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Magnetoencephalography (MEG)
• Non-invasive, Passive, Silent 

Neural Recordings

• Simultaneous Whole-Head 
Recording (~200 sensors)

• Sensitivity
• high:  ~100 fT (10–13 Tesla)
• low:  ~104 – ~106 neurons

• Temporal Resolution: ~1 ms

• Spatial Resolution
• coarse: ~1 cm
• ambiguous      



Functional Brain 
Imaging
= Non-invasive 
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human brain
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Neural Signals & MEG

tissue

CSF

skull

scalp
B

MEG

V
EEG

recording
surface

current
flow

orientation
of magnetic
field

Magnetic
Dipolar
Field

Projection

•Direct electrophysiological measurement
•not hemodynamic
•real-time

•No unique solution for distributed source

Photo by Fritz Goro 

•Measures spatially synchronized  
cortical activity

•Fine temporal resolution (~ 1 ms)
•Moderate spatial resolution (~ 1 cm)



MEG Auditory Field

Sagittal View Axial View

Chait, Poeppel and Simon, Cerebral Cortex (2006)

Strongly 
Lateralized



MEG Auditory Field

Chait et al., Cerebral Cortex (2006)
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MEG & Auditory Cortex
• Non-invasive, Passive, Silent Neural 

Recordings

• MEG Response Patterns Time-Locked 
to Stimulus Events

• Robust

• Strongly Lateralized

• Cortical Origin Only

Pure Tone

Broadband Noise

time (ms)

time (ms)



MEG Responses 

Auditory
Model

to Speech Modulations



Ding & Simon, J Neurophysiol (2012) “Spectro-Temporal Response Function”

(up to ~10 Hz)

MEG Responses 
Predicted by STRF Model

Linear Kernel = STRF

Long duration speech: ~60 s
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Frequency Dependence 
of STRF Predictability

Ding & Simon, J Neurophysiol (2012)
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Stimulus Information 
Encoded in Response
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Correlation between 
stimulus envelope and 
reconstructed envelope 
(right hemisphere)

4 bit/s Fano bound

Right Hemisphere
Decoding Accuracy
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Decoding Accuracy

1 bit/s Fano bound
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Ding & Simon, J Neurophysiol (2012)



Ding & Simon, J Neurophysiol (2012)
Zion-Golumbic et al., Neuron (2013)

Neural Reconstruction of 
Speech Envelope

2 s

stimulus speech envelope
reconstructed stimulus speech envelope

Reconstruction accuracy comparable to 
single unit & ECoG recordings

(up to ~ 10 Hz)

MEG Responses

...

Decoder
Speech Envelope
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Neural Representation 
of Speech: Temporal



Speech in Stationary Noise

Ding & Simon, J Neuroscience (2013)



Speech in Stationary Noise

Ding & Simon, J Neuroscience (2013)



Speech in Noise: Results
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Cortical Speech 
Representations

• Neural Representations: Encoding & Decoding

• Linear models: Useful & Robust

• Speech Envelope only (as seen in MEG)

• Envelope Rates: ~ 1 - 10 Hz

• Intelligibility linked to Robustness of Speech 
Representation (Delta frequency band) 
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Alex Katz, 
The Cocktail Party

Listening to Speech at 
the Cocktail Party
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Alex Katz, 
The Cocktail Party

Listening to Speech at 
the Cocktail Party



speech

competing speech

Competing Speech Streams



Selective Neural 
Encoding



Selective Neural 
Encoding



Unselective vs. Selective 
Neural Encoding



Selective Neural 
Encoding



Selective Encoding: Results
representative 

subject

Identical Stimuli!

reconstructed  
from MEG

attended speech 
envelopes

reconstructed  
from MEG

attending to
speaker 1

attending to
speaker 2

Ding & Simon, PNAS (2012)



Single Trial Speech 
Reconstruction

Ding & Simon, PNAS (2012)



Single Trial Speech 
Reconstruction

Ding & Simon, PNAS (2012)



Overall Speech 
Reconstruction
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reconstruction

background
reconstruction

attended speech background 

Distinct neural 
representations 
for different 
speech streams



Invariance under Relative 
Loudness Change
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Neural Results

• Neural representation invariant to relative loudness change

• Stream-based Gain Control, not stimulus-based



Forward STRF Model

Spectro-Temporal 
Response Function 
(STRF)
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STRF Results

•STRF separable (time, frequency)
•300 Hz - 2 kHz dominant carriers
•M50STRF positive peak
•M100STRF negative peak

TRF

•M100STRF strongly modulated 
by attention, but not M50STRF
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Neural Sources

RightLeft

an
te
rio
r

po
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medial

M50STRF
M100STRF
M100

•M100STRF source near 
(same as?) M100 
source:  
Planum Temporale

•M50STRF source is 
anterior and medial 
to M100 (same as 
M50?):  
Heschl’s Gyrus

5 mm

•PT strongly modulated by 
attention, but not HG
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Attentional Dynamics
Attend to Speaker 1

Switch Attention

Attend to Speaker 2
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Akram et al. NeuroImage (2016)

• Simple dynamical 
model of neural 
correlate of 
attentional direction

• Time resolution ~5 s 
(not, e.g., 60 s)

• Less conservative in 
assumptions regarding 
actual subject 
behavior

• Observable 
attentional (neural) 
dynamics
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TRF Dynamics
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• Dynamical model 
entire TRF, including 
attentional 
modulation

• Time resolution still 
~5 s

• Uses SPARLS 
algorithm developed 
by Babadi
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Speech Restoration

• Can sustained, non-stationary, speech be restored?
‣ Might be aided by contextual knowledge/familiarity
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Twas%the%night%before%Christmas,%when%all%through%the%house%
not%a%creature%was%s6rring,%not%even%a%mouse.%
The%stockings%were%hung%by%the%chimney%with%care,%
in%hopes%that%St.%Nicholas%soon%would%be%there.%%
!!
The%children%were%nestled%all%snug%in%their%beds,%
while%visions%of%sugar%plums%danced%in%their%heads.%
And%Mama%in%her%'kerchief,%and%I%in%my%cap,%
had%just%seDled%our%brains%for%a%long%winter's%nap.%%
%%
When%out%on%the%lawn%there%arose%such%a%claDer,%
I%sprang%from%my%bed%to%see%what%was%the%maDer.%
Away%to%the%window%I%flew%like%a%flash,%
tore%open%the%shuDer,%and%threw%up%the%sash.%%
%%
The%moon%on%the%breast%of%the%newGfallen%snow%
gave%the%lustre%of%midday%to%objects%below,%
when,%what%to%my%wondering%eyes%should%appear,%
but%a%miniature%sleigh%and%eight%6ny%reindeer.%%
%%
With%a%liDle%old%driver,%so%lively%and%quick,%
I%knew%in%a%moment%it%must%be%St.%Nick.%
More%rapid%than%eagles,%his%coursers%they%came,%
and%he%whistled%and%shouted%and%called%them%by%name.%%
%%
“Now%Dasher!%Now%Dancer!%Now,%Prancer%and%Vixen!%
On,%Comet!%On,%Cupid!%On,%Donner%and%Blitzen!%
To%the%top%of%the%porch!%To%the%top%of%the%wall!%
Now%dash%away!%Dash%away!%Dash%away%all!”%%
%%
As%dry%leaves%that%before%the%wild%hurricane%fly,%
when%they%meet%with%an%obstacle,%mount%to%the%sky%
so%up%to%the%houseGtop%the%coursers%they%flew,%
with%the%sleigh%full%of%toys,%and%St.%Nicholas%too.%%
!!
!

!
!

And%then,%in%a%twinkling,%I%heard%on%the%roof%
the%prancing%and%pawing%of%each%liDle%hoof.%
As%I%drew%in%my%head%and%was%turning%around,%
down%the%chimney%St.%Nicholas%came%with%a%bound.%%
%%
He%was%dressed%all%in%fur,%from%his%head%to%his%foot,%
and%his%clothes%were%all%tarnished%with%ashes%and%soot.%
A%bundle%of%toys%he%had%flung%on%his%back,%
and%he%looked%like%a%peddler%just%opening%his%pack.%%
%%
His%eyesGGhow%they%twinkled!%His%dimples,%how%merry!%
His%cheeks%were%like%roses,%his%nose%like%a%cherry!%
His%droll%liDle%mouth%was%drawn%up%like%a%bow,%
and%the%beard%on%his%chin%was%as%white%as%the%snow.%
%%
The%stump%of%a%pipe%he%held%6ght%in%his%teeth,%
and%the%smoke%it%encircled%his%head%like%a%wreath.%
He%had%a%broad%face%and%a%liDle%round%belly,%
that%shook%when%he%laughed,%like%a%bowl%full%of%jelly.%%
%%
He%was%chubby%and%plump,%a%right%jolly%old%elf,%
and%I%laughed%when%I%saw%him,%in%spite%of%myself.%
A%wink%of%his%eye%and%a%twist%of%his%head%
soon%gave%me%to%know%I%had%nothing%to%dread.%%
%%
He%spoke%not%a%word,%but%went%straight%to%his%work,%
and%filled%all%the%stockings,%then%turned%with%a%jerk.%
And%laying%his%finger%aside%of%his%nose,%
and%giving%a%nod,%up%the%chimney%he%rose.%%
%%
He%sprang%to%his%sleigh,%to%his%team%gave%a%whistle,%
And%away%they%all%flew%like%the%down%of%a%thistle.%
But%I%heard%him%exclaim,%'ere%he%drove%out%of%sight,%
"Happy%Christmas%to%all,%and%to%all%a%good%night!"%

Speech Restoration

• Hypothesis: contextual knowledge of missing speech 
can be controlled by exposure to the speech
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Speech Restoration
• Decoding of the 
missing speech 
token improves with 
prior experience

• Performance is a 
considerable 
fraction of that for 
clean speech

Reconstruction from Noise
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Speech Anticipation

• Prior experience speeds subsequent responses
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Localizing Speech Processing

Brodbeck et al., bioRxiv 2017



Localizing Speech Processing

Brodbeck et al., bioRxiv 2017

Forward model = source-to-sensor matrix (L)

Each neural source is linear superposition of sensor responses



Localizing Speech Processing



Point Spread Function

Source estimate for hypothetical point source 

Forward model = source-to-sensor matrix L

Inverse model = sensor-to-source matrix G

➡ Source estimate of a hypothetical source j: G•L•j. 

     = Point Spread Function
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Clustered Localized TRFs
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Summary
• Cortical representations of speech
- representation of envelope (up to ~10 Hz)
- robust against a variety of noise types
- neural representation of perceptual object 

• Object-based representation at 100 ms latency (PT), 
but not by 50 ms (HG)

• Robust dynamical monitoring of attention

• “Restoration” of speech at brain level
- neural processing tracks behavior

• Systems Approach works at neural source level
- with higher order aspects of speech



Thank You
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Idea
• Latency as Proxy for Cortical Area(s)

‣ Earlier Latency Responses from Heschl’s Gyrus

‣ Later Latency Responses from Planum 
Temporale (and beyond)

• Not just for Response but  
also Reconstruction

‣ Earlier Integration Window  
Reconstructs from HG

‣ Later Integration Window  
Reconstructs from PT (and beyond)
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Figure 2  721 
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Late Cortical 
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Puvvada & Simon, bioRχiv (2017) Integration Window over Late Times Only
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Figure 4   727 

Stimulus Reconstruction Accuracy from Late Neural Responses
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Figure 4   727 

Stimulus Reconstruction Accuracy from Late Neural Responses
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PT represents attended speech with 
much greater fidelity than unattended
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Figure 3   724 

Stimulus Reconstruction Accuracy from Early Neural Responses

0 0.05 0.1 0.15
Individual background

0

0.05

0.1

0.15

Fo
re

gr
ou

nd

0 0.05 0.1 0.15
Sum of streams

0

0.05

0.1

0.15

Ac
ou

st
ic

 s
ce

ne

A B

vs.

Puvvada & Simon, bioRχiv (2017) Integration Window over Early Times Only



Early Cortical 
Reconstruction 

 
 

 
41 

 722 

 723 

Figure 3   724 

Stimulus Reconstruction Accuracy from Early Neural Responses
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Figure 3   724 

Stimulus Reconstruction Accuracy from Early Neural Responses
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HG represents attended and unattended 
speech with almost equal fidelity
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Figure 4   727 

Stimulus Reconstruction Accuracy from Late Neural Responses
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Early Entire Acoustic Scene 
vs. Individual Streams

vs.

Puvvada & Simon, bioRχiv (2017) Integration Window over Early Times Only
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Figure 3   724 

Stimulus Reconstruction Accuracy from Early Neural Responses
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HG Represents the (holistic) Acoustic 
Scene,  not Individual Streams
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PT represents a fused 
background with 

much better fidelity 
than individual 
backgrounds
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Current Competing Speaker TRF model:
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Latencies as Proxy for 
Cortical Areas

• Using biologically defined integration windows to 
reconstruct stimulus can distinguish between 
different representations 

‣ Early areas (HG) are best at reconstructing the 
entire acoustic sound scene

‣ Later areas (PT) are best at reconstructing the 
foreground stream, with an integrated 
background

• Modified TRF model performs better than naive


