Neural Computation at the Femtotesla Scale: Visualizing Computations Inside the Human Brain

Jonathan Z. Simon

Neuroscience and Cognitive Sciences / Biology / Electrical & Computer Engineering University of Maryland, College Park

I.U. Physics Colloquium

March 19, 2008

Computational Sensorimotor Systems Laboratory

Current & Former Students

Juanjuan Xiang Nai Ding Jiachen Zhuo Harsha Agashe

Huan Luo Nayef Ahmar Maria Chait Ling Ma Minsuk Park Postdocs Yadong Wang Mounya Elhilali

> Lab Staff Jeff Walker Ray Shantanu

Faculty Collaborators

David PoeppelShihab ShammaAlain de Cheveigné

Luo, H., Y. Wang, D. Poeppel & J. Z. Simon (2006; 2007), J. Neurophysiology

Outline

- The Brain and How It Works
- The Auditory System
- Magnetoencephalography (MEG)
- MEG in the Frequency Domain
- Using MEG to investigate Neural Coding

Universal Neural Code

- Neural signals = spikes in voltage
- Spikes are "all-or-none"
 Digital in amplitude
 - Asynchronous in time
- Neural Input ~ current

Primary Neural Current

Photo by Fritz Goro

Outline

- The Brain and how it works
- The Auditory System
- Magnetoencephalography (MEG)
- MEG in the Frequency Domain
- Using MEG to investigate Neural Coding

What Is Hearing?

Outer Ear (pinna) useful but not essential

- collector
- localizer (location dependent filtering)

Inner ear (cochlea)

- essential
 - neural "transducer"
 - turns *acoustic* signals into spikes

= *auditory* signals

Only features conveyed as neural signals perceived

• e.g. masked sounds not conveyed neurally

Middle Ear useful but not essential

• impedance matching = minimized reflection

What Is the Auditory Neural Code?

- Neural code is essentially unknown for almost all auditory features
 - Especially in auditory cortex
 - Much progress in coding near periphery, especially coding of sound location
- •Most important auditory features are acoustically non-trivial
 - e.g. speech, speaker ID, emotional content, pitch, timbre, sound location, and many, many others

What Can We Hear?

Table 1.6. Approximate ranges of hearing

Species	Low	High (kHz)
Human	20 Hz	20
Chimpanzee	100 Hz	20
Rhesus monkey	75 Hz	25
Squirrel monkey	75 Hz	25
Cat	30 Hz	50
Dog	50 Hz	46
Chinchilla	75 Hz	20
Rat	1 kH2	60
Mouse	1 kHz	100
Guinea pig	150 Hz	50
Rabbit	300 Hz	45
Bats	3 kHz	120
Dolphin (Tursiops)	1 kH2	130
Galago	250 Hz	45
Tupaia	250 Hz	45
Sparrow	250 Hz	12
Pigeon	200 Hz	10
Turtle	20 Hz	1
Frog	100 Hz	3
Goldfish	100 Hz	2
Ostariophysi	50 Hz	7
Other teleosts	50 Hz	1

Data taken from Fay 1988

Human: 20 Hz to 20 kHz

Cat: 30 Hz to 50 kHz

Mouse: 1 kHz to 100 kHz Bat: 3 kHz to 120 kHz

What Can We Hear?

• Spectro-Temporal Features of Any Sound

Spectral content of sound as a function of time.

Which spectral frequency bands have enhanced power?Which spectral frequency bands have diminished power?How do these change as a function of time? "Come home right away."

Outline

- The Brain and how it works
- The Auditory System
- Magnetoencephalography (MEG)
- MEG in the Frequency Domain
- Using MEG to investigate Neural Coding

Magnetoencephalography (MEG)

- Non-invasive, Passive, Silent Neural Recordings
- Simultaneous Whole-Head Recording (~200 sensors)
- Sensitivity

high: ~100 fT (10^{-13} Tesla)

low: $\sim 10^4 - \sim 10^6$ neurons

- Temporal Resolution: ~1 ms
- Spatial Resolution coarse: ~1 cm ambiguous

Magnetic Field Strengths

Magnetic Flux Detectors

Superconductivity Magnetic flux quantization Josephson Effect SQUID = Superconducting Quantum Interference Device

MEG SQUIDs

Shielding

MEG Snapshots

Neural Activity = Neural Current

MEG Magnetic Signal Magnetic Dipolar SQUID Gradiometer Field MEG orientation (Projection) of magnetic scalp recordina B field surface EEG skull CSF tissúe current flow • Direct electrophysiological measurement • not hemodynamic • real-time • No unique solution for distributed source Computational Sensorimotor Systems Laboratory

MEG Response Butterfly Plot

MEG Response 3–D Isofield Contour Map

Sagittal View

Axial View

Chait, Poeppel and Simon, Cerebral Cortex 2006

Time Course of MEG Responses

Spatial Auditory MEG Responses

Auditory Responses *Robust Strongly Lateralized*

Outline

- The Brain and how it works
- The Auditory System
- Magnetoencephalography (MEG)
- MEG in the Frequency Domain
- Using MEG to investigate Neural Coding

An Alternative to Time: Frequency

- Use Stimuli localized in Frequency rather than time
- Examine Response at Same Frequency
- Steady State Response (SSR)
- Frequency Response/Transfer Function

Whole Head Steady State Response 32 Hz Computational Sensorimotor Systems Laboratory

Complex Neural Current Sources

Outline

- The Brain and how it works
- The Auditory System
- Magnetoencephalography (MEG)
- MEG in the Frequency Domain
- Using MEG to investigate Neural Coding

Modulation Encoding

- Simple Modulations → Simple Cortical Encoding
 - Amplitude Modulation coding often used for slower modulations
 - *Rate* coding (invisible to MEG) often used for *faster* modulations
- Applies to general modulations: AM, FM, other
- Amplitude Modulation coding is easily detectable in Fourier/Spectral domain
 - Spectral Peak at Modulation Frequency

Sample Dual Modulation Stimuli

 $f_{FM} = 3.1 \text{ Hz}$ $f_{AM} = 37 \text{ Hz}$ sound pressure S frequency (kHz) 0 1.5 0.5 1.0 time (s)

 $f_{FM} = 8 Hz$ $f_{AM} = 37 \text{ Hz}$ 1.5 0.5 1.0 time (s)

Modulation Encoding Type

Neural Population Model

 $S(t) = (1 + m\cos(2\pi f_{FM}t + \theta))$

Amplitude Modulation

 $\times \cos(2\pi f_{AM}t + \frac{\pi}{8}\cos(2\pi f_{FM}t))$

Phase Modulation

+ GWN

Model Results

Experimental Results

Model Results

Summary

- Combined AM/FM modulations are encoded in Auditory Cortex
 - Phase Modulation seen at lowest FM rates
 - Modulation Encoding changes at higher rates
- Single Sideband Modulation unexpected
 - Speculate: Single Modulation Encoding type?
 - Or: Two populations of AM and PM encoding neurons whose phase happens to cancel in lower sideband?
- Magnetoencephalography (MEG)

 Directly generated by neural currents
 Excellent time/frequency resolution

 Spatial Localizability an open question

Thank You

MEG compared to EEG

Temporal resolution high as EEGFast, easy set-upMagnetic fields are not attenuatedor distorted, unlike electric fieldsHigher spatial resolution

Expensive Inverse problem worse? better?

Complementary Techniques

EEG

MEG Measures Neural Currents

Data Reduction via Equivalent Dipoles

Raw Data

Two Dipole Fit

Dipoles are Complex

Right Dipole

Computational Sensorimotor Systems Laboratory

32 Hz

Left Dipole

SSR Carrier Dependence

Independent Component Analysis Left Right Cortex Cortex Heartbeat -20 -30 -40 -50 **ICA finds: Independent Neural** Sources in Auditory areas **Independent Neural** Sources in *non-Auditory* areas Independent non-Neural Sources