"Foreground and Background at the Cocktail Party"

A Neural and Behavioral Study of Top-Down and Bottom-Up **Auditory Attention**

Jonathan Z. Simon

Neuroscience and Cognitive Sciences / Biology / Electrical & Computer Engineering

University of Maryland, College Park

Computational Sensorimotor Systems Laboratory

Current & Former Students

Juanjuan Xiang

Jiachen Zhuo

Harsha Agasha

Nai Ding Harsha Agashe

Huan Luo Maria Chait Nayef Ahmar Ling Ma

Minsuk Park

Faculty Collaborators

David Poeppel Shihab Shamma

Alain de Cheveigné

Postdocs

Yadong Wang Mounya Elhilali

Lab Staff
Jeff Walker
Ray Shantanu

Supported by

NIH: NIDCD, NIBIB, NIA

Outline

• Magnetoencephalography (MEG) as a tool of Non-Invasive Auditory Physiology

• MEG in the Frequency Domain

 Neural & Behavioral Correlates of Auditory Attention

Magnetoencephalography (MEG)

- Non-invasive, Passive, Silent Neural Recordings
- Simultaneous Whole-Head Recording (~200 sensors)
- Sensitivity

high: $\sim 100 \text{ fT } (10^{-13} \text{ Tesla})$

low: $\sim 10^4 - \sim 10^6$ neurons

- Temporal Resolution: ~1 ms
- Spatial Resolution coarse: ~1 cm ambiguous

Functional Imaging

Functional magnetic resonance imaging fMRI

Positron emission

Hemodynamic techniques

Electromagnetic

techniques

Excellent spatial resolution $(\sim 1-2 \text{ mm})$ Poor temporal resolution $(\sim 1 \text{ s})$

/ tomography
PET

Non-invasive recording

Non-invasive recording from human brain (Functional brain imaging) PET, EEG require across-subject averaging

fMRI and MEG can capture effects in single subjects

Electroencephalography EEG

Poor spatial resolution

Excellent temporal resolution

(~1 ms)

Magnetoencephalography MEG

Computational Sensorimotor Systems Laboratory

Primary Neural Current

Photo by Fritz Goro

Primary Neural Current

Photo by Fritz Goro

MEG Measures Neural Currents

MEG Response 3-D Isofield Contour Map

Sagittal View

Axial View

Chait et al., Cerebral Cortex 2006

Time Course of MEG Responses

Evoked Responses

MEG Events Time-Locked to Stimulus Event

Spatial Auditory MEG Responses

Auditory Responses Robust Strongly Lateralized

Chait et al., NeuroReport 2004

J. Neuroscience 2007

Simon & Wang J. Neuroscience Methods 2005

Neural Engineering 2005

Computational Sensorimotor Systems Laboratory

MEG as Auditory Physiology Tool

- Advantages of humans over animals
 Subjects can be rented (by the hour)
 Subjects can be trained in minutes
 Better grasp of subjects' perceptual space (?)
 Access to Speech & Language processing (?)
- Advantage of Whole Head Recording
- Disadvantage of Neural Source Localization Coarseness/Ambiguity in Source Location Blindness to Many Kinds of Coding
- Neutral Aspects
 Neural Source is Dendritic Current (not Spikes)
 Humans not typical mammals (?)
 New Technique/Immature Analysis Tools

Outline

• Magnetoencephalography (MEG) as a tool of Non-Invasive Auditory Physiology

• MEG in the Frequency Domain

 Neural & Behavioral Correlates of Auditory Attention

An Alternative to Time: Frequency

• Use Stimuli localized in Frequency, not time

- Examine Response at Same Frequency
- Steady State Response (SSR)
- Frequency Response/Transfer Function

Whole Head Steady State Response

Simon & Wang J. Neuroscience Methods 2005

Computational Sensorimotor Systems Laboratory

Outline

• Magnetoencephalography (MEG) as a tool of Non-Invasive Auditory Physiology

• MEG in the Frequency Domain

 Neural & Behavioral Correlates of Auditory Attention

Foreground & Background

Foreground & Background

Foreground & Background

Behavior

Behavioral Performance for Target Task

Protection Zone Half-width (semitones)

Behavioral Performance for Masker Task

Protection Zone Half-width (semitones)

Neural Response to Target

Neural Response to Target Target Task

Neural Response to Target Masker Task

Neural Response to Target by Subject

Computational Sensorimotor Systems Laboratory

Consistent with Heschl's Gyrus

Neural Response to Target vs. Behavior

Behavior (Target)

Target Task

Effect of Target Frequency Auditory Pop-out

Effect of Target Frequency Auditory Pop-out

Computational Sensorimotor Systems Laboratory

Effect of Target Frequency Auditory Pop-out

Behavioral & Neural Build-ups

Target Task

Behavioral & Neural Build-ups

Target Task

Neural Enhancment by Frequency

Neural Response Enhancement

Long Distance Phase Coherence

Coherence at Target Rate of Single Subject

Coherence Enhancment by Frequency

Long-distance Coherence Enhancement

Bottom-Up Coherence Enhancment

Hemispheric Response Asymmetry

Follow-up Study (in progress)

Follow-up Study (in progress)

Target rates: 4Hz, 7 Hz
Target rove:250-500 Hz
Duration: 5.25 s, 6.25 s, 7.25 s
Frequency Separation:+/- 8 st

Tone dur: 75 ms

Deviant Jitter: 40 ms, 70 ms

Summary

- Strong Neural Response to Target (despite Maskers)
 - + Acquired non-invasively, with high temporal resolution
- Attention strongly modulates Neural Response & Coherence
- Change in Behavior correlates with Change in Neural Response
 - + Bottom-Up (Auditory Pop-out)
 - Neural Response correlates within subjects with Target Task Behavior
 - Target Pop-out interferes with Masker Task
 - Neural Response anti-correlates within subjects with MaskerTask Behavior
 - + Top-Down: Buildup of Neural Response correlates within subjects

 with Behavioral Buildup

Attention Modulates Competing Streams

Tracking 4 Hz task

Tracking 7 Hz task

Tracking 7 Hz task

Attention Modulates Phase Coherence

Behavioral & Neural Build-ups

Neural Response Enhancement

Long-distance Coherence Enhancement

Right Hemisperic Advantage

Neural Response to Target across Hemispheres

Behavioral & Neural Build-ups

Behavioral & Neural Build-ups

MEG Response

Spatial Map of Time Series

MEG Response Butterfly Plot

Complex Magnetic Field

Complex Equivalent-Current Dipoles

MEG Measures Neural Currents

- not hemodynamic
- real-time
- No unique solution for distributed source

MEG Response Flattened Isofield Contour Map

