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Cortical Representations of Continuous Speech
Continuous speech 
• naturalistic

• redundant

• employs auditory cognition

• acoustically diverse

• drives most auditory areas

• …

• but also complicated He was an old man who fished alone in a skiff in the Gulf Stream and he 

had gone eighty-four days now without taking a fish. In the first forty days 
a boy had been with him. But after forty days without a fish …


The Old Man and the Sea –– Ernest Hemingway

In the bosom of one of those spacious coves which indent the 
eastern shore of the Hudson, at that broad expansion of the river 
denominated by the ancient Dutch navigators …


The Legend of Sleepy Hollow — Washington Irving

Alfred the Great was a young man, three-and-twenty years of age, 

when he became king. Twice in his childhood, he had been taken to 

Rome, where the Saxon nobles were in the habit of going on journeys 

which they supposed to be religious; …


A Child’s History of England — Charles Dickens

If you happened to find yourself on the banks of the Ohio River 
on a particular afternoon in the spring of 1806—somewhere 
just to the north of Wheeling, West Virginia, say …


The Botany of Desire — Michael Pollan

-



Temporal neural patterns ⇆ temporal patterns in speech 

• Need high temporal precision, for fast temporal speech features


- EEG  (electroencephalography): whole brain

- MEG (magnetoencephalography): whole brain but with strong cortical bias 

- ECoG (electrocorticography): placed cortical surface electrodes

- single- and multi-unit recording methods: placed depth electrodes

-

Cortical Representations of Continuous Speech
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•Direct electrophysiological measurement
•not hemodynamic
•real-time

•No unique solution for distributed source
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•Measures spatially synchronized  
cortical activity

•Fine temporal resolution (~ 1 ms)
•Moderate spatial resolution (~ 1 cm)

Neural Representations & MEG



Spatial Distributions of MEG 
Neural Currents
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Spatiotemporal Distribution of 
Neural Currents
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Origins of cortical over-representation of speech
in older adults

Christian Brodbeck, Alessandro Presacco, Stefanie Kuchinsky, Samira Anderson & Jonathan Z. Simon
University of Maryland, College Park

Computational
Sensorimotor
Systems Lab

Background
Previous research using magnetoencephalography (MEG) has found that older
adults’ cortical responses to speech track the envelope of the acoustic signal
more robustly than younger adults’ responses (Presacco et al., 2016a&b). This
could have different reasons:

• Low level age-related change, e.g., excitation/inhibition imbalance

▪ Decrease in cortical inhibition could lead to stronger evoked responses (e.g.
Overton & Recanzone, 2016)

• Top-down/strategic processing

▪ Higher level processes recruited to compensate for lower level deficits (e.g.,
degraded input from the periphery) lead to activation in additional brain
regions (e.g., Peelle et al., 2010)

• Attention:

▪ Increased sensory attention due to increased task demands is associated
with stronger sensory responses (Woldorff et al., 1993)

Here we used MEG source localization to determine

• Which parts of the temporal lobe show increased phase-locked activity

• At what latency increased responses occur

Methods
Participants
• 17 younger (18-27 years) and 23 older (60A) adults

Procedure
• 1B7 axial gradiometer whole head MEG (KIT, Kanazawa, Japan)

• Cor source space analysis, MEG responses to 2 one-minute long segments of clean speech (The Legend of
Sleepy Hollow)D each segment repeated 3 times for a total of 6 minutes of data per subEect

• Cor Decoding analysis, additional segments with two speakers at different signal to noise ratios, task to attend
to one and ignore the other

Stimulus reconstruction (Presacco et al., 2016b)
• Speech stimulus represented as envelope of the analytic signal (1-8 Hz)

• Linear B00 ms kernel trained to predict stimulus from all MEG data (1-8 Hz)

• Coordinate descent algorithm (David et al., 2007)

• Early stopping based on cross-validation

Source localization
• Temporal signal space separation

• Zero-phase CIR filter (1-8 Hz)

• Average brain model, scaled to match each participant’s head (CreeSurfer fsaverage)

• Minimum norm estimates at virtual source dipoles eFually spaced across the white matter surface, oriented
perpendicularly to the cortical surface

• Speech stimulus represented as envelope of the analytic signal

• Linear B00 ms kernel trained for each source dipole to predict estimated current time course from the stimulus

• Basis of B0 ms Hamming windows

• Coordinate descent algorithm (David et al., 2007)

• Early stopping based on cross-validation

Statistical evaluation
• Overall model fit:

• Correlation coeGcient between predicted and actual source time course (Cisher z-transformed to correct
distribution for fixed end-points at -1 and 1)

• Bias corrected using model in which the predictor variable was temporally misaligned with the response

• Age difference with repeated-measures t-test at each source dipole,

• Threshold-free cluster enhancement (Smith and Hichols, 2009)

• Estimation of the null distribution by permuting group membership 10.000 times

• TRC:

• All values transformed to their absolute value, to prevent negative and positive currents from cancelling out

• Weighted average in the region of significant difference in z-values

• TRC amplitude time course analyzed with repeated-measures t-test, TCCE and permutation distribution as
above

• TRC peaks

• Peak windows determined based on inspection of TRC time course

• Average of the absolute TRC in window for each participant

• Smoothed with Gaussian kernel (STD I B mm)

• Tested as above

Brain responses
Distributed minimum norm estimates (MHE) used to estimate electrical activity
at virtual current source dipoles across the temporal lobes. Activity at these
source dipoles was modeled as a response to the acoustic envelope of speech
using a linear convolution model (David et al., 2007D Brodbeck et al., 2018).

Method! "emporal response #unctions

Stimulus reconstruction
MEG responses to one minute long segments of continuous speech, under
natural listening conditions (excerpts from audiobook)

Method! Stimulus reconstruction

"$% amplitudes, avera&ed in time 'indo's around prominent pea(s,
su&&est di)erent anatomical ori&ins

• J30 ms: older adults’ response significantly enlargedD region of significant
group difference consistent with main difference outside core auditory cortex

• J100 ms: group difference not significant

• J1B0 ms: non-significantly enhanced response peak in younger adults

• J200 ms: additional peak in older adults’ TRCs with wide-spread distribution

Conclusions
Compared to younger adults, older adults’ cortical responses track the acoustic
envelope of speech more robustly.

• Older adults’ responses to clean speech differ from younger adults’ responses
at different TRC peaks with different latencies, suggesting multiple reasons for
increased tracking

• An early J30 ms difference is consistent with a low-level processing change

• Localization difference suggests non-primary auditory cortex involvement

• Consistent with excitatory-inhibitory imbalance, leading to rapid activation in
a larger area

• A late J200 ms difference is consistent with recruitment of additional
processing resources

$e#erences
Brodbeck, C., Presacco, A., & Simon, J. Z. (2018). Heural source dynamics of brain responses to continuous stimuli: Speech
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"he si&nal #rom the M+, sensors is used -ointly to reconstruct the acoustic
envelope o# the speech stimulus

• The reconstructed stimulus is the convolution of the kernel (OdecoderP) with
the MEG signal

• Reconstruction accuracy is an estimate of how much information the
responses contain about the stimulus

▪ Measured as correlation between actual and reconstructed stimulus

• The convolution model used for reconstruction is primarily sensitive to phase-
locked brain activity

.lder adults! hi&her stimulus reconstruction
accuracy

.lder adults/ cortical responses allo' more accurate reconstruction o# the
speech envelope than youn&er adults/ (#rom Presacco et al., 2016b)

• Holds across different listening conditions (clean speech and speech with
background speaker at difference SHRs)

• Suggests that older adults’ cortical responses carry more information about
the speech envelope

• Where in the cortex and at which latencies are older ad�lts� res�onses
a��li�ed�

"he si&nal at each virtual source dipole (illustrated as red0&reen0blue lines)
is modeled as linear convolution o# the speech envelope 'ith a temporal
response #unction ("$%)

• Model fit is evaluated by how well the signal at each dipole can be modeled
(correlation coeGcient)

Localized response prediction accuracy

.lder adults e1hibit stron&er responses to clean speech in non2primary
auditory corte1

• Older adults’ MEG responses reQected the acoustic envelope more strongly in
a region of the left temporal lobe

• Localization consistent with a region outside of core auditory cortex

• Lateralization was not significant (p I .28B)

• The amplitude of the temporal response functions (TRCs) in the significant
region was analyzed for a better understanding of the timing of the effects

3ncreased "$% amplitude at multiple pea(s

$esponse #unction pea(s

"$% amplitude (avera&ed in si&ni4cant re&ion sho'n above) is si&ni4cantly
lar&er in older adults at early (560 ms) and late (5200 ms) pea(s

• Rounger adults seem to have similar but weaker peaks at J30 and J100 ms

• A third peak occurs in younger adults at J1B0 ms alreadyD older adults’ J200
ms peak could be an enlarged and delayed version
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Cortical Representations of Continuous Speech

Brodbeck & Simon (2020) Continuous Speech Processing, Curr Op Physiol

Neural Representations of Speech 
• driven oscillations at pitch frequencies (mostly subcortical)


• acoustic onset tracking


• speech envelope rhythmic following


• phoneme-based responses


• phoneme-context-based responses


• sentence-structure rhythm following


• semantic structure tracking


• plus connections to intelligibility/perception/behavior -



Cortical Representations of Speech

For instance, even though older adults frequently com-
plain of speech comprehension difficulty, cortical enve-
lope tracking actually increases with advancing age
[16,17!,18]. An early observation was that speech tracking
strength may correspond more to the perceived speech
than simply reflecting the bottom up acoustic input. In
responses to two talkers, the attended talker is often
tracked more reliably than the ignored talker [19], and
this modulation is robust enough to allow for detecting
changes in the focus of attention in relatively short seg-
ments of data [20,21]. Here, envelope tracking thus
measures how well the to-be attended speech is repre-
sented despite the fact that it is different from the actual acoustic
input signal. Similarly, tracking even of clean speech is
increased during periods in which attentional focus is high
[22]. Such trial-by-trial variation in clean speech tracking
has also been shown to reflect task performance, with
better memory for words that occurred in sentences with
higher speech tracking [23].

This raises the possibility that envelope tracking may
reflect a sort of cleaned-up and attended-to representa-
tion of the acoustic input, which might form the basis for
comprehension. For speech presented with different
kinds of background noise, increased tracking of the
attended envelope is associated with better speech
understanding even after controlling for the objective
background noise level [17!]. Consistent with a strong
top-down influence, tracking of the attended speech can
actually be higher for speech in noise than for clean

speech [24] and, for a well-known stimulus, tracking
can even persist during short gaps in which the stimulus
is replaced with pure noise [25]. In addition to this
attentional enhancement, tracking of attended speech
in noise differs qualitatively depending on whether the
language is known to the listener [10,26], suggesting that
speech tracking includes a language-specific component
in addition to acoustic processing.

Envelope tracking thus likely reflects an interaction of
the bottom-up input to the auditory cortex with resource-
dependent, higher order processes. This is demonstrated
by varying the amount of cognitive resources devoted to
the speech [27]: At high signal to noise ratios (SNRs),
speech tracking is similar, whether participants attend to
the speech, or whether they ignore it and watch a silent
movie instead. At lower SNRs, however, when more
attentional resources would be required to recover the
speech signal, speech tracking decreases much more in
the movie condition. When subjects were playing a video
game, speech tracking was even lower, decreasing even
for clean speech. This suggests that speech tracking even
of clean speech has a resource-dependent component,
with increasing demands for speech in noise.

Components of speech tracking
The results summarized above suggest that, while the
speech envelope is by definition an acoustic property of
speech, considering speech tracking as a measure of basic

26 Physiology of hearing

Figure 1

his schoolhouse wa sa low buildin g of one large room rudely constructed of logs

Speec h envelope

"Decoder" "Tempora l respons e functions"
(TRFs)

(a) (b)

Current Opinion in Physiology 

Models for analyzing speech tracking. (a) Stimulus reconstruction (backward model): a decoder is trained to reconstruct the stimulus envelope
from the neural response, and speech tracking is quantified by how well the reconstructed envelope matches the actual envelope. A typical
decoder uses a linear combination of the neural responses in a window following the envelope by 0–500 ms. (b) Temporal response functions
(TRFs) (forward model): a TRF is trained to predict the neural response from the speech envelope, and speech tracking is quantified by how well
the predicted response matches the actual response. A typical TRF uses various delayed versions of the envelope from 0–500 ms. Responses
originating from different brain areas are each characterized by their own TRF.

Current Opinion in Physiology 2020, 18:25–31 www.sciencedirect.com

• Measure time-locked responses to temporal pattern of speech features (in humans)


• Any speech feature of interest: acoustic envelope, lexical, pitch, semantic, etc.


• Infer spatio-temporal neural origins of neural responses

Brodbeck & Simon (2020) Continuous Speech Processing, Curr Op Physiol



Cortical Representations: Decoding

• Reconstruct past stimulus features (from 
present neural responses)

• how much information, regarding this class of 

stimulus features, is visible in the brain? 


• Typically speech envelope (dynamic, ongoing)

• other features possible but less common


• Moderate time resolution (10s to 100s of ms)

• spatial resolution more iffy

Example: EEG/MEG Reconstruction of Speech Envelope

Brodbeck & Simon (2020) Continuous Speech Processing, Curr Op Physiol



Cortical Representations: Encoding
• Predicting future neural responses from 

present stimulus features,

- wide variety of stimulus features

- via Temporal Response Function 

(TRF)


• Why look at encoding? It often tells us 
more about the brain

- TRF analogous to evoked response

- peak amplitude ≈ processing intensity

- peak latency ≈ source location

- multiple TRFs simultaneously

Example: MEG Prediction of Voxel Responses
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Example: Representation of Speech Envelope
• TRF interpretable a la evoked response


- Has M50 (~“P1”) & M100 (~“N1”) peaks,  
but from instantaneous speech envelope


- early peak localizes to primary auditory 
areas (HG)


- later peak localizes to associative areas (PT)

- caveat: actually from envelope onset


• This is from a single talker, clean speech

- simple but limiting

- what about noise? other speakers? attention?

- can the speech representation be cleaned?

significantly improve prediction of the MEG responses. Then, the resultant spectrotemporal
response functions (STRFs) were analyzed to gain insight into the nature of the
representations.

Results and discussion

Auditory cortex represents acoustic onsets

MEG responses to clean speech were predicted from the gammatone spectrogram of the stim-
ulus and, simultaneously, from the spectrogram of acoustic onsets (Fig 2A). Acoustic onsets
were derived from a neural model of auditory edge detection [19]. The 2 predictors were each
binned into 8 frequency bands, such that the MEG responses were predicted from a model of
the acoustic stimulus encompassing 16 time series in total. Each of the 2 predictors was
assessed based on how well (left-out) MEG responses were predicted by the full model, com-
pared with a null model in which the relevant predictor was omitted. Both predictors signifi-
cantly improve predictions (onsets: tmax = 12.00, p 0.001; envelopes: tmax = 9.39, p 0.001),
with an anatomical distribution consistent with sources in HG and STG bilaterally (Fig 2B).
Because this localization agrees with findings from intracranial recordings [8,17], results were
henceforth analyzed in an auditory region of interest (ROI) restricted to these 2 anatomical
landmarks (Fig 2C). When averaging the model fits in this ROI, almost all subjects showed evi-
dence of responses associated with both predictors (Fig 2D).

Fig 2. MEG responses to clean speech. (A) Schematic illustration of the neurally inspired acoustic edge detector model, which was used to generate onset
representations. The signal at each frequency band was passed through multiple parallel pathways with increasing delays, so that an “edge detector” receptive
field could detect changes over time. HWR removed the negative sections to yield onsets only. An excerpt from a gammatone spectrogram (“envelope”) and
the corresponding onset representation are shown for illustration. (B) Regions of significant explanatory power of onset and envelope representations,
determined by comparing the cross-validated model fit from the combined model (envelopes + onsets) to that when omitting the relevant predictor. Results
are consistent with sources in bilateral auditory cortex (p 0.05, corrected for whole brain analysis). (C) ROI used for the analysis of response functions,
including superior temporal gyrus and Heschl’s gyrus. An arrow indicates the average dominant current direction in the ROI (upward current), determined
through the first principal component of response power. (D) Individual subject data corresponding to (B), averaged over the ROI in the LH and RH,
respectively. (E) STRFs corresponding to onset and envelope representations in the ROI; the onset STRF exhibits a clear pair of positive and negative peaks,
while peaks in the envelope STRF are less well-defined. Different color curves reflect the frequency bins, as indicated next to the onset and envelope
spectrograms in panel A. Shaded areas indicate the within-subject standard error (SE) [31]. Regions in which STRFs differ significantly from 0 are marked
with more saturated (less faded) colors (p 0.05, corrected for time/frequency). Data are available in S1 Data. HWR, half-wave rectification; LH, left
hemisphere; MEG, magnetoencephalographic; RH, right hemisphere; ROI, region of interest; SE, standard error; STRF, spectrotemporal response function;
TRF, temporal response function.

https://doi.org/10.1371/journal.pbio.3000883.g002
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pared with a null model in which the relevant predictor was omitted. Both predictors signifi-
cantly improve predictions (onsets: tmax = 12.00, p 0.001; envelopes: tmax = 9.39, p 0.001),
with an anatomical distribution consistent with sources in HG and STG bilaterally (Fig 2B).
Because this localization agrees with findings from intracranial recordings [8,17], results were
henceforth analyzed in an auditory region of interest (ROI) restricted to these 2 anatomical
landmarks (Fig 2C). When averaging the model fits in this ROI, almost all subjects showed evi-
dence of responses associated with both predictors (Fig 2D).
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representations. The signal at each frequency band was passed through multiple parallel pathways with increasing delays, so that an “edge detector” receptive
field could detect changes over time. HWR removed the negative sections to yield onsets only. An excerpt from a gammatone spectrogram (“envelope”) and
the corresponding onset representation are shown for illustration. (B) Regions of significant explanatory power of onset and envelope representations,
determined by comparing the cross-validated model fit from the combined model (envelopes + onsets) to that when omitting the relevant predictor. Results
are consistent with sources in bilateral auditory cortex (p 0.05, corrected for whole brain analysis). (C) ROI used for the analysis of response functions,
including superior temporal gyrus and Heschl’s gyrus. An arrow indicates the average dominant current direction in the ROI (upward current), determined
through the first principal component of response power. (D) Individual subject data corresponding to (B), averaged over the ROI in the LH and RH,
respectively. (E) STRFs corresponding to onset and envelope representations in the ROI; the onset STRF exhibits a clear pair of positive and negative peaks,
while peaks in the envelope STRF are less well-defined. Different color curves reflect the frequency bins, as indicated next to the onset and envelope
spectrograms in panel A. Shaded areas indicate the within-subject standard error (SE) [31]. Regions in which STRFs differ significantly from 0 are marked
with more saturated (less faded) colors (p 0.05, corrected for time/frequency). Data are available in S1 Data. HWR, half-wave rectification; LH, left
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TRF, temporal response function.
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Temporal Response Fields



onsets in the mixture than for onsets in either of the sources (latency mixture: 72 milliseconds;
attended: 81 milliseconds, t25 = 4.47, p< 0.001; ignored: 89 milliseconds, t25 = 6.92, p< 0.001;
amplitude mixture > attended: t25 = 8.41, p< 0.001; mixture > ignored: t25 = 7.66, p< 0.001).
This positive peak is followed by a negative peak only in responses to the mixture (136 millisec-
onds) and the attended source (150 milliseconds; latency difference t25 = 3.20, p = 0.004). The
amplitude of these negative peaks is statistically indistinguishable (t25 = 1.56, p = 0.132).

The mixture predictor is not completely orthogonal to the source predictors. This might
raise a concern that a true response to the mixture might cause spurious responses to the
sources. Simulations using the same predictors as used in the experiment suggest, however,
that such contamination is unlikely to have occurred (see S1 Simulations).

Fig 3. Responses to the 2-speaker mixture, using the stream-based model. (A) The envelope and onset representations of the acoustic mixture and the 2
speech sources were used to predict MEG responses. (B) Individual subject model fit improvement due to each predictor, averaged in the auditory cortex
ROI. Each predictor explains neural data not accounted for by the others. (C) Auditory cortex STRFs to onsets are characterized by the same positive/
negative peak structure as STRFs to a single speaker. The early, positive peak is dominated by the mixture but also contains speaker-specific information. The
second, negative peak is dominated by representations of the attended speaker and, to a lesser extent, the mixture. As with responses to a single talker, the
envelope STRFs have lower amplitudes, but they do show a strong and well-defined effect of attention. Explicit differences between the attended and ignored
representations are shown in the bottom row. Details as in Fig 2. (D) The major onset STRF peaks representing individual speech sources are delayed
compared with corresponding peaks representing the mixture. To determine latencies, mixture-based and individual-speaker-based STRFs were averaged
across frequency (lines with shading for mean ±1 SE). Dots represent the largest positive and negative peak for each subject between 20 and 200 milliseconds.
Note that the y-axis is scaled by an extra factor of 4 beyond the indicated break points at y = 14 and −6. Data are available in S2 Data. LH, left hemisphere;
MEG, magnetoencephalography; RH, right hemisphere; ROI, region of interest; SE, standard error; STRF, spectrotemporal response function.

https://doi.org/10.1371/journal.pbio.3000883.g003
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Cortical Representations: Selective Attention

Two competing speakers,  
selectively attend to one 
• more illuminating since more 

complex auditory scene

• need more care re: “stimulus” 

responsible for responses

- acoustic mixture entering ears

- foreground speech

- background speech


• estimate all TRFs simultaneously

- compete to explain variance

Brodbeck et al. (2020) Neural Speech Restoration at the Cocktail Party …, PLoS Biol



• Language-based  
speech features

- phonemes

- words & word boundaries

- phoneme context


• All TRFs estimated 
simultaneously

- compete to explain variance

Cortical Representations: Language Features

Brodbeck et al. (2018) Rapid Transformation from Auditory to Linguistic Representations …, Curr Biol
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B EY K …

bacon

(25%)

baker

(29%)

Entropy
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cake
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(95%)
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Cohort Entropy
Cohort entropy 
‣ How unpredictable is the current word? 



Do we… 
‣ Anticipate word boundaries based on context? 
‣ Infer them later based on consistency?  

(Norris & McQueen, 2008)

paths are successful in explaining the data on human continuous
spoken-word recognition.

The Input to Shortlist B

A final motivation for the development of Shortlist B was the
need to improve on the account of early phonetic analysis offered
by the original Shortlist model. The input to Shortlist A is simply
a string of phonemes. The representations of those phonemes have
no internal structure, and all phonemes are treated equally. There
is therefore nothing in the input to the word-recognition process to
indicate that listeners find some phonemes more confusable than
others. Furthermore, this kind of input to word recognition is
discrete and categorical in two inappropriate ways. First, it is
discrete in temporal terms. That is, there is no overlap of evidence
for different speech sounds, as if, counterfactually, there were no
effects of coarticulation in the speech signal. Second, this kind of
input is discrete in informational terms: For any segmental position
in the input there is 100% support for one and only one phoneme.
There is, however, considerable evidence (reviewed in McQueen,
2007) to suggest that the word-recognition process is continuous in
both the temporal and informational senses. Acoustic information
modulates word recognition on a much finer time-scale than pho-
neme by phoneme, and that information concerns within-phoneme
variability. The input to Shortlist A is therefore inadequate.
To date there have been three different approaches to producing

more realistic input representations in models of spoken-word
recognition. One option is to model the input noncategorically.
The input in TRACE (TRACE II, to be more precise; McClelland
and Elman, 1986), for example, consists of a vector of phonetic
features that varies over time. Although this kind of input is more

detailed, it still involves considerable oversimplification, particu-
larly with respect to the time-course with which featural informa-
tion becomes available. Critically, this approach depends on a
largely untested set of assumptions about what evidence the lis-
tener can extract about different features (and hence phonemes) in
any stretch of input.
A second option is to construct a model that takes the raw

acoustic waveform as its input. Both TRACE I (Elman and Mc-
Clelland, 1986; McClelland & Elman, 1986) and SpeM (Scharen-
borg et al., 2005) take this approach. A limitation of this method,
once again, is that there is little reason to believe that there will be
a close mapping between the acoustic-phonetic processes and
representations in these models and those used by human listeners.
Scharenborg et al., for example, derive phonemic representations
with a conventional hidden Markov model phone recognizer, as
used in ASR systems. To the extent that this recognizer deviates
from human behavior, the results of the SpeM model as a whole
could be misleading.
A third alternative is to accept that it may be premature to expect

to produce a well-motivated model of the early stages of speech
recognition and, instead, to try to simulate these processes using
data from human phoneme or word confusions (e.g., Luce &
Pisoni, 1998). Even though this approach sidesteps the question of
how the early stages of recognition operate, it enables one to
present later stages of a model with input that corresponds more
closely to the input that would be received from the human
perceptual system. For example, if listeners have more difficulty
discriminating one pair of phonemes than another, then the input to
the model should reflect that difference. Luce and Pisoni (1998)
have used this procedure to great effect in the NAM to explain a

The cat a log in a lie

cattle 

catalogue inner 

library 

eye 

login 

The cat a log in a lie 

cattle

catalogue inner 

library 

eye 

login 

TR

Figure 1. Recognition of the phrase “The catalogue in a library,” as spoken by speaker of British English:
/ðəkætəlɒgInəlaIbrI]. The upper panel shows the competitive inhibition process that occurs among activated
candidate words in an interactive-activation model, such as Shortlist A. Words that compete for the same stretch
of input inhibit each other via direct, bidirectional inhibitory connections. Only a subset of the best-matching
candidates is shown. The lower panel illustrates the path-based search through a word lattice used in automatic
speech recognition and Shortlist B. Paths connect sequences of lexical hypotheses from a root node (R) to a
terminal node (T); not all paths or words are shown. The dashed and dotted arrows are examples of connections
between noncontiguous words (see text for details).
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• Language-based  
speech features

- phonemes

- words & word boundaries

- phoneme context


• All TRFs estimated 
simultaneously

- compete to explain variance

Cortical Representations: Language Features

Brodbeck et al. (2018) Rapid Transformation from Auditory to Linguistic Representations …, Curr Biol



Language-feature based TRFs

it could be argued that word onsets should be associated
with disproportionately large surprisal, it is noteworthy that the
word onset TRF peak has the opposite polarity (i.e., current
direction) than the surprisal peak, further dissociating the two
responses.
A more general implication of these responses to word onsets

is that word boundaries should be perceptually salient despite
the observation that clear cues for word boundaries are generally
missing from speech waveforms [45]. A similar word-onset elec-
troencephalographic response emerged only after listeners
learned to segment an artificial language into words, suggesting
that it is not a response to local acoustic properties alone
[16, 17]. A response tightly locked to word onset suggests
that whichever cues listeners use to detect word boundaries
[45, 46], boundaries seem to be generally detected as they
occur, rather than after incorporating cues occurring subsequent
to word onset.

Word-medial phonemes, modeled as an impulse at each
phoneme excluding word onsets, were associated with a sig-
nificant (tmax = 3.15, p = 0.005) right-lateralized (tmax = 2.75,
p = 0.035) response.

Responses to Acoustic Features
Both acoustic predictors were associated with strong bilateral
effects (tmax = 9.08 and 9.23, both p < 0.001). Both were localized
close to core auditory cortex, with acoustic onsets somewhat
more predictive in the right hemisphere (tmax = 4.24, p = 0.007).
Significant effects extended over much of the temporal lobe,
though the extended area could be due to spatial dispersion of
MEG source estimates rather than genuine responses outside
of core auditory regions [13]. TRFs to the acoustic envelope ex-
hibited two main peaks at 30 and 106 ms, consistent with earlier
results [13, 33, 47]. The latency of two analogous peaks to
acoustic onsets at 68 and 131 ms was found to be greater, as

0 100 200 300 400 500

Time [ms]

260 ms

-1

0

1

1

0

1

Current
estimate
[normalized]

Right hemisphere
Left hemisphere

p ≤
.05

not sig
.

Acoustic onset

Phoneme onset

Word onset

Phoneme surprisal

Cohort entropy

Acoustic envelope
30 ms 110 ms

400 ms110 ms

120 ms 200 ms 300 ms

100 ms

70 ms 140 ms

**

*

** 0

1.1 × 10 02
0

5.8 × 10 03

0

1.1 × 10 03

0

3.8 × 10 04

0

1.3 × 10 03

0

3.0 × 10 03

∆z

Figure 2. Brain Responses to Single Speaker
Left column: significant predictive power (p % 0.05, corrected). Colors reflect the difference in z-transformed correlation between the full and the appropriately

shuffled model. Color-maps are normalized for each predictor to maximize visibility of internal structure, as appropriate for evaluating source localization results:

due to spatial dispersion of minimum norm source estimates, effect peaks are relatively accurate estimates, but strong effects can cause spurious spread whose

amplitude decreases with distance from the peak. See also Table S2. Right column: Temporal response functions (TRFs) estimated for the reducedmodel. Each

line reflects the TRF at one virtual current dipole, with color coding its location by hemisphere, and saturation coding significance (p % 0.05, corrected).

Anatomical plots display TRFs at certain time points of interest (only significant values are shown), with color coding current direction relative to the cortical

surface. Acoustic TRFs were averaged across frequency band for display as visual inspection revealed no major differences apart from amplitude differences

between frequency bands. See also Figure S2 and Table S3.
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Attention + Language-feature based TRFs

expected due to the temporal relationship between the two vari-
ables: the time of maximum rising slope precedes the time of
maximum amplitude, and is thus earlier compared with specific
time points in the neural response. The presence of analogous
peaks in the TRFs to both acoustic representations might indi-
cate that they jointly arise from a single, more complex underly-
ing neural response type, reflecting both onset and continuous
acoustic properties [48]. On the other hand, spatially, the two
response peaks to acoustic onsets were localized posterior
to the corresponding acoustic envelope peaks (d = 8 mm,
p = 0.002; d = 10 mm, p < 0.001), which might instead indicate
that the two responses stem from partially distinct neural
populations [49].

Responses to Two Concurrent Speakers Reflect
Acoustic, but Not Lexical, Information in Unattended
Speech
The variables that significantly predicted responses to a single
speaker were used to model acoustic and lexical processing in
a version of the cocktail-party paradigm [18, 19]. Participants

listened to a single-channel acoustic mixture of a male and a
female speaker, attending to one and ignoring the other. This
made it possible to test whether the lexical processing observed
for a single speaker is restricted to the attended speech stream
or whether it occurs also for the unattended stream. Figure 3
shows the predictive power of groups of predictors modeling
relevant processing stages and TRFs for the full model fitted to
the two-speaker data.
Responses were significantly modulated by acoustic features

of both the attended and the unattended speaker (tmax = 11.83
and 16.67, both p < 0.001; lateralization tmax = 4.17, p = 0.041
and tmax = 5.28, p = 0.001). The relative amplitudes of the TRF
peaks to acoustic onsets were consistent with previous results
[33, 47, 50], with an earlier (!70 ms) peak predominantly reflect-
ing the raw acoustic mixture, and a later (!150 ms) peak pre-
dominantly reflecting acoustic energy in the attended speech.
Responses to the acoustic envelope almost exclusively reflected
processing of the acoustic mixture, suggesting that auditory
stream segregation may be predominantly reflected in onset
processing.
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Figure 3. Brain Responses to Two Concurrent Speakers
Details analogous to Figure 2. The three columns display results for the model components for: the attended speech stream (left), the actual acoustic stimulus

mixture (middle), and the unattended speech stream (right). The upper part of the figure displays results for acoustic features, the lower part for lexical processing.
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expected due to the temporal relationship between the two vari-
ables: the time of maximum rising slope precedes the time of
maximum amplitude, and is thus earlier compared with specific
time points in the neural response. The presence of analogous
peaks in the TRFs to both acoustic representations might indi-
cate that they jointly arise from a single, more complex underly-
ing neural response type, reflecting both onset and continuous
acoustic properties [48]. On the other hand, spatially, the two
response peaks to acoustic onsets were localized posterior
to the corresponding acoustic envelope peaks (d = 8 mm,
p = 0.002; d = 10 mm, p < 0.001), which might instead indicate
that the two responses stem from partially distinct neural
populations [49].

Responses to Two Concurrent Speakers Reflect
Acoustic, but Not Lexical, Information in Unattended
Speech
The variables that significantly predicted responses to a single
speaker were used to model acoustic and lexical processing in
a version of the cocktail-party paradigm [18, 19]. Participants

listened to a single-channel acoustic mixture of a male and a
female speaker, attending to one and ignoring the other. This
made it possible to test whether the lexical processing observed
for a single speaker is restricted to the attended speech stream
or whether it occurs also for the unattended stream. Figure 3
shows the predictive power of groups of predictors modeling
relevant processing stages and TRFs for the full model fitted to
the two-speaker data.
Responses were significantly modulated by acoustic features

of both the attended and the unattended speaker (tmax = 11.83
and 16.67, both p < 0.001; lateralization tmax = 4.17, p = 0.041
and tmax = 5.28, p = 0.001). The relative amplitudes of the TRF
peaks to acoustic onsets were consistent with previous results
[33, 47, 50], with an earlier (!70 ms) peak predominantly reflect-
ing the raw acoustic mixture, and a later (!150 ms) peak pre-
dominantly reflecting acoustic energy in the attended speech.
Responses to the acoustic envelope almost exclusively reflected
processing of the acoustic mixture, suggesting that auditory
stream segregation may be predominantly reflected in onset
processing.
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See also: 
Gillis et al., (2021) bioRxiv 
Neural Markers of Speech Comprehension: Measuring EEG Tracking  
of Linguistic Speech Representations, Controlling the Speech Acoustics



Cortical Representations Across Cortex
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expected due to the temporal relationship between the two vari-
ables: the time of maximum rising slope precedes the time of
maximum amplitude, and is thus earlier compared with specific
time points in the neural response. The presence of analogous
peaks in the TRFs to both acoustic representations might indi-
cate that they jointly arise from a single, more complex underly-
ing neural response type, reflecting both onset and continuous
acoustic properties [48]. On the other hand, spatially, the two
response peaks to acoustic onsets were localized posterior
to the corresponding acoustic envelope peaks (d = 8 mm,
p = 0.002; d = 10 mm, p < 0.001), which might instead indicate
that the two responses stem from partially distinct neural
populations [49].

Responses to Two Concurrent Speakers Reflect
Acoustic, but Not Lexical, Information in Unattended
Speech
The variables that significantly predicted responses to a single
speaker were used to model acoustic and lexical processing in
a version of the cocktail-party paradigm [18, 19]. Participants

listened to a single-channel acoustic mixture of a male and a
female speaker, attending to one and ignoring the other. This
made it possible to test whether the lexical processing observed
for a single speaker is restricted to the attended speech stream
or whether it occurs also for the unattended stream. Figure 3
shows the predictive power of groups of predictors modeling
relevant processing stages and TRFs for the full model fitted to
the two-speaker data.
Responses were significantly modulated by acoustic features

of both the attended and the unattended speaker (tmax = 11.83
and 16.67, both p < 0.001; lateralization tmax = 4.17, p = 0.041
and tmax = 5.28, p = 0.001). The relative amplitudes of the TRF
peaks to acoustic onsets were consistent with previous results
[33, 47, 50], with an earlier (!70 ms) peak predominantly reflect-
ing the raw acoustic mixture, and a later (!150 ms) peak pre-
dominantly reflecting acoustic energy in the attended speech.
Responses to the acoustic envelope almost exclusively reflected
processing of the acoustic mixture, suggesting that auditory
stream segregation may be predominantly reflected in onset
processing.
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expected due to the temporal relationship between the two vari-
ables: the time of maximum rising slope precedes the time of
maximum amplitude, and is thus earlier compared with specific
time points in the neural response. The presence of analogous
peaks in the TRFs to both acoustic representations might indi-
cate that they jointly arise from a single, more complex underly-
ing neural response type, reflecting both onset and continuous
acoustic properties [48]. On the other hand, spatially, the two
response peaks to acoustic onsets were localized posterior
to the corresponding acoustic envelope peaks (d = 8 mm,
p = 0.002; d = 10 mm, p < 0.001), which might instead indicate
that the two responses stem from partially distinct neural
populations [49].

Responses to Two Concurrent Speakers Reflect
Acoustic, but Not Lexical, Information in Unattended
Speech
The variables that significantly predicted responses to a single
speaker were used to model acoustic and lexical processing in
a version of the cocktail-party paradigm [18, 19]. Participants

listened to a single-channel acoustic mixture of a male and a
female speaker, attending to one and ignoring the other. This
made it possible to test whether the lexical processing observed
for a single speaker is restricted to the attended speech stream
or whether it occurs also for the unattended stream. Figure 3
shows the predictive power of groups of predictors modeling
relevant processing stages and TRFs for the full model fitted to
the two-speaker data.
Responses were significantly modulated by acoustic features

of both the attended and the unattended speaker (tmax = 11.83
and 16.67, both p < 0.001; lateralization tmax = 4.17, p = 0.041
and tmax = 5.28, p = 0.001). The relative amplitudes of the TRF
peaks to acoustic onsets were consistent with previous results
[33, 47, 50], with an earlier (!70 ms) peak predominantly reflect-
ing the raw acoustic mixture, and a later (!150 ms) peak pre-
dominantly reflecting acoustic energy in the attended speech.
Responses to the acoustic envelope almost exclusively reflected
processing of the acoustic mixture, suggesting that auditory
stream segregation may be predominantly reflected in onset
processing.
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maximum amplitude, and is thus earlier compared with specific
time points in the neural response. The presence of analogous
peaks in the TRFs to both acoustic representations might indi-
cate that they jointly arise from a single, more complex underly-
ing neural response type, reflecting both onset and continuous
acoustic properties [48]. On the other hand, spatially, the two
response peaks to acoustic onsets were localized posterior
to the corresponding acoustic envelope peaks (d = 8 mm,
p = 0.002; d = 10 mm, p < 0.001), which might instead indicate
that the two responses stem from partially distinct neural
populations [49].
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speaker were used to model acoustic and lexical processing in
a version of the cocktail-party paradigm [18, 19]. Participants

listened to a single-channel acoustic mixture of a male and a
female speaker, attending to one and ignoring the other. This
made it possible to test whether the lexical processing observed
for a single speaker is restricted to the attended speech stream
or whether it occurs also for the unattended stream. Figure 3
shows the predictive power of groups of predictors modeling
relevant processing stages and TRFs for the full model fitted to
the two-speaker data.
Responses were significantly modulated by acoustic features

of both the attended and the unattended speaker (tmax = 11.83
and 16.67, both p < 0.001; lateralization tmax = 4.17, p = 0.041
and tmax = 5.28, p = 0.001). The relative amplitudes of the TRF
peaks to acoustic onsets were consistent with previous results
[33, 47, 50], with an earlier (!70 ms) peak predominantly reflect-
ing the raw acoustic mixture, and a later (!150 ms) peak pre-
dominantly reflecting acoustic energy in the attended speech.
Responses to the acoustic envelope almost exclusively reflected
processing of the acoustic mixture, suggesting that auditory
stream segregation may be predominantly reflected in onset
processing.
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ables: the time of maximum rising slope precedes the time of
maximum amplitude, and is thus earlier compared with specific
time points in the neural response. The presence of analogous
peaks in the TRFs to both acoustic representations might indi-
cate that they jointly arise from a single, more complex underly-
ing neural response type, reflecting both onset and continuous
acoustic properties [48]. On the other hand, spatially, the two
response peaks to acoustic onsets were localized posterior
to the corresponding acoustic envelope peaks (d = 8 mm,
p = 0.002; d = 10 mm, p < 0.001), which might instead indicate
that the two responses stem from partially distinct neural
populations [49].
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The variables that significantly predicted responses to a single
speaker were used to model acoustic and lexical processing in
a version of the cocktail-party paradigm [18, 19]. Participants

listened to a single-channel acoustic mixture of a male and a
female speaker, attending to one and ignoring the other. This
made it possible to test whether the lexical processing observed
for a single speaker is restricted to the attended speech stream
or whether it occurs also for the unattended stream. Figure 3
shows the predictive power of groups of predictors modeling
relevant processing stages and TRFs for the full model fitted to
the two-speaker data.
Responses were significantly modulated by acoustic features

of both the attended and the unattended speaker (tmax = 11.83
and 16.67, both p < 0.001; lateralization tmax = 4.17, p = 0.041
and tmax = 5.28, p = 0.001). The relative amplitudes of the TRF
peaks to acoustic onsets were consistent with previous results
[33, 47, 50], with an earlier (!70 ms) peak predominantly reflect-
ing the raw acoustic mixture, and a later (!150 ms) peak pre-
dominantly reflecting acoustic energy in the attended speech.
Responses to the acoustic envelope almost exclusively reflected
processing of the acoustic mixture, suggesting that auditory
stream segregation may be predominantly reflected in onset
processing.

0 100 200 300 400 500 0 100 200 300 400 500

Time [ms]

0

2.7 × 10 02

0

2.2 × 10 03

-0.5

0

0.5
Acoustic
envelope

Acoustic
onset

Phoneme
onset

Word onset

Phoneme
surprisal

Cohort
entropy

Attended acoustic model

Attended lexical model

Acoustic stimulus model Unattended acoustic model

Unattended lexical model

130 ms

110 ms

1

0

1

Current
estimate
[normalized]

Right hemisphere
Left hemisphere

p ≤
.05

no
t s

ig.

*

***

∆z

Figure 3. Brain Responses to Two Concurrent Speakers
Details analogous to Figure 2. The three columns display results for the model components for: the attended speech stream (left), the actual acoustic stimulus

mixture (middle), and the unattended speech stream (right). The upper part of the figure displays results for acoustic features, the lower part for lexical processing.

3980 Current Biology 28, 3976–3983, December 17, 2018

attend

ignore

150 ms

0 100 200 300 �00

0 100 200 300 �00

attend

ignore

0 100 200 300 �00

0 100 200 300 �00

50 ms

fast 
envelope

carrier

subcortical



Fast & Early Cortical Representations

Kulasingham et al. (2020) High Gamma Cortical Processing of Continuous Speech …, NeuroImage

J.P.  Kulasingham,  C.  Brodbeck  and  A.  Presacco  et  al.  NeuroImage  222  (2020)  117291  

Fig.  3.  Volume  Source  Localized  Envelope  Modulation  TRFs.  The  amplitude  of  the  TRF  vectors  for  the  envelope  modulation  predictor  averaged  across  voxels  in  the  
ROI,  and,  the  mean  ±  (standard  error)  across  subjects  is  plotted  in  the  cortical  (A)  and  subcortical  (B)  ROIs.  Red  curves  are  time  points  when  the  TRF  showed  a  
significant  increase  in  amplitude  over  noise.  The  TRF  was  resampled  to  2000  Hz  for  visualization  purposes.  The  TRF  shows  a  clear  response  with  a  peak  latency  of  
~40  ms.  The  distribution  of  TRF  vectors  in  the  brain  at  each  voxel  at  the  time  with  the  maximum  response  are  plotted  as  an  inset  for  each  TRF,  with  color  representing  
response  strength  and  the  arrows  representing  the  TRF  directions.  The  color  bar  represents  the  response  strength  for  all  4  brain  insets.  The  response  oscillates  around  
a  frequency  of  ~80  Hz  and  is  much  stronger  in  the  cortical  ROI  compared  to  the  subcortical  ROI.  Note  that  since  only  the  TRF  amplitude  is  shown,  and  not  signed  
current  values,  signal  troughs  and  peaks  both  appear  as  peaks.  In  the  original,  signed  TRFs,  the  current  direction  alternates  between  successive  amplitude  peaks.  
The  latency  and  amplitude  of  the  response  suggests  a  predominantly  cortical  origin.  (For  interpretation  of  the  references  to  colour  in  this  figure  legend,  the  reader  
is  referred  to  the  web  version  of  this  article.)  

ternating  direction  between  successive  amplitude  peaks.  However,  in  all  

subsequent  TRF  plots,  the  TRF  amplitude  is  shown,  and  not  signed  cur-  

rent  values,  and  hence  signal  troughs  and  peaks  both  appear  as  peaks.  

The  subcortical  ROI  was  also  analyzed  in  a  similar  manner  and  the  TRF  

showed  significance  in  a  much  smaller  time  range  of  31–35  ms  only  for  

older  subjects  (younger  t  max  =  2.96,  p  >  0.13;  older  t  max  =  3.69,  p  <  0.01)  

(see  Fig  3  B).  There  was  no  significant  difference  in  amplitudes  between  

younger  and  older  subjects  (cortical  ROI  t  max  =  3.7,  t  min  =  –3.38,  p  >  

0.18;  subcortical  ROI  t  max  =  3.05,  t  min  =  –3.39,  p  >  0.45).  The  TRF  re-  

sponses  oscillate  at  a  frequency  of  ~80  Hz  (see  below  for  a  more  detailed  

spectral  analysis).  The  amplitude  of  these  TRFs  was  significantly  larger  

in  voxels  in  Heschl’s  gyrus  than  in  the  subcortical  ROI  (two-tailed  test  

with  paired  sample  t-values  on  the  !  2  norm  of  the  TRFs  across  subjects:  

younger  t  =  3.51,  p  =  0.003;  older  t  =  4.52,  p  <  0.001).  Since  the  sub-  

cortical  TRFs  also  have  a  similar  latency  and  shape  to  the  cortical  TRFs,  

and  because  a  latency  of  23  to  63  ms  is  late  for  a  subcortical  response,  

these  subcortical  TRFs  are  consistent  with  artifactual  leakage  from  the  

cortical  TRFs  due  to  the  spatial  spread  of  MNE  source  localization.  Sim-  

ulated  volume  source  estimates  for  current  dipoles  originating  only  in  

Heschl’s  gyrus  generated  a  spatial  distribution  of  TRF  directions  consis-  

tent  with  the  experimental  data  (see  Appendix),  i.e.  the  spatial  spread  of  

MNE  localized  cortical  responses  resulted  in  apparent  TRF  vectors  even  

in  the  subcortical  ROI.  These  results  indicate  that  the  response  originates  

predominantly  from  cortical  regions.  

3.2.  Responses  to  the  envelope  modulation  and  the  carrier  

Next,  the  neural  response  to  the  carrier  was  compared  with  that  to  

the  envelope  modulation.  The  carrier  TRF  was  also  tested  for  signifi-  

cance  using  a  corresponding  noise  model  (as  employed  above).  The  car-  

rier  TRF  showed  weak  responses  that  were  only  significant  in  the  corti-  

cal  ROI  between  33  and  51  ms  (younger  t  max  =  3.70,  p  =  0.042;  older  

t  max  =  4.7,  p  <  0.001)  (see  Fig.  4  A,  B).  Although  the  carrier  and  enve-  

lope  modulation  predictors  are  correlated  (  r  =  –0.42),  the  TRF  analysis  

is  able  to  separate  the  contributions  of  these  two  predictors  remarkably  

well.  Two-tailed  paired  sample  t  -values  and  TFCE  were  used  to  test  for  

a  significant  increase  of  the  !  2  norm  of  the  envelope  modulation  TRF  

when  compared  to  the  carrier  TRF  in  a  time  window  of  20–70  ms  in  

the  cortical  ROI  (see  Fig.  5  A).  This  test  was  significant  for  both  younger  

(  t  max  =  4.38,  p  =  0.002)  and  older  (  t  max  =  3.63,  p  =  0.017)  subjects.  

However,  this  test  did  not  find  a  significant  increase  in  the  envelope  

modulation  TRF  over  the  carrier  TRF  in  the  subcortical  ROI  for  either  

younger  (  t  max  =  0.045,  p  >  0.32)  or  older  subjects  (  t  max  =  0.89,  p  >  0.36).  

Since  the  TRF  analysis  allows  both  stimulus  predictors  to  directly  com-  

pete  for  explaining  response  variance,  the  results  strongly  indicate  that  

the  response  is  primarily  due  to  the  envelope  modulation  over  the  car-  

rier.  

3.3.  Age-related  differences  

Statistical  tests  were  performed  for  age-related  differences  between  

older  and  younger  subjects  on  both  the  prediction  accuracy  and  the  

TRFs.  Two-tailed  tests  of  prediction  accuracy  with  independent  sam-  

ple  t  -values  and  TFCE  indicated  no  significant  difference  (cortical  ROI  

t  max  =  1.17,  t  min  =  –2.72,  p  >  0.44;  subcortical  ROI  t  max  =  –0.78,  t  min  =  

–1.37,  p  >  0.38).  Similarly,  no  voxels  or  time  points  were  significantly  

different  in  either  the  envelope  modulation  TRF  (cortical  ROI  t  max  =  3.7,  

t  min  =  –3.38,  p  >  0.18;  subcortical  ROI  t  max  =  3.05,  t  min  =  –3.39,  p  >  0.45)  

or  the  carrier  TRF  (cortical  ROI  t  max  =  3.34,  t  min  =  –3.89,  p  >  0.25;  sub-  

cortical  ROI  t  max  =  2.69,  t  min  =  –3.10,  p  >  0.18).  In  addition,  the  cortical  

ROI  TRFs  showed  no  significant  differences  across  age  groups  in  peak  

latency  (envelope  modulation  TRF  t  max  =  1.82,  t  min  =  –2.62,  p  >  0.5;  car-  

rier  TRF  t  max  =  2.79,  t  min  =  –2.32,  p  >  0.53).  An  additional  analysis  was  

performed  using  surface  source  space  TRFs  as  described  in  detail  in  the  

-
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expected due to the temporal relationship between the two vari-
ables: the time of maximum rising slope precedes the time of
maximum amplitude, and is thus earlier compared with specific
time points in the neural response. The presence of analogous
peaks in the TRFs to both acoustic representations might indi-
cate that they jointly arise from a single, more complex underly-
ing neural response type, reflecting both onset and continuous
acoustic properties [48]. On the other hand, spatially, the two
response peaks to acoustic onsets were localized posterior
to the corresponding acoustic envelope peaks (d = 8 mm,
p = 0.002; d = 10 mm, p < 0.001), which might instead indicate
that the two responses stem from partially distinct neural
populations [49].

Responses to Two Concurrent Speakers Reflect
Acoustic, but Not Lexical, Information in Unattended
Speech
The variables that significantly predicted responses to a single
speaker were used to model acoustic and lexical processing in
a version of the cocktail-party paradigm [18, 19]. Participants

listened to a single-channel acoustic mixture of a male and a
female speaker, attending to one and ignoring the other. This
made it possible to test whether the lexical processing observed
for a single speaker is restricted to the attended speech stream
or whether it occurs also for the unattended stream. Figure 3
shows the predictive power of groups of predictors modeling
relevant processing stages and TRFs for the full model fitted to
the two-speaker data.
Responses were significantly modulated by acoustic features

of both the attended and the unattended speaker (tmax = 11.83
and 16.67, both p < 0.001; lateralization tmax = 4.17, p = 0.041
and tmax = 5.28, p = 0.001). The relative amplitudes of the TRF
peaks to acoustic onsets were consistent with previous results
[33, 47, 50], with an earlier (!70 ms) peak predominantly reflect-
ing the raw acoustic mixture, and a later (!150 ms) peak pre-
dominantly reflecting acoustic energy in the attended speech.
Responses to the acoustic envelope almost exclusively reflected
processing of the acoustic mixture, suggesting that auditory
stream segregation may be predominantly reflected in onset
processing.
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Figure 3. Brain Responses to Two Concurrent Speakers
Details analogous to Figure 2. The three columns display results for the model components for: the attended speech stream (left), the actual acoustic stimulus

mixture (middle), and the unattended speech stream (right). The upper part of the figure displays results for acoustic features, the lower part for lexical processing.
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expected due to the temporal relationship between the two vari-
ables: the time of maximum rising slope precedes the time of
maximum amplitude, and is thus earlier compared with specific
time points in the neural response. The presence of analogous
peaks in the TRFs to both acoustic representations might indi-
cate that they jointly arise from a single, more complex underly-
ing neural response type, reflecting both onset and continuous
acoustic properties [48]. On the other hand, spatially, the two
response peaks to acoustic onsets were localized posterior
to the corresponding acoustic envelope peaks (d = 8 mm,
p = 0.002; d = 10 mm, p < 0.001), which might instead indicate
that the two responses stem from partially distinct neural
populations [49].

Responses to Two Concurrent Speakers Reflect
Acoustic, but Not Lexical, Information in Unattended
Speech
The variables that significantly predicted responses to a single
speaker were used to model acoustic and lexical processing in
a version of the cocktail-party paradigm [18, 19]. Participants

listened to a single-channel acoustic mixture of a male and a
female speaker, attending to one and ignoring the other. This
made it possible to test whether the lexical processing observed
for a single speaker is restricted to the attended speech stream
or whether it occurs also for the unattended stream. Figure 3
shows the predictive power of groups of predictors modeling
relevant processing stages and TRFs for the full model fitted to
the two-speaker data.
Responses were significantly modulated by acoustic features

of both the attended and the unattended speaker (tmax = 11.83
and 16.67, both p < 0.001; lateralization tmax = 4.17, p = 0.041
and tmax = 5.28, p = 0.001). The relative amplitudes of the TRF
peaks to acoustic onsets were consistent with previous results
[33, 47, 50], with an earlier (!70 ms) peak predominantly reflect-
ing the raw acoustic mixture, and a later (!150 ms) peak pre-
dominantly reflecting acoustic energy in the attended speech.
Responses to the acoustic envelope almost exclusively reflected
processing of the acoustic mixture, suggesting that auditory
stream segregation may be predominantly reflected in onset
processing.
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expected due to the temporal relationship between the two vari-
ables: the time of maximum rising slope precedes the time of
maximum amplitude, and is thus earlier compared with specific
time points in the neural response. The presence of analogous
peaks in the TRFs to both acoustic representations might indi-
cate that they jointly arise from a single, more complex underly-
ing neural response type, reflecting both onset and continuous
acoustic properties [48]. On the other hand, spatially, the two
response peaks to acoustic onsets were localized posterior
to the corresponding acoustic envelope peaks (d = 8 mm,
p = 0.002; d = 10 mm, p < 0.001), which might instead indicate
that the two responses stem from partially distinct neural
populations [49].

Responses to Two Concurrent Speakers Reflect
Acoustic, but Not Lexical, Information in Unattended
Speech
The variables that significantly predicted responses to a single
speaker were used to model acoustic and lexical processing in
a version of the cocktail-party paradigm [18, 19]. Participants

listened to a single-channel acoustic mixture of a male and a
female speaker, attending to one and ignoring the other. This
made it possible to test whether the lexical processing observed
for a single speaker is restricted to the attended speech stream
or whether it occurs also for the unattended stream. Figure 3
shows the predictive power of groups of predictors modeling
relevant processing stages and TRFs for the full model fitted to
the two-speaker data.
Responses were significantly modulated by acoustic features

of both the attended and the unattended speaker (tmax = 11.83
and 16.67, both p < 0.001; lateralization tmax = 4.17, p = 0.041
and tmax = 5.28, p = 0.001). The relative amplitudes of the TRF
peaks to acoustic onsets were consistent with previous results
[33, 47, 50], with an earlier (!70 ms) peak predominantly reflect-
ing the raw acoustic mixture, and a later (!150 ms) peak pre-
dominantly reflecting acoustic energy in the attended speech.
Responses to the acoustic envelope almost exclusively reflected
processing of the acoustic mixture, suggesting that auditory
stream segregation may be predominantly reflected in onset
processing.
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Figure 3. Brain Responses to Two Concurrent Speakers
Details analogous to Figure 2. The three columns display results for the model components for: the attended speech stream (left), the actual acoustic stimulus

mixture (middle), and the unattended speech stream (right). The upper part of the figure displays results for acoustic features, the lower part for lexical processing.
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expected due to the temporal relationship between the two vari-
ables: the time of maximum rising slope precedes the time of
maximum amplitude, and is thus earlier compared with specific
time points in the neural response. The presence of analogous
peaks in the TRFs to both acoustic representations might indi-
cate that they jointly arise from a single, more complex underly-
ing neural response type, reflecting both onset and continuous
acoustic properties [48]. On the other hand, spatially, the two
response peaks to acoustic onsets were localized posterior
to the corresponding acoustic envelope peaks (d = 8 mm,
p = 0.002; d = 10 mm, p < 0.001), which might instead indicate
that the two responses stem from partially distinct neural
populations [49].

Responses to Two Concurrent Speakers Reflect
Acoustic, but Not Lexical, Information in Unattended
Speech
The variables that significantly predicted responses to a single
speaker were used to model acoustic and lexical processing in
a version of the cocktail-party paradigm [18, 19]. Participants

listened to a single-channel acoustic mixture of a male and a
female speaker, attending to one and ignoring the other. This
made it possible to test whether the lexical processing observed
for a single speaker is restricted to the attended speech stream
or whether it occurs also for the unattended stream. Figure 3
shows the predictive power of groups of predictors modeling
relevant processing stages and TRFs for the full model fitted to
the two-speaker data.
Responses were significantly modulated by acoustic features

of both the attended and the unattended speaker (tmax = 11.83
and 16.67, both p < 0.001; lateralization tmax = 4.17, p = 0.041
and tmax = 5.28, p = 0.001). The relative amplitudes of the TRF
peaks to acoustic onsets were consistent with previous results
[33, 47, 50], with an earlier (!70 ms) peak predominantly reflect-
ing the raw acoustic mixture, and a later (!150 ms) peak pre-
dominantly reflecting acoustic energy in the attended speech.
Responses to the acoustic envelope almost exclusively reflected
processing of the acoustic mixture, suggesting that auditory
stream segregation may be predominantly reflected in onset
processing.
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To Intelligibility, 
and Beyond?

-

http://www.isr.umd.edu/Labs/CSSL/simonlab


• Behavioral correlates of speech understanding

- implies language comprehension

- higher order comprehension (?)


o sentence structure

o other structures, e.g. poetic, logical


• Neural correlates of speech understanding

- rhythms of higher order structures, even if  

totally absent in the acoustics

o sentence structures

o poetic structures

o mathematical structures

Cortical Representations of Speech Understanding

Ding et al., Nat Neurosci 2016
Teng et al., Curr Biol 2020



Isochronous Speech

Acoustical 

Spectrum

(envelope)

Acoustics

Neural SpectrumPerception?



Isochronous Arithmetic
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Spectrum
Kulasingham et al. (2021) Cortical Processing of Arithmetic and Simple Sentences …, J Neurosci
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Representations of Understanding

Attend to

Sentences

Attend to

Equations

Neural Correlation with Behavior

• Neural correlates of understanding

- rhythms of higher order structures


o sentence structures

o poetic structures

o mathematical structures

o …

-



Twas thenight be fore Christ mas when se Nota crea ture was e ven amou se The sto ckings were care in ho pes that Sai ntNi chola s would s oon be there all thru the hou stirring not hung by the chim ney with 

A 

B 

Reconstructing Imagined Speech

Can non-stationary, imagined speech be decoded?

‣ might be aided by contextual knowledge/familiarity

‣ might be aided by strong rhythmicity

Cervantes Constantino & Simon (2018) Restoration … Neural Processing of Continuous Speech …, Front Syst Neurosci
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B Can non-stationary, imagined speech be decoded?

‣ might be aided by contextual knowledge/familiarity

‣ might be aided by strong rhythmicity

Reconstructing Imagined Speech

Cervantes Constantino & Simon (2018) Restoration … Neural Processing of Continuous Speech …, Front Syst Neurosci



Twas%the%night%before%Christmas,%when%all%through%the%house%
not%a%creature%was%s6rring,%not%even%a%mouse.%
The%stockings%were%hung%by%the%chimney%with%care,%
in%hopes%that%St.%Nicholas%soon%would%be%there.%%
!!
The%children%were%nestled%all%snug%in%their%beds,%
while%visions%of%sugar%plums%danced%in%their%heads.%
And%Mama%in%her%'kerchief,%and%I%in%my%cap,%
had%just%seDled%our%brains%for%a%long%winter's%nap.%%
%%
When%out%on%the%lawn%there%arose%such%a%claDer,%
I%sprang%from%my%bed%to%see%what%was%the%maDer.%
Away%to%the%window%I%flew%like%a%flash,%
tore%open%the%shuDer,%and%threw%up%the%sash.%%
%%
The%moon%on%the%breast%of%the%newGfallen%snow%
gave%the%lustre%of%midday%to%objects%below,%
when,%what%to%my%wondering%eyes%should%appear,%
but%a%miniature%sleigh%and%eight%6ny%reindeer.%%
%%
With%a%liDle%old%driver,%so%lively%and%quick,%
I%knew%in%a%moment%it%must%be%St.%Nick.%
More%rapid%than%eagles,%his%coursers%they%came,%
and%he%whistled%and%shouted%and%called%them%by%name.%%
%%
“Now%Dasher!%Now%Dancer!%Now,%Prancer%and%Vixen!%
On,%Comet!%On,%Cupid!%On,%Donner%and%Blitzen!%
To%the%top%of%the%porch!%To%the%top%of%the%wall!%
Now%dash%away!%Dash%away!%Dash%away%all!”%%
%%
As%dry%leaves%that%before%the%wild%hurricane%fly,%
when%they%meet%with%an%obstacle,%mount%to%the%sky%
so%up%to%the%houseGtop%the%coursers%they%flew,%
with%the%sleigh%full%of%toys,%and%St.%Nicholas%too.%%
!!
!

!
!

And%then,%in%a%twinkling,%I%heard%on%the%roof%
the%prancing%and%pawing%of%each%liDle%hoof.%
As%I%drew%in%my%head%and%was%turning%around,%
down%the%chimney%St.%Nicholas%came%with%a%bound.%%
%%
He%was%dressed%all%in%fur,%from%his%head%to%his%foot,%
and%his%clothes%were%all%tarnished%with%ashes%and%soot.%
A%bundle%of%toys%he%had%flung%on%his%back,%
and%he%looked%like%a%peddler%just%opening%his%pack.%%
%%
His%eyesGGhow%they%twinkled!%His%dimples,%how%merry!%
His%cheeks%were%like%roses,%his%nose%like%a%cherry!%
His%droll%liDle%mouth%was%drawn%up%like%a%bow,%
and%the%beard%on%his%chin%was%as%white%as%the%snow.%
%%
The%stump%of%a%pipe%he%held%6ght%in%his%teeth,%
and%the%smoke%it%encircled%his%head%like%a%wreath.%
He%had%a%broad%face%and%a%liDle%round%belly,%
that%shook%when%he%laughed,%like%a%bowl%full%of%jelly.%%
%%
He%was%chubby%and%plump,%a%right%jolly%old%elf,%
and%I%laughed%when%I%saw%him,%in%spite%of%myself.%
A%wink%of%his%eye%and%a%twist%of%his%head%
soon%gave%me%to%know%I%had%nothing%to%dread.%%
%%
He%spoke%not%a%word,%but%went%straight%to%his%work,%
and%filled%all%the%stockings,%then%turned%with%a%jerk.%
And%laying%his%finger%aside%of%his%nose,%
and%giving%a%nod,%up%the%chimney%he%rose.%%
%%
He%sprang%to%his%sleigh,%to%his%team%gave%a%whistle,%
And%away%they%all%flew%like%the%down%of%a%thistle.%
But%I%heard%him%exclaim,%'ere%he%drove%out%of%sight,%
"Happy%Christmas%to%all,%and%to%all%a%good%night!"%

Neural “Reconstruction”  
& Familiarity

Controlling contextual knowledge of missing speech 
by exposure to the speech



Imagined Speech “Reconstruction”
•Decoding of the 
missing speech 
token improves 
with prior 
experience


•Performance is a 
considerable 
fraction of that for 
clean speech

Reconstruction from Noise
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Cervantes Constantino & Simon (2018) Restoration … Neural Processing of Continuous Speech …, Front Syst Neurosci



Imagined Speech “Restoration”?

Reconstruction from Noise

Familiarity Level
Low Medium High Control

Eff
ec

t s
ize

 (q
)

0.4

0.8

0.0

Cervantes Constantino & Simon (2018) Restoration … Neural Processing of Continuous Speech …, Front Syst Neurosci



Summary
temporal patterns in speech acoustics 
temporal patterns in speech perception 
temporal patterns in language perception 
temporal patterns in understanding

temporal neural patterns ⇆

• Continuous speech allows 
acquiring entire hierarchy  
from same stimulus


• Using simultaneous TRFs allows 
segregation of neural processes


• How is each process linked to 
intelligibility/understanding?


• Which links are predictive/causal?



thank you

http://www.isr.umd.edu/Labs/CSSL/simonlab

These slides
available at:
ter.ps/simonpubs

http://www.isr.umd.edu/Labs/CSSL/simonlab

