 0.8 . .

Z 25% prior experience

9,

N 0 .

@ el * Performance is a
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AT fraction of that for
#4  clean speech
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Speech Anticipation

Representative TRFs Subject-wise TRF_ delays
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e Prior experience speeds subsequent responses
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® Recent Results

» “Restoration” of Missing Speech
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® Recent Results

» Speech Processing Across the Brain



Localizing Speech Processing

his schoolhouse was a low building of one large room

Raw

Speech
Acoustic M\/\/\/\/\/\/\f\/\

Envelope
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Brodbeck et al., bioRxiv 2017



Localizing Speech Processing

his schoolhouse was a low building of one large room

Raw
Speech
Envelope

Forward model = source-to-sensor matrix (L)

Each neural source is linear superposition of sensor responses

G R Mot

0.5 1 1.5 2 2.5 3 3.5 4
Time [s]

Brodbeck et al., bioRxiv 2017



Localizing Speech Processing

his schoolhouse was a low building of one large room

Raw
Speech
Envelope
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Point Spread Function
r

0.000 ~

—-0.007 I

Current estimate

Single dipole, single subject Area, single subject Area, group average

Source estimate for hypothetical point source
Forward model = source-to-sensor matrix L

Inverse model = sensor-to-source matrix G

= Source estimate of a hypothetical source j: GeLej.

= Point Spread Function



Localized TRFs

Acoustic envelope

Hemisphere

Current estimate [normalized]
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Localized TRFs
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Localized TRFs

Semantic composition

Hemisphere

Current estimate [normalized]
o

I
-




Acoustic envelope

Word frequency

Semantic composition

Clustered Localized TRFs

Normalized activation

f

7

Clustering
allows
“beating the
point
spread”



Summary

® Cortical representations of speech
- representation of envelope (up to ~10 Hz)
- robust against a variety of noise types
- neural representation of perceptual object

® Object-based representation at 100 ms latency (PT),
but not by 50 ms (HG)

® Robust dynamical monitoring of attention

® “Restoration” of speech at brain level
- neural processing tracks behavior

® Systems Approach works at neural source level
- with higher order aspects of speech
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® |atency as Proxy for Cortical Area(s)

» Earlier Latency Responses from Heschl's Gyrus

» Later Latency Responses from Planum
Temporale (and beyond)

® Not just for Response but
also Reconstruction

» Earlier Integration Window
Reconstructs from HG

» Later Integration Window
Reconstructs from PT (and beyond)
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Where in Cortex is there a
Segregated Foreground!?

Puvvada & Simon, bioRXiv (2017)
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Where in Cortex is there a
Segregated Foreground!?

Late? i
Early? i i i

Puvvada & Simon, bioRXiv (2017)




Late Cortical
Reconstruction

i
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Puvvada & Simon, bioRXiv (2017) Integration Window over Late Times Only




Late Cortical
Reconstruction
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Puvvada & Simon, bioRXiv (2017) Integration Window over Late Times Only



Late Cortical
Reconstruction
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vs. ‘5”?;",\" ;s; ) -
i O “; I | |
0 0.05 0.1 0.15
Individual background

Note: r2 Scatterplot (not r)

Puvvada & Simon, bioRXiv (2017) Integration Window over Late Times Only



Late Cortical
Reconstruction

vs. ‘S;i;‘“; ;‘; ) c
i O ‘;) I | |
0 0.05 0.1 0.15
Individual background
PT represents attended speech with
Puvvada & Simon, bioRxiv (2017) much greater fidelity than unattended

Foreground




Early Cortical
Reconstruction
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Puvvada & Simon, bioRXiv (2017) Integration Window over Early Times Only
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Early Cortical
Reconstruction
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Early Cortical
Reconstruction

0.15

0.1

Foreground

0 005 01 015

Individual background
HG represents attended and unattended
Puvvada & Simon, bioRxiv (2017) speech with almost equal fidelity




Where in Cortex is there a
Segregated Foreground!?

Planum i
Temporale
but not
Heschl’s i i
Gyrus i

Puvvada & Simon, bioRXiv (2017)



Early Entire Acoustic Scene
vs. Individual Streams
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Puvvada & Simon, bioRXiv (2017) Integration Window over Early Times Only




Early Entire Acoustic Scene
vs. Individual Streams
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Puvvada & Simon, bioRXiv (2017) Integration Window over Early Times Only




Early Entire Acoustic Scene
vs. Individual Streams

VS.

i

Puvvada & Simon, bioRXiv (2017)
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Early Entire Acoustic Scene
vs. Individual Streams

VS.

i

Puvvada & Simon, bioRXiv (2017)
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Early Entire Acoustic Scene
vs. Individual Streams
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Foreground vs. Background
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Foreground vs. Background
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Foreground vs. Background
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Background vs. Backgrounds
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Background vs. Backgrounds
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Background vs. Backgrounds
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Background vs. Backgrounds
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PT represents a fused
background with

much better fidelity
than individual
backgrounds




Forward Model?

Current Competing Speaker TRF model:

r(t) = ETRFa (t-71)S, (1:)+E TRE, (t —r)Sb(r)+E TRF (t —7)S.(T)+¢(t)
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Forward Model?

Current Competing Speaker TRF model:

r(t) = ETRP; (t-1)S,(T) +E TRF,(t -7)S, () +E TRF (t - 7)S.(t)+¢(t)

or
or...

Puvvada & Simon, bioRXiv (2017)
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Better Forward Model?

r(t) =Y TRFy,, (1 =), (T)+
=0
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Better Forward Model?
F(t) = ?TRFSCW (1-1)S, (T)+ @

Puvvada & Simon, bioRXiv (2017)

+ E TRFForegound (t - T)SForegound (T)

T=Tl

T=Tz

T E TRFB@C"S” ound (t - T)SBackground (1:)

T;=T;1

e (r) i
i



Forward Models Compared

Neural Response Prediction
from Competing Models
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Forward Models Compared

Neural Response Prediction
from Competing Models
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Early-late model outperforms naive model
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Latencies as Proxy for
Cortical Areas

® Using biologically defined integration windows to
reconstruct stimulus can distinguish between
different representations

» Early areas (HGQG) are best at reconstructing the
entire acoustic sound scene

» Later areas (PT) are best at reconstructing the
foreground stream, with an integrated
background

® Modified TRF model performs better than naive



